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SUMMARY 
We propose a method for fast analytical ray tracing on a heterogeneous sphere for 
surface waves. We first select the specific coordinates of orbital motion which have 
action/angle properties. We then apply the Lie perturbation approach and, when 
the square of the slowness is expanded in spherical harmonics, we obtain an 
analytical formula for the perturbed parameters of the ray. These expressions are 
sensitive to both the odd and even parts of the expansion. Traveltimes are computed 
by perturbation, while geometrical spreading is estimated numerically between two 
nearby perturbed rays. For the 'Gulf of Alaska' earthquake of November 1987, the 
analytical ray follows the same deviations with respect to the great circle as the 
numerical one, when we use the phase velocity model of Montagner & Tanimoto 
(1990) at period of 167 s. The agreement is excellent for traveltime computations. 
When the numerical ray tracing predicts a focus/defocusing effect, the perturbed ray 
tracing gives the same trend. Moreover, variations of the shooting angles between 
trains can be as high as 20" which might modify the radiation pattern seen by the 
station for different trains. When the perturbed ray deviates too strongly, a 
reinitialization technique will guarantee a given accuracy. This reinitialization, which 
is not required for long periods (>150 s), is probably necessary at shorter periods. 
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1 INTRODUCTION 

Extracting information on laterally varying Earth structure from surface-wave seismograms requires fast methods which 
simplify the forward problem to a satisfactory level for inversion. Simple assumptions, as the great circle path approximation 
used in seismic tomography, already give interesting global pictures of the Earth's upper mantle (Nakanishi & Anderson 
1984; Nataf, Nakanishi & Anderson 1984, 1986; Tanimoto & Anderson 1985; Montagner & Tanimoto 1990). Using lateral 
variations only along the major and minor great circle paths also leads to seismogram inversion (Woodhouse & Dziewonski 
1984; Tanimoto 1984, 1987b, 1988). Further improvements, such as the use of Gaussian beam methods, have been undertaken 
(Yomogida & Aki 1987), but much work remains to be done to improve the resolution of the mantle structure. More elaborate 
methods are available [see references in Park & Gilbert (1986) or in Lognonnk & Romanowicz (1990)l for synthesizing 
seismograms, but a compromise between complexity of the underlying theory and computer speed has to be made. Taking into 
account the small amplitude of lateral heterogeneities in the upper mantle for the long-period range of surface waves, one 
might hope that perturbation techniques will apply to this problem. Some simplifications, for computing the phase as well as 
the amplitude, have been proposed by Woodhouse & Wong (1986) for the ray method and by Romanowicz (1987) for the 
normal modes formulation. These formulations, which are equivalent to first order, require the additional knowledge of first 
and second derivatives of velocity perpendicular to the great circle path. It is not yet clear how adequate these approximations 
are and whether we need further improvements, provided by more complete perturbation formulations (Tsuboi, Geller & 
Morris 1985; Park 1987; Snieder & Romanowicz 1988; Lognonnk & Romanowicz 1990) to progress with the inverse problem. 

We propose a theory based on recent Lie series perturbation techniques in order to evaluate the ray analytically at the 
station position when lateral heterogeneities are involved. The perturbation technique is similar to the one of Woodhouse & 
Wong (1986) but we apply it to very specific variables obtained by a canonical transformation introduced in seismology by 
Dahlen & Henson (1985) and Henson & Dahlen (1986). We extend and complete the work of Virieux (1989). These 
techniques have recently been applied in the problem of oceanographic tomography (Miller 1986; Wunsch 1987). Because the 
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Lie series perturbation technique is not familiar to most seismologists, we shall present the method of ray tracing at a given 
frequency in this paper. Constructing a complete seismogram will be the purpose of future work. 

We shall assume that the seismograms are sensitive only to lateral heterogeneities of the Earth. Corrections for ellipticity 
as well as for the rotation of the Earth (Dahlen 1975; Woodhouse & Dziewonski 1984) are perturbations which do not interact 
with perturbations of lateral heterogeneities. In a more complete analysis, we might have taken into account these effects of 
rotation (Backus 1962), as well as these effects of ellipticity (Jobert 1976; Mochizuki 1989) in the ray tracing system itself. 

The Lie series perturbation method applies in a very elegant way to problems cast into an Hamiltonian formulation, which 
we introduce now. 

2 THE HAMILTONIAN APPROACH 

Because we are going to exploit the Hamiltonian structure of ray tracing, we must describe how we define the Hamiltonian. In 
order to do so, we start from the high-frequency approximation which allows one to represent a scalar surface displacement 
field by the following expression: 

d(x ,  t )  = A(x, t)eiv(xsr), (1)  

where x is the position on the involved surface and t is time. A is the s10wly varying amplitude and q is the rapidly varying 
phase. Let us introduce a local wave vector and a local instantaneous frequency by 

where V is the surface nabla operator. One can find an eikonal equation which can be expressed as a local dispersion relation 
(Woodhouse 1974; Jobert 8z Jobert 1987) w = w(x, k). Taking into account the definitions of k and o (equation 2), this 
equation leads to a Hamilton-Jacobi equation for q ( x ,  t ) :  

3 + w(Vq, x) = 0, 
at (3) 

from which one can deduce the Hamilton's canonical equations: 

i = v,w, ir = -v,w, (4) 

where dots denote the time derivative. Since w has no explicit dependence upon time, we also have ci, = 0. The variational 
problem associated with the Hamiltonian, w ,  is given by &# = 0, stating that the phase is stationary along the ray path (Landau 
& Lifchitz 1969). These equations are very general and are valid for any anisotropic medium. Let us turn our attention to the 
isotropic case. Defining the wavenumber by 

k = m = ~ - ,  (5) 
where gmB is the contravariant metric tensor of the coordinate system we use, the local dispersion relation can be written 

o(k,, x? = w(k, x" )  (6)  

This expression is also valid for transversely isotropic media because w is azimuthally independent (Tanimoto 1987a). We 
invert equation (6) and write k with respect to w and x u  as the local dispersion relation: 

k = k ( o ,  x?. (7)  

One can deduce the following equations: 

Let us introduce the group velocity U = dw/dk ,  as well as the phase velocity c = w/k .  The sampling parameter t along the ray 
can be converted to the arclength s by U ds = dt. This choice modifies the Hamiltonian and one can write the canonical 
equations as 

where k" are the contravariant components of the wave vector defined by k" = govkv. These equations show explicitly that rays 
are independent of the group velocity, and they can be obtained from the variational problem (where the phase traveltime 
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along the ray path is stationary) for x"(s):  

S k(w, x? dr = 0 I 
subject to the constraint 

dX"&' 
g --=l. 
"'ak dr 

These equations can also be derived from the Hamiltonian given by 

H(k,, ~9 = V g F -  k(w ,  X? = 0. 

Up to now, we have simply reproduced standard results (Woodhouse & Wong 1986; Keilis-Borok 1989). Introducing now 
another variable 5 instead of the arclength s by dr = k d5, we can write the Hamilton's canonical equations in a more simple 
form: 

These equations may be obtained from the variational problem (saying also that the phase traveltime along the ray path is 
stationary) for x "( 5):  

S k2(w, x? d c  = 0, 

or derived from the Hamiltonian given by 

I 

These three Hamiltonians [given by equations (3), (12) and (15) and the three associated variational problems] lead to the 
same trajectories or rays as shown by Doubrovine, Novikov & Fomenko (1982, p. 311). Let us emphasize that the different 
variational problems have somewhat different constraints. The first one, 6q = 0, implies a constant time t ,  the second one, 
equation (9, a constant length s and the third, equation (13), gives a constant parameter 5. The choice between them will 
depend on the problem at hand. The first formulation would be well-suited because the time is obtained directly, but the 
presence of the group velocity makes the equations difficult to solve (Tanimoto 1987a). The second formulation is the most 
frequently used approach in surface-wave ray tracing, because one does not require the group velocity in the ray tracing 
equations. Moreover, the ray tracing equations are identical to the non-dispersive body-wave ray tracing (Aki & Richards 
1980), allowing the use of body-wave ray tracing numerical codes. The group velocity is only involved for computing the time, 
which is now done separately. The third formulation has received increasing interest in body-wave approach (Burridge 1976) 
because it gives the simplest form for the equations. It also introduces a formal equivalence between a ray and a particle 
trajectory and allows us to construct solutions borrowed from celestial mechanics results (Henson & Dahlen 1986; Virieux 
1989). The variable t; has now a physical meaning: the quantity ( / w  is the time connected with the associated particle motion 
(Goldstein 1980, p. 484). 

Many other Hamiltonians can be introduced. In body-wave ray tracing, for example, one can reduce the number of 
variables with the relation H = 0. This relation, of course, can also be used to check accuracy of the ray tracing. It turns out 
that the reduced Hamiltonian is too complex for our purpose. Consequently, the zero value of the Hamiltonian is not used 
further and any constant might be taken. Once initial conditions define this constant, the Hamiltonian stays at this value along 
rays. We shall note this constant as E from the analogy with the constant energy of an isolated system. However, the 
geometrical interpretation of E is the unicity of the hypersurface in the phase space where rays are. Reduced Hamiltonians 
define this hypersurface as the phase space itself. Investigations around this hypersurface are important for ray tracing 
perturbations. 

We now turn to a more specific set of coordinates-angles 0 and @ (Fig. 1)-for surface-wave ray tracing. Introducing the 
slowness u(0, @), by the following definitions: k2(w, 8, @) = w2/c2(0, @) = wzu2(0, @) and the new vector p by k = wp, we 
obtain the following Hamiltonian: 
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I ” 

Fw 1. Spherical coordinates used for ray tracing equations. 

with the implicit sampling parameter t, defined by c/o and where a is the radius of the Earth. The canonical equations will be 

This Hamiltonian is very similar to the one used by Backus (1962) for studying the effect of the rotation of the Earth on surface 
waves. The Hamiltonian defined by Woodhouse & Wong (1986) is for comparison: 

JV- a2sin2 6 u(6, @) = 0. 

Introducing the traveltime of a harmonic wave by ‘1’ = wT, we find p = VT, which allows us to rewrite the relation (15) under 
the usual form for an eikonal: 

The square of slowness arises as the natural quantity describing the lateral heterogeneity of the Earth (Cervenj 1987; Viriew, 
Farra & Madariaga 1988), and we always refer to this quantity from now on. 

Let us construct exact solutions for a homogeneous sphere with the Hamiltonian defined by (16) and associated canonical 
equations (17). 

3 THE ZEROTH-ORDER SOLUTION 

Solving the ray tracing on a homogeneous sphere is simple and gives the great circle connecting the source and the station. 
Because we want to go one step further in the next section, we shall proceed in a more involved way by using canonical 
transformation methods, where the Hamiltonian approach shows its efficiency. We want to construct a transformation from 
variables (6, $, p e ,  p s )  to new variables (p l ,  &, J 1 ,  Jz)  that will make ray tracing (17) simpler to solve. This transformation 
may be constructed from a generating function S ( t ,  6, @, J 1 ,  J2) and the equations 

We solve relations (20b) in order to get 6 and @ with respect to (t, bl ,  Bz, J1, Jz) and then insert these solutions into relations 
(20a) to get p e  and p g  with respect to (t, PI,  B2, Jl, Jz).  In this formulation, the generating function S uses mixed coordinates. 
The transformed Hamiltonian is given by 

K ( B i , # & , J i , J 2 ) = H ( @ ,  # , ~ e > ~ o ) + z ( t .  0, # , J i r J z ) .  

In order to obtain a canonical transformation, we select a canonical set as (&, B,, J1,  J,) which guarantees the canonical 
equations: 

(21) 
dS 

Two choices give simple solutions. The transformed Hamiltonian may be independent of coordinates. In this case, the generating 
function is called the principal function or action. The variables g l ,  &, J1 and J2 are constant. Another choice assumes 
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a Hamiltonian function of J1 and J2 only. The canonical equations (22) are solvable with J1 and J2 constant and and p2 linear 
functions of t. The associated generating function is now called the characteristic function. Because our Hamiltonian is 
r-independent and is expressed only with J1 and J2,  it will also be constant. Consequently, it is possible to construct 
immediately a new generating function giving a Hamiltonian equal to zero. We simply have to subtract the term tK from the 
generating function. We are, therefore, back to the first choice which we shall consider in what follows. 

The only systematic method for obtaining an analytical solution is additive separation of variables which is allowed by the 
specific structure of our selected Hamiltonian and widely used in celestial mechanics (Goldstein 1980). This is the a posteriori 
justification of the introduced t parameter. 

For a homogeneous sphere, we construct the solution using the systematic procedure of the Hamiltonian formulation in 
Appendix A. For a quicker way to obtain the solution, we refer the reader to Virieux (1989), as well as for the geometrical 
interpretation and the action/angle properties of the new quantities. Let US quote here only the final results. The solution, 
which is the great circle connecting the source and the station in this order, is given by the following expressions: 

(23) 
52 cos 8 = sin O sin (2nw1), p R  = * t g ( @  - 2nw2) = cos 0 tg(2nw1), p @  = g, 2n 

where the appropriate sign is found from initial values. The variables wI and w2 are defined respectively by v I t  + B1 and 
v2r + B. The parameters 0 and @ are the coordinates of the pole associated with the great circle. They are related to the new 
coordinates by cos 0 = J2/J1 and @ = 2nw2. The quantities v1 and v2 are angular frequencies defined by v1  = J1/4n3a2 and 
v2 = 0. The angular frequency v2 equal to zero describes the degeneracy on a homogeneous sphere. These relations define the 
generating function S which performs a non-linear transformation. In the next sections, we shall add a subscript 0 to the 
function S to underline the zeroth-order approximation. 

4 PERTURBATION SCHEME 

In the previous section, we have introduced a canonical transformation which converts the great circle (the ray in a 
homogeneous Earth) into a single point: the pole of the great circle. This transformation has been known for a long time in 
plate tectonics. 

Let us now consider a heterogeneous sphere where lateral variations are taken as perturbations from the homogeneous 
sphere. Constructing a canonical transformation which converts the ray trajectory into a single point is now too difficult. We 
simply want to construct a canonical transformation which converts the complex ray trajectory into a simpler trajectory (as a 
straight line in the following). In other words, we want to make corrections to the zeroth-order solution. We require only a 
transformation to simpler equations which might be approximately solved. Instead of using a generating function with mixed 
variables, known as the Von Ziepel's approach, we shall use the recent method of Lie series, expressing the generating 
function with respect to new variables. Nayfeh (1972) or Giacaglia (1972) give excellent reviews of the method and we refer the 
reader to them. The canonical transformation includes the previous transformation and an extra term. This term is neglected in 
the averaging principle when we go back to the original space, while the Lie series theory, which we describe in the following 
section, takes it into account in the way back. 

5 HIGHER ORDER SOLUTIONS: LIE SERIES 

Let us assume that the Hamiltonian can be expanded in the following form: 

H = H, + 6H1 + cZH2 + * * 

where E is a small parameter. When E is equal to zero, we have the homogeneous uam&onktn 4, wifh fh.5 @%%%'d~d&%'d 
generating transformation from (0, @, p e ,  p o )  to (By, St,, Jy ,  J;) ,  expressed in a subtle way with only new variables: 

The variables 8 and @ are given by relations (23). When E is different from zero, the variables (By, /3;, J y ,  J;)  are no longer 
constant and depend on t in a rather complicated way. A new transformation from (By, B;, Jy ,  5;) to (/&, b2, J1, J2) is 
introduced as a power series (Lie series) in E. 

where S,, S, are the generating functions in first and second order. The old constants are expanded with respect to the new 
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ones with a near identity transformation defined as infinitesimal transformations: 

with the following definitions: 

The quantities (Ji, p i )  might be either (J , ,  B1) or (J,, p2) and L,  is the Lie derivative defined by 

af as,, af as,, 
L f dBi dJi dJidfii ' 

where summation over i is understood. The Lie derivative characterizes the speed at which f is modified when the coordinates 
are deformed by S,,. The transformed Hamiltonian K will be 

K ( t ,  B 1 ,  B2t 51, J2) = Ko(t ,  B i y  82, J i l J 2 )  + EKi(t ,  B2,Jij 52) + c2K2(r1 B 2 r  J1, J2) + * . . . (30) 

The general theory of Lie series gives an equation for each order: 

through relations (23) of old variables in terms of new ones. Higher order equations can be obtained from a recursion scheme 
which can be found in previously cited reviews. Because S is a canonical transformation, we still have the canonical equations 

These equations might be solved iteratively by assuming the following series expansion: 

b1 = B 1  + ED: + c2B: + - . - , 
together with the initial conditions (t = 0), 

5, =.fl + EJ: + e2J:+. * . , /3,=fi2 + ~'/3:+ * * . , J 2 = j 2 +  EJ: + e2J;+. . . , (34) 

&=&, /3;=0, J 1 = j l ,  J ; = O ,  & = P 2 ,  /3;=0, J 2 = j 2 ,  J ' ;=O,  n = l , 2 , .  . . . (35) 

The quantities B1, f i2 ,  .fl, j2 are the constant values of the zeroth-order solution (keep in mind that the coordinates By, S;, Jy ,  
J(:' are no longer constant for the heterogeneous sphere). Substituting these expansions into the canonical equations, we can 
solve the first-order equation by using the zeroth-order solution, the second-order equation by using the first-order solution and 
so on. This is the time-dependent perturbation procedure and the way we solve approximately the new canonical system. Of 
course, we have to choose the different terms of our generating function and, consequently, our new Hamiltonian. Because our 
zeroth-order solutions are periodic, we shall apply the procedure of cancelling secular terms in the generating function (see 
Nayfeh 1972). These secular terms will emerge in the transformed Hamiltonian. A more intuitive technique, called the 
averaging procedure, takes into account only the secular terms in the canonical equations and neglects the perturbation of the 
generating function: it has been applied to the same problem by Virieux (1989). Other choices of repartition between the 
Hamiltonian and the generating function are possible depending on the problem at hand. 

To first order, integrating the Hamilton-Jacobi equation (31a) will give an analytical expression of S,. Computing 
derivatives of S, with respect to the new coordinates allows construction of By, pi ,  Jy ,  J ;  from the relation (27). Inserting these 
expressions into the unperturbed transformation (23) will give the desired first-order perturbations of the solution. Computing 
the second-order solution is more involved because one has to evaluate Lie derivatives of If, and K ,  with respect to new 
coordinates but, in principle, the procedure is the same as for the first-order solution. 
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6 SPHERICAL HARMONICS EXPANSION 

The Lie series approach is a very elegant method, but one has to construct analytically the functions introduced in the previous 
paragraph. If the square of the slowness is expressed in spherical harmonics, we can do this for a laterally heterogeneous 
sphere. The Hamiltonian H can be written as the sum of the homogeneous Hamiltonian H,, and an extra term that we assume 
to be of first order and we shall expand it in the following form: 

where Y;" are fully normalized spherical harmonics (Backus 1964). The explicitly missing variables pe  and p+ are denoted by '-' 
as commonly used in perturbation theory. Of course, we might take into account the amplitude of the different terms h;" and 
distribute them in different order terms. Because we have implemented numerically only the first-order perturbation, we do 
not discuss further such a strategy. 

For numerical illustrations of this article, we choose an isotropic equivalent of the model of Montagner & Tanimoto (1990) 
expanded in spherical harmonics'up to the azimuthal order 15 (Fig. 2 ) .  From the velocity expansion, we deduce the square of 
the slowness expansion related directly to the Hamiltonian expansion. 

The term HI has to be expressed with the new variables, which is conveniently done with generalized spherical harmonics 
Q;"" (Backus 1964). One can find 

where the variable wI is equal to V ~ T  + and angles (0, CP, Y) are the Euler angles from rotating the frame (6 ,  +) to the 
(source, station) frame defined by the angles ( n / 2 ,  2nw,) .  The angles 0, CP contribute to the ray trajectory, while the angle Y 
is simply related to the origin of the parameter T and can be set to zero without loss of generality. The relation (30a) gives 

as 
St 1.m 

K ,  + 1= C h;"eimQ 

Now, we select the slowly varying part, i.e. the secular terms, as the new Hamiltonian. These terms are defined by n = 0 and 
the resulting Hamiltonian will be 

K ,  = h;"Q;"O(@)ei"'Q~(~, 0), 
1.m 

I ' 1-1 
\ L  I 

7 1 .  
sec 

1 1 1 .  
sec 

Spherical harmonics decomposition 

Angular order 15 

95. 
sec 

167. 
sec 

Figure 2. Equivalent isotropic model of Montagner & Tanimoto (1990) in spherical harmonics expansion up to the 15th azimuthal order at 
different periods. The grey scale is the same for the different periods and will be used for the following figures. 
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which gives the following expression by transforming back to spherical harmonics: 

already used by Virieux (1989). Integrating the Hamilton-Jacobi equation, one can deduce the first-order generating term S,: 

which is the important contribution of the Lie series approach. A constant of integration 1(/3,, B2, J, ,  5,) must be introduced 
but one does not need to know it; only its derivatives with respect to coordinates have to be computed. The initial conditions 
provide us with these values. The first-order terms of the new canonical equations are obtained: 

Because K ,  does not depend on /3,, J :  is constant which shows that J1 is a first-order adiabatic invariant. This property stems 
from the action/angle property of the couple (w,, 5,) (Virieux 1989). We integrate (42) with the zeroth-order solution on the 
RHS and obtain 

/?: = Sv,t ,  J :  = 0, /3: = SvZt,  J: = S p 2 q  (43) 

where 6v1, SY, and Sp2 are given by 

The quantities 0' and Q' are the pole coordinates for the zeroth-order solution. The total solution to this order is 

Dl = 6, + f i :  = 6, + 6v l ,  t, J ,  = j , ,  P2 = p2 + /3$ = p2  + S V , ~ ,  J2 = & + J: = j2 + S p , t ,  (45) 
a result already obtained by Virieux (1989). Expressions (26) for /3:, @, 1: and 1: require partial derivatives of S, with respect 
to new coordinates, which are given in Appendix B. We finally go back to (0, q5, p e ,  p S )  by inserting these values into the 
relation (23). This solution is different from the one constructed by the averaging principle (Virieux 1989) which neglects the 
contribution of the transformation S,. The solution, which was sensitive only to the even coefficients of the spherical harmonics 
expansion in the averaging procedure, is now modified by the odd coefficients through the generating function S,: a very 
attractive feature for inversion. 

As a first example, we perform ray tracing from the 'Gulf of Alaska' earthquake of November 1987 to the GEOSCOPE 
station SSB with a take-off angle tangent to the great circle (coordinates of the GEOSCOPE stations used and the 'Gulf of 
Alaska' earthquake are shown in Table 1). We perform an entirely numerical ray tracing using a Runge-Kutta scheme of 
second order as well as the perturbed ray tracing. In Fig. 3, the coordinate frame is rotated in such a way that the source and 
the station lie on the equator. We consider the phase velocity model of Montagner & Tanimoto (1990) at 167 s on the left panel 
of Fig. 3, and this model amplified by an arbitrary factor of 1.5 on the right panel of Fig. 3. The relative variation of the 
heterogeneity velocity is 2 per cent in the true model and 3 per cent in the amplified model. The comparison between analytical 
and numerical ray tracing methods is surprisingly good taking into account that the analytical ray tracing in action/angle 
coordinates is simply a straight line (Fig. 3). This is the geometrical effect of the non-linear canonical transformations So and 

As another example, we consider a R4 train for the same earthquake. We select the station GEOSCOPE INU and rotate 
continents in order to have source and station along the equator and we plot deviations up to 32" away from the great circle 
(Fig. 4). For the selected initial angle, the agreement between analytical and numerical rays is excellent for the first orbit. 
When the ray again traverses North America, a local perturbation with a strong gradient modifies the numerical ray, while the 
perturbed ray is insensitive to this gradient. The discrepancy increases at that time but overall features of rays are the same. As 
a rule of thumb, we might say that the product of velocity gradient and distance must be small for the perturbation technique 
to be valid. 

s,. 
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N 

Table 1. Coordinates of the GEOSCOPE stations 
used in this article, as well as the coordinates of 
the 'Gulf of Alaska' earthquake (1987). 

Locations of Geoscope stations and earthquake 

used in this study Latitude Longitude 

.N N. N 

Station SSB 45.28 4.54 

0 
31 

Station INU 35.35 137.04 

0 
- 9  

, I  V 

Station CAY 4.95 -252.32 

N 

58.17 -142.04 Gulf of Alaska 

earthquake (Nov. 1987) 

- ,  I 
N N  N 

In two-point ray tracing, shooting at a given station adds another difficulty. The first step is an investigation of the 
branches arriving at the station. We proceed on a line perpendicular to the great circle defined by the couple (source, station) 
and, shooting systematically at different angles, we define the branches inside which the station is located. For the model of 
Montagner & Tanimoto (1990) at period of 167 s, branches are unusual, while, at shorter periods, they are more common. The 
previous example of GEOSCOPE station INU presents, for example, a caustic at about 15" off the great circle (Fig. 5). As we 
consider longer trains, the caustics at the source and at the antipole spread over a wider surface. Once branches are found, we 
simply solve the two-point ray tracing numerically by a modified regular falsi method for each branch and for the numerical 
and analytical methods of ray tracing independently. In doing it, we investigate other initial values of coordinates 
(PI, P2, JI, J,) for great circles nearby the one connecting the earthquake and the station. 

Lie derivatives require derivatives with respect to Euler angles only, which can be analytically evaluated with a generalized 
spherical harmonics expansion. In other words, Lie derivatives can be expanded analytically on a generalized spherical 
harmonics basis. This feature of closure allows, in principle, the analytical construction of the solution up to second-order 
order from relations (28) and (31). By recurrence, the solution can be constructed to any order. Applying the theory to lateral 
heterogeneous models of the Earth will tell us whether or not the second-order solution is worth a numerical implementation. 

Another alternative which might be numerically more efficient is updating the perturbation when one estimates that the 
deviations are too large. When variations bv,, 8v2 or 6p2 induce deviations which are too large, we may compute the ray at 
only half the parameter z of the station, for example. This point and its slowness vector define a great circle and one can 

t J, 



20 J .  Virieux and G. Ekstrom 

GULF of ALASKA EARTHQUAKE NOVEMBER 1987 

GEOSCOPE STATION INU : R4 t ra in  

PERIOD 167 sec. 

G R E A T  C I R C L E  
0 60  120 180 240 300 36Q 

3 9 

2 0 
?. 

i 3 
3 

W 0 

Figure 4. Sclcctcd shooting anglc producing large deviations of the perturbed ray compared to the numerical ray tracing after one orbit. The 
INU station and the 'Gulf o f  Alaska' earthquake of 1987 are used for rotations. 

G U I , F  of AIASKA EARI'HQUAKE NOVI,MBEli 10x7 

<;lIOS<'OPE SIAIION INU : IiJ t r a i n  

I'l-:R101> 167 sec. 

('AUSfI C'S I' AlTERN 

G R E A T  C1RCI.E 
120 240 360 480  600  72p 

Figure 5. Presence of caustics for the model of Montagner & Tanimoto at period 167 s. near by the INU station. Please note the increasing 
surface associated with the source position as well as the antipole position. 
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perform the described perturbation starting from this new pseudo source, as we have done for the true source. This procedure 
will reduce our numerical efficiency but it will guarantee a given accuracy which can be controlled by the drift in the 
Hamiltonian: we are back to the updating taken at each step of any numerical ray tracing. However, the procedure will be a 
very efficient one, as suggested by Dahlen (1986). 

7 PERTURBATION OF THE TRAVELTIME AND AMPLITUDE ESTIMATION 

The Lie series approach enables us to estimate any quantities-traveltime, geometrical spreading, polarization, etc.-by 
expanding its perturbation with respect to the parameter E. The extra work one has to accomplish is computing the Lie 
derivative of this quantity (Miller 1986). We shall concentrate on the two ingredients of synthesizing seismograms: traveltime 
and geometrical spreading. 

The averaging procedure (Virieux 1989) does not provide a very efficient way to compute the traveltime, while the Lie 
series theory constructs an expression in powers of E. Let us recall that the traveltime between point (I and b on a sphere with a 
Hamiltonian H is given by the equation 

The term in dt is often dropped because H is equal to zero for rays. We need it for the perturbation. Invoking the generating 
function S and the Hamilton-Jacobi equation gives 

as as 
a$ a t  T =  2 d 0  + - d $  + - d t  = [S],h. (47) 

Let us expand the traveltime for a heterogeneous sphere in powers of E: 

T = T )  + ET, + &*T* + . . . . (48) 

The traveltime IT;, of the homogeneous sphere defined by the Hamiltonian HO will be S,(b)-&(a). The first variation of the 
traveltime can be written 

dqi aH0 dpi aH, 
6T = T - To = [ p i  &,]I: + 6 p i ( - -  -) d t  - I 8qi(- + -) dt - E ~ H ,  d t ,  

u d t  api d t  aq, U 
(49) 

where implicit summation over i is understood and quantities ( p i ,  qi) are either (pe ,  0) or ( p + ,  $J). This expression is often 
expressed in terms of the Lagrangian (Nowack & Lyslo 1989). Because we have developed the Hamiltonian approach, we 
prefer to continue with it. Considering a ray for the Hamiltonian H, connecting points a and b, the traveltime reduces to the 
last term. We deduce the contribution Tl of the traveltime Lie series: 

Noting that K, is t-independent, we integrate and end up with the simple expression 

Tl = - K , [ t ( b )  - t(a)]. (51) 

From the traveltime, one deduces the apparent phase velocity by dividing the traveltime with the distance between the source 
and the station. For arbitrary (source/station) couples, we compute the relative error of the apparent velocity obtained by the 
perturbed ray tracing and the numerical procedure in Fig. 6. We found a percentage error lower than 0.2 per cent for R1 trains 
and less than 0.6 per cent for R4 trains. 

The lateral heterogeneities introduce a focusing/defocusing effect which modifies the geometrical spreading. Although one 
might compute the geometrical spreading by perturbation using Lie series, we estimate this effect numerically during our 
shooting procedure. We slightly perturb the shooting angle 6i and compute the position shift 60 at the station. We deduce an 
amplification compared to the homogeneous sphere defined by 

where A is the angular distance between the source and the station. This approach is the quickest way to estimate quantities in 
order to synthesize seismograms. The other alternative is computing the Jacobian between the two coordinate systems we are 
using. The Jacobian requires many more trigonometric functions than the ones needed for a ray. For amplitude inversion, we 
would have to estimate this Jacobian related to the more involved analytical Lie series in order to compute partial derivatives. 
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FQure 6. Comparison of traveltimes or apparent velocities for many couples (source, station) obtained by the perturbed ray tracing and 1 

analytical ray tracing. We define the apparent phase velocity by C,, for the perturbed ray tracing and by C,,, for the numerical ray tracinl 
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Figure 7. Comparison of analytical (thick line) and numerical (thin line) ray tracings at station SSB for the 'Gulf of Alaska' earthquake (1987). 
Small deviations compared to the great circle are obtained. 
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8 AN EXAMPLE: THE ‘GULF OF ALASKA’ EARTHQUAKE OF NOVEMBER 1987 

We have selected the ‘Gulf of Alaska’ earthquake of November 1987 which presents strong amplitude anomalies in its 
long-period seismograms. These anomalies might in part reflect the off great circle path propagation of wavetrains. We perform 
ray tracing to different GEOSCOPE stations and find good agreement between numerical ray tracing and perturbed ray tracing 
at a period of 167 s (see previous section). 

Figure 7 shows rays arriving at the station SSB, where deviations are small, while the rays arriving at the station INU show 
large deviations with respect to the great circle (Fig. 8). We still obtain good agreement except for the R4 train where we 
underestimate the shooting angle. For this last ray, the reinitialization would guarantee a given accuracy compared to the 
numerical ray tracing. 

A very interesting result is obtained at the station CAY. For the PREM model, we compute the vertical seismogram using 
normal modes with isolated multiplets. We compute also the seismogram for the asymptotic normal modes summation of 
Romanowicz (1987) where we consider lateral variations of the model used in this article. One can see the defocusing of R3 
and R5, as well as the focusing of R4 and R6 predicted by the asymptotic theory (Fig. 9). These variations are supported by the 
true seismogram. The anomalous small R1 train is probably due to the nodal character of this path. The focusing/defocusing 
effect is predicted by ray tracing when we choose rays starting tangent to the great circle (Table 2). When shooting is 
performed for the different trains, we found that the expected amplification of R4 is replaced by a strong deamplification. This 
is not a bias coming from our perturbed ray tracing, because the numerical ray tracing finds the same result. This prediction of 
ray tracing might imply a need for better estimations of perturbation anomalies, as noted also by Lay & Kanamori (1985), 
Schwartz & Lay (1985) and Woodhouse & Wong (1986). 

9 CONCLUSIONS 

We have presented the Lie series method for tracing rays on a heterogeneous sphere. The approximate solution is expressed 
analytically when the global representation in spherical harmonics of the heterogeneity is used. The ray, usually sensitive to the 
even part of the expansion, is now deformed also by the odd part which makes this theory very attractive for inversion. The 
perturbations of the traveltime are analytically computed. Focusing and defocusing effects are, at the present stage, estimated 

‘I‘WO-POIN1 RAY TRACING GREAT CIRCLE GULF of ALASKA EARTHQUAKE NOVEMBER I987 

R3 

R2 

Figure 8. Comparison of analytical (thick line) and numerical (thin line) ray tracings at station INU for the ‘Gulf of Alaska’ earthquake (1987). 
Large deviations compared to the great circle are obtained. Please note the different scales used in the panels. 
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Fire 9. Vertical seismograms at station CAY for the Alaska earthquake (1987): (a) data filtered around 167s. (b) isolated multiplet 
summation with the same filtering as the data and (c) asymptotic theory of normal modes with the same filtering as the data. Note the focusing 
and defocusing effect on the different trains. 

numerically. Because the solution is computed only at the station position, the ray tracing is an order of magnitude faster than 
usual numerical ray tracing. 

This ray tracing performs correctly for periods greater than 150 s. For shorter periods where gradients of perturbations are 
higher, the solution is still better than the great circle but shows significant discrepancies in terms of shooting angles and 
amplitudes. The computational reinitialization of the ray is a procedure that will solve this problem, but that will reduce the 
efficiency. In any case, it will be faster than any numerical scheme and will allow partial derivatives to  be computed. 

For the specific example of the 'Gulf of Alaska' November 1987 earthquake, we have found that the deviations of rays 
from the great circle can be significant. The perturbed ray tracing predicts accurately the traveltime as well as a good 

Table 2. Comparison between quantities obtained by the perturbed ray tracing and by the numerical ray tracing at station CAY. 
Amplifications for shooting angles tangent to the great circle are also given. 

Amplification for a shooting angle Perturbed ray tracing Numerical ray lracing 
Travel-time Amplification Shooting angle tangent to the great circle Travel-time AmDlification Shooting angle 

2 I50 sec. 0.78 3.25O RI 2151 Sec. 0.85 3.16O K I  

1.01 - I  .04O R2 6910 sec. 1.12 - I  .06O RZ 691 3 sec. 

0.56 5.480 R3 I I214 sec. 0.59 5.980 R3 11213 sec. 

0.55 -4.180 U4 I5962 sec. 0.62 -7.430 R4 I 5978 sec. 

RI 

u2 

R3 

U4 

0.74 

I .09 

0.5 I 

I .32 
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approximation of the shooting angle and  the amplification a t  different stations compared to  numerical ray tracing at period of 
167 s. The observed defocusing/focusing effect is not often predicted by current phase velocity models (especially when we 
perform the two-point ray tracing). This trend argues for a better resolution of global models. 
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APPENDIX A: GENERATING FUNCTION S 

We describe the standard systematic procedure for constructing the generating function S when the Hamiltonian fulfils the 
separability conditions. Let us recall the structure of the Hamiltonian for a homogeneous sphere: 

We assume the additive separability for the function S:  

S(r ,  8, @ t  J 1 ,  J 2 )  = W ( @ )  + V ( @ )  - E t .  ( A 2 )  

The implicit parameter @ will give a very simple function V ( @ )  equal to J2/2n@. We introduce the expression of S in the 
Hamilton-Jacobi equation and get the following expression: 

from which one obtains the function W by quadrature: 
I r2  

J 2  W ( O ) = *  d8 ~ E + u : -  2 .  J i  4 n  a sin 8 '  

In a natural way, we define J:/4n2a2 as 2E + uf and present the final expression of S: 

S(t, / i l l ,  / i 1 2 ,  J , ,  J 2 ) =  t - iuft. 

The conjugate variables of J ,  and J2 are given by 

@ +- d8 

s , n 2 e , / G  sin2 8 2n' 

with v1 given in the text. Quadratures are easy to solve (Goldstein 1980, p. 481) and this gives 8 and @ with respect to 
coordinates (#I1, #Iz, J , ,  J2), while p e  and p ,  come directly from the definition of J1 and J2.  We obtain the transformation 
defined by equations (23) .  

APPENDIX B: PARTIAL DERIVATIVES OF THE FUNCTION S1 

We use implicit summation over rn and n between -I and +I and introduce the natural variable z = cos 0 involved in 
generalized spherical harmonics Q Y .  The four partial derivatives are given by 

as, as, 32 as, av, as, as, _-_- - +-- - 
3J, 3z dJ, d v ,  aJ, ' 3J2 dz 3J2 ' 

with the following partial derivatives: 
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The expression d S , / d v ,  has a term linear in t which gives a surprising added secular contribution to by. This contribution was 
ignored in the averaging procedure. The function W ( z )  is the combination [q'Q;"'"-')(z) + q - Q ; " ' n + ' ) ( ~ ) ]  where factors q+ 
and q -  are given respectively by d(1- n ) ( l  + n + 1) and d(1 + n)(l  - n + 1) (Vilenkin 1969, p. 136). 

The values of derivatives of S, at the origin of the ray have to be subtracted at any other position on the ray. This cancels 
the effect of the constant of integration d. 




