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S U M M A R Y  
We propose an asymptotic theory for diffusive electromagnetic imaging. Three steps 
are required t o  perform this imaging. (1) A high-frequency solution is first 
constructed which mimics the one usually found in wave-propagation phenomena. 
(2) This solution, valid for a smooth continuous description of the resistivity in the 
medium, is used in a first-order Born approximation leading to a linear relation 
between the resistivity perturbation of the subsurface and the perturbation of the 
electric signal obtained at  the free surface. (3) This linear relation is asymptotically 
inverted by using an iterative quasi-Newtonian inversion based on a least-squares 
criterion developed by Jin et al. (1992). Although the extension to smooth 
heterogeneous reference medium is possible, we have only tested the inversion 
scheme for homogeneous reference media as Zhdanov & Frenkel (1983) previously 
did with another method. 
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INTRODUCTION 

Recovering conductivity information in the Earth is a 
difficult task because the electromagnetic response is mainly 
controlled by a diffusion process broadening the signal. 
Many attempts have encountered limited success (Weidelt 
1972, 1975; Barnett 1984; 'IXpp, Hohmann & Swift 1984; 
Smith 1988; Tarits 1989) associated with the difficult task of 
locating the conductivity anomaly responsible for the 
electromagnetic signal observed at the free surface. In many 
papers (Zhdanov & Frenkel 1983; Zhdanov 1988; Zhdanov 
& Booker 1993; Zhdanov & Keller 1994), Zhdanov and his 
coworkers have proposed a 'reverse' continuation of the 
field in a manner similar to seismic-wave migration. Lee, 
McMechan & Aiken (1987) and Levy, Oldenburg & Wang 
(1988) have applied seismic techniques for layered media 
with complex matrices for propagator leading to the 
difficulty of strong variations of the amplitudes. In both 
cases, the complete Green function is used and one may 
think that the success of many seismic migration techniques 
based on the separation of traveltime fitting and amplitude 
adjustment has not yet been exploited. 

Does a way exist to construct an asymptotic solution for 
the diffusion electromagnetic problem which will be helpful 
in an 'electromagnetic' imaging? It will be a more direct way 
than to convert electromagnetic data into pseudo-seismic 
data in order to use standard techniques of seismic imaging. 
Recent papers by Lee, Liu & Morrison (1989), Gilbert & 
Virieux (1991) and Lee & Xie (1993) have suggested this 

latter strategy to increase the stability and accuracy of 
electromagnetic imaging. In a recent paper, Nekut (1994) 
has achieved this direct strategy for phase/traveltime 
interpretation. 

We shall show that, indeed, it is possible to construct a 
solution which might be useful for least-squares inversion of 
electromagnetic data. The inversion we propose comes 
directly from recent works on efficient techniques to 
construct seismic images (see Jin et al. 1992, for cited 
references). 

SOLUTION FOR A HOMOGENEOUS 
MEDIUM 

This section specifies our equations and the construction of a 
solution for a homogeneous medium. This construction will 
be such that extension to inhomogeneous media is possible. 

In a 3-D medium with conductivity a, and permeability 
p o  without sources of displacement current, Maxwell 
equations for the electric field E and the magnetic 
susceptibility field H reduce to the following equations 

_-  aH - - L V x E ,  
at Po 

aE 
u~,E + E - =  V x H, 

at 

where X denotes the cross product. For the transverse 
electric mode (TE), the electric field E has one constant 
direction which can be defined as the y-direction. The vector 
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E can be written (0, E,,, 0) and we assume invariance in the 
y-direction. The magnetic susceptibility field H has only two 
components (Hr ,  0, H:). We found 

wave exp(k.x) with - iwu ,po=kZ.  The selection of the 
square root of -i is such that the plane-wave amplitude 
should decrease with distance. 

Let us briefly recall what are solutions in a homogeneous 
medium for an impulsive signal -4n8(r). Let us consider a 
line source. The solution will be 

For the transverse magnetic mode (TM), simidar equations 
are obtained. This system of equations shows similarity but 
also differences with the system of equations for SH motion 
in an elastic medium. The intrinsic difference comes from 
the term uoEv which introduces the diffusion. The system 
(2) can be transformed into the telegraph equation 

( 3 )  

which might be considered as an extension of the wave 
equation with the extra diffusive term u,,aE,ldt. Although 
transformation exists to convert diffusion into propagation 
(Levy et al. 1988; Lee et al. 1989; Gibert & Virieux 1991), 
deep differences arising from the diffusive extra term are 
found which prevent a straightforward parallelism between 
techniques used in propagation and in diffusion. 

The separation between the TE  mode and the TM mode 
is not more valid at interfaces of zeroth-order discontinuity 
for the conductivity (Wait 1981). Boundary conditions have 
to be applied which couple the TM and TE modes. We do 
not consider interfaces in the following and we shall 
consider only a smooth continuous medium necessary for 
our asymptotic imaging. 

Going to the Fourier domain with the following sign 
convention given by 

(4) 

and keeping the same notation for the Fourier transform of 
the function E,, we deduce the Helmholtz equation: 

again similar but different to the one deduced from wave 
equation. At high frequency, the diffusive term in u,w can 
be neglected compared with and we are going back 
strictly speaking to the wave equation used for instance in 
high-frequency georadar imaging (Davis, Lytle & Laine 
1979; Radcliff & Balanis 1981). Here we are interested in a 
lower frequency range where the term in can be 
neglected instead, and eq. (5) reduces to 

A generating solution of this equation is a complex plane 

whose Fourier transform is 2 K , ( ' / - i o s r ) .  The 
function K ,  is the modified Bessel function of zero order. 
Taking the approximation of the function KO for large 
arguments, an asymptotic solution can be written for the 
2-D case as follows 

where r is the distance between the line source (0,O) and the 
receiver (x, z )  and H ( t )  is the Heaviside function. The time 
at which the solution is maximum is t = ~ o u , , r 2 / 4  while the 
mean square distance of the diffusion from the source at 
time t is 4t/p,uo (Carslaw & Jaeger 1978, p. 256). In 
practical applications, the penetration depth of diffusive 
electromagnetic signal from the surface of the Earth ranges 
from a few kilometres up to many hundreds of kilometres 
for commonly used frequencies (Cagniard 1953). 

The solution (8) must be analysed carefully when 
compared with the exact solution (7). We must underline 
that we have only constructed an approximate asymptotic 
solution in the 2-D homogeneous case. Moreover a 
frequency-dependent scaling factor 11- appears in 
the solution. This factor came for the spatial extension of 
the source. One can find that a similar factor 1 1 6  appears 
in the 2-D asymptotic solution of the wave propagation 
corresponding to the Hilbert transform. As for the wave 
propagation, this factor will be retained during our 
construction of an asymptotic solution for a smoothly 
varying medium. Then, it will be introduced at the end of 
the procedure in the final solution to take into account the 
geometry of the problem as done for wave propagation 
(Bleistein 1984). 

Obviously, this solution has a specific damping and 
oscillating factor we hope to observe for a smooth 
inhomogeneous medium. Following the basic idea leading to 
the high-frequency approximation for the wave-equation 
solution (Aki & Richards 1980), we are going to construct 
an asymptotic solution for the diffusion equation. 

We must underline that similar exact solutions can be 
constructed for 1-D and 3-D geometries. These solutions in 
the Fourier domain display the same specific damping and 
oscillating factor without any approximation which was not 
the case for 2-D geometry. Consequently, the asymptotic 
solution we are going to construct is the exact solution for 
the homogeneous 1-D and 3-D cases, while it is only an 
approximation for the homogeneous 2-D cases. This means 
that the 2-D geometry is the worst situation to be considered 
for asymptotic diffraction tomographic reconstruction. The 
reconstruction method we propose will use exact Green 
functions when the 1-D or 3-D background media are 
homogeneous. This validates the use of the asymptotic 
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solution and our numerical attempt to estimate the accuracy 
of 2-D geometrical reconstructions. 

ASYMPTOTIC SOLUTION FOR A SMOOTH 
MEDIUM 

Let us assume now that the medium has a smooth variation 
of the conductivity u(x). We look for a solution in the 
frequency domain which behaves as 

(9) 

This ansatz for the solution is the one used in the ray theory 
except that the io term for wave propagation has been 
replaced by -G for diffusive transport. It has been 
previously proposed by Tikhonov (1965) on a purely 
theoretical basis. This term has no obvious property in the 
Fourier domain as the translation property of the 
exponential terms. Nevertheless, we have already con- 
structed an analytical solution in the previous section with 
this factor. The function 7 will be called the pseudo-phase 
function following previous works on the link between 
diffusion and propagation equations (Lee et al. 1989; Gibert 
& Virieux 1991). The dimension of the pseudo-phase is the 
square root of time. 

For the wave-propagation equation, many other ansatz 
have been suggested to take into account specific 
geometries: ray theory singularities at caustics (Ludwig 
1966), evanescent waves (Choudhary & Felsen 1973). A 
seismological classification has been given by Chapman 
(1985), while a review of different ansatz has been given by 
Borovikov & Kinber (1974). These different ansatz show the 
interest in developing specific asymptotic solutions for each 
problem at hand. 

Inserting the ansatz (9) in eq. (6) which is still valid for a 
continuous inhomogeneous conductivity u ( x ) ,  we deduce 
series of equations in powers of G: 

(Vr)' = u(x)p, 

A,V27 + 2VA, - V Z  = 0 (10) 

- ( l e k )  VZAk-, - AkVZr + 2VAk Vr = 0 k > = 1. 

The first two equations retain our attention because solving 
them will give the pseudo-phase r(x) and the amplitude 
A,(x) used for the zero-order term of the solution. These are 
identical to both the eikonal and the transport equations 
used for ray tracing of seismic waves and permit us to 
compute r(x) and A,(x) with any standard ray-tracing 
program (see LambarC 1992, for an example of efficient ray 
tracing used for imaging). The intrinsic property of the 
diffusion is contained in the ansatz we have taken. The 
signal has its amplitude split in two parts: geometrical 
spreading A, and a 'bulk' attenuation contained in the 
pseudo-phase function. These two effects contribute in a 
different manner to the electromagnetic diffusion amplitude. 

Let us compare more precisely the zero-order term of eq. 
(9) with its propagative equivalent for which the traveltime 
of the wave is taken as T. For a Dirac source at 

the origin, the diffusive and propagation solutions are, 
respectively, 

I,\ 

in a 3-D medium. These solutions have a very simple 
geometrical interpretation. The wave solution is the delta 
source signal shifted by the traveltime T and scaled by A,, 
(Fig. 1). The diffusive solution is more complex to analyse: 
the delta source signal is transformed into a localized 
damped function maximum at r2/6 (Fig. 2) which is similar 
to a phase shift although the diffusive energy stays around 
the source. The geometrical effect of the 2-D medium will 
add a tail to both signals, while reducing down to the 1-D 
geometry again deforms the signal. The geometry of 
medium influences the propagation and diffusion of the 
signal as summarized in Fig. 1 and Fig. 2. The diffusion 
solution (11) adds an extra difficulty because it exhibits a 
time decrease of l/@ which is converted in a l / f  decrease 
in the 2-D case and l / f i i n  the 1-D case. In our numerical 
illustrations, we shall only use the 2-D geometry for both 
sources and medium. 

The smearing of the diffusive solution is the feature 
preventing any simple reconstruction of the conductivity of 
the medium. Our chance is that this smearing is controlled 
by the pseudo-phase function in the asymptotic solution. 
This chance is also a difficulty: the pseudo-phase might be 
split into a damping and a phase and the damping be as fast 
as the oscillation of the phase, preventing any arguments 
based on the rapid oscillation of the phase term as we shall 
see for the Hessian estimation in the inversion procedure. 

The eikonal equation [Vz(x)12 = o(x)p, allows ray tracing 
(brveny,  Molotkov & PSenCii 1977) with a 'pseudo- 
slowness' vector defined by p = V z  at each point sampled 
along the ray. The product u(x)p, can be compacted into 
one single notation as u2(x) where u might be called 
pseudo-slowness. For the eikonal, ray-tracing equations are 
deduced as soon as a sampling parameter is selected along 
rays. Let us define s as the curvilinear coordinate on the ray. 

I WAVE r- 
lD J Heaviside step 

Impulsive source [ Hilbert function \ 

Figure 1. Propagation of the impulsive signal from a source along a 
ray. Note the difference of shape due to the medium geometry. 
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DIFFUSION 
1D 

Figure 2. Diffusion of the impulsive signal from a source along a 
pseudo-ray. Note the less dramatic difference of shape compared 
with wave propagation arising from the medium geometry. 

The transport equation which is the second one we are 
interested in gives the evolution of the amplitude term as we 
move along the ray. One finds an estimation of the 
amplitude at s‘ from s 

where J is the Jacobian used in the definition of an 
elementary surface perpendicular to the ray parameterized 
by two coordinates y ,  and yz associated with the curvilinear 
coordinate s. 

The electrical field will be in the frequency domain 

where S ( w )  is the Fourier transform of the time function of 
the source and # is the intensity of the electromagnetic 
source. The pseudo-phase z is equal to r m  = r u ( r ) .  

In order to estimate the intensity + of eq. (13), we might 
look at a canonical problem where the high-frequency 
solution is known. Fortunately, a solution given by eq. (8) 
exists for a homogeneous medium which has been 
constructed in the previous section. Because the Jacobian is 
equal to r in a 2-D homogeneous medium, we deduce the 
intensity for an isotropic source at the origin 

valid for a smoothly varying medium by identification with 
the solution (8). The asymptotic solution in a 2-D smooth 
varying medium for a rs source is 

where we have again introduced the specific frequency- 
dependent factor for the 2-D geometry already mentioned in 
the previous paragraph. 

Let us underline again that this solution is only 
approximate in a 2-D homogeneous medium while the 
corresponding solution for 1-D and 3-D homogeneous 
media are exact solutions. Considering asymptotic solutions 
is a valid assumption, especially when the background 
medium is nearly homogeneous. 

BORN APPROXIMATION 

Let us now consider a perturbation of the conductivity. 
Because in this paper we assume an invariance along the 
direction y ,  we consider a 2-D reference medium with a 
smoothly varying conductivity ao(x). For a point source (a 
line source in a 3-D medium with one invariant direction) at 
the source position r,, the Green function at position r is 
denoted E;(r, rJ. We want to study media slightly different 
from this smooth reference medium by a conductivity 
perturbation given by a ( x )  = uo(x )  + Au(x). We assume that 
the magnetic permeability po remains constant. The Green 
function E,, will be split into the known Green function E: 
and the perturbation AE,,. The equation 

u(x)iwp,,E,,(r, r,) + VZE,,(r, r,) = -4zS(r - r,) 

a,(x)iopo AEy + Vz AE,, = -4n[iwp,Aa(x)EY/4z], 

(16) 

is expanded into 

(17) 

the solution of which can be written as a convolution of the 
Green function E;, solution of the left-hand side of eq. (17), 
and the source term iwpo Aa(x)E,/4a leading to 

AE,(r, r5, w )  

r, x ,  w )  Au(x)Ey(x, r,, w )  dx2, 

where the domain of integration A is over diffracting points 
x. The first-order Born approximation is obtained by 
replacing E, with E; in the integral, leading to a linear 
functional between Au and AE,,: 

AE,(r, rs, 0) 

(19) 

Assuming now that solutions have the asymptotic form in 
the smooth reference 2-D medium 

we obtain for a given couple of (source, receiver) the simple 
relation 

AEy(r, rs, 0) 
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where 

come from the product of the Green function connecting the 
source and the diffracting point and the Green function 
connecting the diffracting point and the receiver. 

The asymptotic form has simplified the propagation of the 
field because ray tracing is symmetrical: the asymptotic 
Green function from the diffracting point up to the receiver 
is equivalent to the one from the receiver down to the 
diffracting point. 

Going back to the time domain is possible with a very 
simple integral expression which is the Fourier inverse of eq. 
(21): J 

[ T ( r ,  y 5  rS)2 2 e-r(r.x.rs)2/41 H ( t )  dx’. 
(23) - 1  

The kernel of the expression (23) in time has a maximum 
amplitude at t,,, = T2(r)(1/2 + l/G) with a sharper 
decrease for time lower than t,,, (exponential term of time) 
than for time higher than t,,, (inverse power of time). As a 
consequence, main contributions to the integral are located 
on a shell which can be made finite by numerical cut-off of 
the kernel. We must underline that the situation is slightly 
more complex than for 2-D seismic imaging: the 
contribution to the seismogram comes from an isochrone 
surface along which the image is concentrated and defined 
by a t equal to traveltime (Bernard & Madariaga 1984; 
Spudich & Frazer 1984). In diffusive electromagnetic 
imaging, we have generalized the so-called isochrone 
property to a less local but still finite shell. 
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Expressions (21) and (23) are valid in a 2-D or a 3-D 
medium with an invariance in the y-direction for the 
definition of the TE  mode. Expressions (21) in the 
frequency domain and (23) in the time domain are our basic 
linearized forward modelling for which we shall construct an 
inverse operator. The technique has been previously 
proposed by Jin et al. (1992) based on the work performed 
by Beylkin (1985) and Beylkin & Burridge (1990) among 
others on asymptotic Radon transforms. 

We check the Born approximation with two simple 
examples. In the first one, we shall consider a line diffractor 
of conductivity aI = 0.1 S m-’ embedded into a homoge- 
neous medium of conductivity uo = 10-’S m- I .  We compute 
the Born approximation for an incident isotropic line source 
of unitary strength diffracted by a line located lOOm just 
below it for frequencies between 10 -’ Hz and 10’ Hz. Fig. 3 
shows the exact solution compared with the Born asymptotic 
solution. We must say that the difference in the scattered 
field arises essentially from the difference between the 
complete 2-D solution and its high-frequency approxima- 
tion. As the frequency becomes higher, the discrepancy in 
amplitude and in phase becomes negligible. In 2-D and 3-D 
geometries, we should have a perfect agreement because the 
embedding medium is homogeneous. 

In the second example, we compare the solution for a 
cylinder diffractor at a depth of 100m in a homogeneous 
medium of conductivity 0.01 S m-’ excited by a line source. 
We still find a good agreement while we are summing the 
expression (23) inside the cylinder to recover the diffracted 
field (Fig. 4). When the conductivity contrast becomes more 
important, the disagreement between the complete solution 
and the Born approximation increases at higher frequencies 
(Fig. 4a). As the cylinder becomes wider, the agreement 
decreases when the radius increases (Fig. 4b). The Born 
approximation is valid at relatively high frequencies for 

180 

Q) 

a a 
g o  

-180 ,i/ I 
-1 2 5 

log( frequency) 
Figure 3. Comparison between the exact solution (solid line) and the asymptotic Born approximation (dashed line) for a line diffractor. The 
difference arises essentially from the asymptotic approximation. Both amplitude and phases are plotted. 
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/' - -  I 

I I I 

-1 2 5 
log(frequency) 

Figure 4. (a) 'Comparison between the exact solution and the Born approximation for a cylinder diffractor of radius 20m. Notice the 
disagreement introduced by the Born approximation when the contrast of conductivity increases. For clarity, only the phase response for the 
0.1 S m-' case is included. (b) Comparison between the exact solution and the Born approximation for a cylinder diffractor of conductivity 
0.1 S m-'. Notice the disagreement introduced by the Born approximation when the size of the cylinder increases. For clarity, only the phase 
response for the 50 m radius case is included. 
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small perturbations of the conductivity and for small sizes of 
diffractor objects. We shall see in our inversion the effects of 
these disagreements. These effects will be the main 
limitation of our reconstruction technique. 

We must remember that the main misfit arises from our 
transformation of the 2-D Green function into its 
high-frequency approximation. For 3-D and 1-D homoge- 
neous media, the Green function agrees with its 
high-frequency approximation as we have checked. There- 
fore, we do  expect better results with the Born 
approximation for 3-D structures. 

ASYMPTOTIC INVERSION 

In order to pose the inverse problem properly we must 
define both model and data spaces, and the operators 
between these two spaces. The model space A(x) is the 
space of all possible perturbations of the conductivity A u  at 
each point x of the medium. The data space consists of all 
electric perturbations of the TE  mode for many sources rs 
and receivers r at different frequencies. For simplicity of the 
analytical developments, we shall consider Fourier trans- 
formed data, but at the end we shall return to the time 
domain to take advantage of the finite domain of A from 
where significant contributions to the electric signal come. 
This signal is defined on the domain 9 ( r ,  r-, w ) .  The 
linearized forward problem can be written in a compact 
form 

AEy = G Au (24) 

where G : A - + 9  is the integral operator of the two-way 
Green functions (see eqs 21 and 23). 

The solution of the linearized inverse problem consists of 
finding the inverse of operator G. We look for an 
approximate solution to the inversion of eq. (24) by the 
optimization method which minimizes a misfit function 
between observed and calculated electric signals (see 
Tarantola 1987, for a description of inverse theory). We 
adopt the least-squares norm Y2 of the sum of the square of 
the difference between observed and predicted signals at 
each frequency. We shall see that this criterion leads to a 
quasi-Newtonian iterative method as shown by Jin et al. 
(1992). 

Source Free Surface Receiver 

Diffractor poin \ /  

Figure 5. Geometry of pseudo-rays around the diffractor point. 

Inversion by a least-squares method 

The definition of the misfit function requires an explicit 
definition of the inner product in data space: 

(AE, 1 AE:)y = I dw AE,*(r, ra, w )  
rp,r n 

X Q(r, xo, r,, 0) AWr, rs, 0) (25) 

where * denotes the complex conjugate. The sum and the 
integral extend over the data space 9. The covariance 
matrix 0 is diagonal by construction with elements: 

where p(r, %, r,) = Vt(r, x,,, rs), is the gradient of the 
two-way pseudo-phase function r (Fig. 5) .  

The particular form of the covariance matrix Q is 
introduced in order to correct for the decrease with distance 
and for the spectral content of the Green function. One can 
see in the definition of covariance matrix 0 only the 
influence of the geometrical spreading ‘Ao’ and not the effect 
of the diffusion. The covariance matrix depends on q, the 
coordinate of the point at which the model will be inverted. 
While the choice of a diagonal matrix is rather standard in 
the optimization method, Q is usually independent of where 
we are in the model space. Our choice borrowed from the 
work done by Jin et al. (1992) for seismic profiles is in fact a 
preconditioning applied to the gradient of the misfit 
function. The additional complex form of 0 comes from the 
specific diffusive tail. 

The covariance matrix 0 upgrades weak late signals: 
instabilities might arise when noise exists in the late part of 
the time signal or when the reference medium leads to 
strong defocusing in a time window of the signal where 
energetic pulses are observed. Summing over the data 
acquisition geometry reduces these incoherent instabilities 
considerably. If not enough, a priori information defining 
the maximum amplitude for perturbation of conductivity 
stabilizes the procedure. 

For the inverse problem we also need a definition of the. 
inner product between two functions A u  and A d  in the 
model space A: 

(Au I Au’)A = i, Au*(x) Au’(x) dx’. 

The misfit function is defined by 

S(Au) = 1/2(AE;”’ - G AU I AE,””’ - G A u ) ~ ,  (28) 

where AE;”“ are the observed data and GAu are the 
synthetic ones estimated through eq. (24). We formulate the 
inverse problem as 

find A c :  min [~(Au)],  (29) 
ACT 

and we obtain the classical ‘system’ of normal equations: 

G’G A u  = Gi AE,””” (30) 

for all x where Gt is the adjoint operator to the forward 
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integral operator G, and defined by the classical relationship 

(AE, I G Acr),/ = (Gt A E v  1 ACT),#, (31) 

while the generalized inverse Cg is equal to (GtG)-'Gt.  

Estimation of the gradient 

The adjoint operator G' might be expressed by a kernel YC 
with the following expression 

where the reconstructed function is obtained at position x 
assuming a covariance Q depending on %.From eq. (31) 
and from the forward problem (21), 

Yt(r, x ,  r,, w )  

-1 
2 . (33) = - poA(r, x,  rs)Q*(r, x,), rs, w ) G *  e G*r('.'Js) 

The formal solution of the system (30) is 

Am(%) = H-'(xo ,  x ) Y " ( x ) ,  (34) 

y O ( x )  = Gt(r, x ,  r,) AE;"(r, rs, w )  (35) 

is the gradient of S ( A a )  at A a = O  and H is the Hessian 
giving the information of the curvature of the misfit 
function. Explicitly the gradient is given by 

where 

AE;"(r, ra, w )  (36) lp(,., x, 1 1 2  - -* r(r.x.rs) 
), c 

in the frequency domain. Expressing AE;hS(r, rsr w )  as the 
Fourier transform of AEyhs(r, rs, t )  leads to the following 
expression: 

(37) 

We have used the complex conjugate operation giving 
6* = fi and the transformation of w into w '  = -0. By 
doing so, we are able to write the gradient as a single 
integral in the time domain 

The time-domain integration in the asymptotic inversion 
kernel is around t,,, = z(r, x ,  rJZ/2 which corresponds to a 
shell in the diffraction domain A. We have found the 
equivalent of the isochrone summation for the asymptotic 
seismic migration related to the principle of coinciding time 
of Claerbout (1985). Apart from an integration over a time 
interval instead of a single value for seismic migration, we 
have an expression that is manageable for practical 
implementation. 

Let us underline that the choice of the factor 0 has 
modified the t,,, compared with the one obtained for the 
forward linearized expression. 

Asymptotic expression of the Hessian 

The operator H - '  in eq. (34) is the formal inverse of G'G 
and is very difficult to estimate for many inverse problems 
(see Jin et al. 1992, for a short discussion and Tarantola 
1987, for an extensive review). In our approach, an 
asymptotic estimation is possible. We found from eqs (21) 
and (32) that 

which reduces to 

The term under the integral over frequency has a damping 
term which prevents any arguments of equally balanced 
contributions for the whole frequency spectrum as it is for 
seismic inversion. This is a fundamental difference that we 
have underlined previously but we can argue that the main 
contribution to the integral is when the phase of the 
exponential is zero because the diffusive damping term is a 
slowly decaying function. If the background medium is 
sufficiently smooth, this occurs when x is close to %. With 
local expansion of the pseudo-phase and the amplitude 

d o f i e -  \ / ? ; r ( r . X O . r s ' e - ~ ~ ' ( ~ - ~ ) )  

x {cos [m p * ( x  - X")]  

- sin -\/;siz p (x - %)I} (42) 

which has significant values when x is close to x,,. We shall 
assume the more drastic approximation, 

H ( x ,  %) - H(x0, X 0 ) W  - %), (43) 

justified by the exponential decrease away from the position 
%. The Hessian can now be estimated as 
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The final and precise shape of the operator H is mainly 
controlled by the data acquisition geometry and eq. (44) 
should be considered only as an estimation for an iterative 
inversion method. The nearly diagonal structure of the 
operator H makes the computation of the inverse easier and 
leads to 

M%) = 1/H(%, xg) Yo(%). (45) 

In order to check the final gradient expression (38) and 
the final Hessian expression (44)o we have computed the 
reconstructed conductivity at a single diffracting point % 
from the scattered field computed by the Born approxima- 
tion. We have deduced the exact conductivity contrast 
between the homogeneous referenceJ medium and the 
scattering point. This analytical checking makes us confident 
in our expressions for imaging diffusive fields. 

Iterative quasi-Newton inversion method 

Let us note h the approximation of the Hessian H.  The 
quasi-Newton solution of the inverse problem (29) is 

Au(x)"+' = Au(x)" + K ' y "  (46) 

where y" is the gradient of the misfit function S(Au) 
calculated around the value of A u  at the nth iteration: 

yn = G + ( A E O ~ S  - G A ~ " ) .  (47) 

As shown by Jin et al. (1992), the iterative method 
converges to the limit 

lim ha" = (G-gG)-'G-g AEohS 
n--r- 

which shows that the iterative method corrects for any bias 
in the Hessian estimation. 

A self-consistent test 

Before performing an inversion for a complete solution, we 
want to test the internal coherence of the linear inversion we 
propose. We have computed the Born approximation for a 
cylinder of radius 20 m at a depth of 100 m. The conductivity 

-200 m 0 

of the cylinder is 0.1 S m-' embedded in a homogeneous 
medium of conductivity 0.01 S m-I. We consider a single line 
source right above the cylinder and five receivers at the free 
surface distributed by steps of 50m on both sides of the 
source. 

Figure 6 shows both the true cylinder and the recovered 
conductivity contrast. The recovered maximum value is only 
0.01 Sm-'  while we should have found a value around 
0.09Sm-'. The wider extension of the recovered image 
explains this low maximum value. With the blurred image of 
Fig. 6, the predicted signals can explain most parts of the 
synthetic signals. Unfortunately, this is a drawback of the 
diffusion phenomenon which implies an integration over a 
pseudo-isochrone shell to recover the image. We find the 
typical 'smile' associated with the data acquisition geometry. 
During iterations, the misfit function decreases from 130 at 
the first iteration down to 66 at the 50th iteration. 

If we consider other sources translated on the horizontal 
axis, we are able to stack different pictures of the medium 
and to improve our resolution. The cylinder shape is better 
resolved as expected in Fig. 7 with a noticeable reduction of 
the 'smile'. The misfit function goes down to 44 when 
normalized by the number of sources, lower than the misfit 
function for a single source. The extension of the recovered 
image still biases strongly the maximum amplitude of the 
conductivity contrast. We do expect better results when 
considering other geometries than the surface-to-surface 
geometry. 

A test with the analytical complete solution 

The previous test has been performed using Born 
computation as synthetic data. What happens when 
considering the exact solution of diffusion by a cylinder? We 
have already compared true and Born solutions in the 
frequency domain in a previous paragraph. From these 
analytical solutions in the frequency domain, we compute 
the solution in the time domain for the same geometry by 
fast Fourier transform. Then, we perform asymptotic 
inversions similar to the ones previously computed with 
Born synthetic solutions. 

200 m 
Om 

200 m 
Figure 6. Conductivity contrast recovered after 50 iterations for one source at the free surface above the cylinder. Inverted data are the Born 
solution. 
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-200 m 0 200 m 
Om 

200 m 
Figure 7. Conductivity contrast recovered after 50 iterations for five sources distributed at the free surface on both sides of the cylinder. 
Inverted data are the Born solution. 

For inversion of the exact solution by a scattering 
cylinder, we find a deeper image with the typical ‘smile’ 
associated with one source geometry (see Fig. 8). The 
maximum amplitude of conductivity contrast is as high as 
0.03 S m-’. The amplitude difference between the Born 
solution and the complete solution in the time domain easily 
explains this amplification (see Fig. 9). The slight shift of the 
maximum diffusion pulse between these two solutions 
explains also why the image is deeper than the true cylinder. 
The reduction of the misfit function is from 475 at the first 
iteration to 166 at the 50th iteration. Fig. 9 gives an example 
of the residual signal left unexplained by the analytical 
inversion. 

Performing the inversion using more sources removes the 
‘smile’ geometry as shown in Fig. 10 but does not improve 
the position of the strongest conductivity amplitude which is 
still deeper than the true position. Changing the geometry 
structure by adding data recorded inside wells might 
improve this position problem already noticed with the Born 
approximation and amplified when using the exact solution. 

We see in this final synthetic example the difficulty 

-200 m 0 

inherent in diffusion phenomena which blurs the image by 
the spatial extension of the so-called pseudo-isochrone shell 
for image recovering. This distortion of the image arises also 
from the Born approximation which, at intermediate 
frequencies, shows relatively poor agreement. Starting from 
a better reference medium with the already included 
low-frequency content of the conductivity might improve the 
picture, because, for the relatively higher spatial fre- 
quencies, the associated diffusion tail in time will be easier 
to handle. 

DISCUSSION A N D  CONCLUSION 

We have developed an analytical inversion for diffusive 
electromagnetism. This formalism draws its features from 
the seismic inversion approach. We extend the isochrone 
line concept of wave propagation to a pseudo-isochrone 
shell concept for diffusion. By doing so, we were able to 
construct an inversion scheme with explicit formula for the 
gradient and the Hessian of the misfit function. Because 
these formula are analytical, they are insensitive to noise 

200 m 
Om 

200 m 
Figure 8. Conductivity contrast recovered after 50 iterations for-one source at the free surface above the cylinder. Inverted solution is the exact 
analytical solution. 
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Figure 9. Synthetic electric signal (triangles) recorded at  the receiver above the cylinder as well as the predicted signal (circles) computed for 
the cylinder image. The residual is also shown (diamonds), as well as the synthetic Born solution used in the forward modelling (dots). 

which are simply not focused back into the medium when 
incoherent as already shown for seismic data (Lambar6 et al. 
1992). 

The use of the Born approximation has limitations when 
we try to recover a spatially extended object on a 
homogeneous background. The possible extension to a 
smooth inhomogeneous reference medium will improve the 
position of heterogeneities by requiring only a fit of the 
relatively high-frequency part of the electric signal when the 
smooth background velocity has already been obtained. In 

-200 m 0 

that sense, this reconstruction technique is only a partial one 
in terms of spatial resolution. 

In any case, we believe that, because the main diffusion 
pulse which is the one fitted in our present applications 
would have been already contained in our initial model, the 
spatially high-frequency content of the image will be better 
resolved. Of course, we might analyse the effect of noise for 
this inversion scheme as well as we might analyse 
performances on real data. This will be the purpose of 
object work. 

200 m 
Om 

200 m 
Figure 10. Conductivity contrast recovered after 50 iterations for five sources distributed at  the free surface on both sides of the cylinder. The 
inverted solution is the exact analytical solution. 
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