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Summary. We compute the thermal evolution of a lithosphere submitted to 
stretching during a finite duration of time in order to discuss the initial 
stretching phase of future continental margins. The numerical method 
developed can handle 2-D laterally variable stretching as well as sedimen- 
tation. It is shown that lateral conduction is more important than vertical 
conduction over most continental margins during their formation by 
stretching. A simple way to evaluate the relative importance of lateral and 
vertical conduction effects at the axis of the zone of rifting just prior to 
oceanization is proposed. A simple way to evaluate the amplitude of the 
thermal uplift on the edges of the zone of rifting at the end of the stretching 
phase is also presented. For small width zones of rifting (< 70-100 km) 
lateral cooling becomes so large as to prevent large-scale melting and, 
presumably, prevent the transition to oceanization. The effect of high- 
sedimentation rates (100-500 m Myr-') is to increase the surface tempera- 
ture of the lithosphere and consequently significantly decrease the surface 
heat flow. 

Introduction 

The homogeneous extension of the lithosphere under isostatic equilibrium has been 
proposed by McKenzie (1978) as a mechanism of subsidence. His initial model assumed 
instantaneous extension followed by vertical cooling of the lithosphere. These assumptions 
lead to very simple formulations of the initial subsidence produced by instantaneous 
stretching and of the total subsidence after an infinite time (McKenzie 1978; Le Pichon, 
Angelier & Sibuet 1982). Although the model may seem overly simplistic, it appears to 
describe reasonably well the formation of many continental basins and margins (e.g. Sclater 
& Christie 1980; Royden, Sclater & Von Herzen 1980; Royden & Keen 1980; Le Pichon & 
Sibuet 1981). It is now generally agreed that extension is indeed a widespread cause of 
formation of basins and continental margins. 

It is consequently necessary to explore more carefully the limitations introduced by the 
assumptions initially made by McKenzie (1978). In this paper, we concentrate on the 
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rifting phase. This is for example the situation prevailing at  the present time in the Gulf 
o f  Suez (Angelier & Coletta 1983) and in the North Aegean trough (Le Pichon, Lyberis & 
Alvarcz 1984). In both places, active stretching affects a zone about 100  km wide since 
10-20 Myr ago. Subsidence has been amplified by the continuous infill of terrigenous 
sediments which, locally, exceeds a thickness of 3-5 km. We ask the following questions: 
What is t h e  effect of the finite duration of  rifting? What is the effect of  the rapid lateral 
variations in stretching as the width o f  the rifting zone is equivalent to  the thickness o f  the 
lithosphere? What is the effect of the rapid infilling of sediments? We deliberately ignore the 
possible mechanical complexities and assume local isostatic equilibrium and homogeneous 
thinning over the whole thickness of  the lithosphere. Le Pichon et al. (1984) have shown 
that  the first assumption is verified in the North Aegean trough where the elastic lithosphere 
appears t o  have a negligible effective thickness and that the second assumption is not inconi- 
patible with available data. We thus evaluate the thermal effects for continental margins 
during their formation phase o f  the simplest possible mechanical model of  laterally variable 
homogeneous lithosphere stretching under variable sedimentation. 

The effect of  a finite duration of  stretching in the absence of lateral conduction (the 
one-dimensional, 1 -D, case) has been evaluated analytically by  Jarvis & McKenzie (1 980). 
However, more complex models require the use of numerical methods. This has been done 
by  De Bremaecker (1984) with a finite element method to  investigate the additional effect 
o f  sedimentation in the 1-D case. His results indicate that heat flow is significantly modified 
b y  the presence o f  sedimentation at  rates above 0.1 kin Myr-'. We show in this paper that 
lateral conduction introduces significant changes in the evolution of  the rifting phase. 
Actually, we conclude that it may prevent the formation of an accreting plate boundary 
if the rifting zone is too narrow. On the other hand, we show that although the pertur- 
bation due to  Sedimentation is large for heat flow, it is generally negligible for tectonic 
subsidence. 

We first present the physical model based o n  the heat transfer equation, the particle 
velocity field description and an optional Sedimentary perturbation which accounts for 
the  thermal blanketing sedimentary effects. The numerical discretization scheme and the 
evaluation of the velocity field are presented more fully in Appendices A and B respec- 
tively. Our numerical solutions are validated, in the I-D case, by comparison with the 
analytical solutions of Jarvis & McKenzie (1980) and Carslaw & Jaeger (1959). We then 
evaluate the  effects of lateral variations in stretching on surface heat flow and subsidence. 
Finally, we discuss the effects of  high sedimentation rates during the rifting phase. 
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Problem formulation 

Consider the lithosphere as a collection o f  particles moving along trajectories defined by 
velocity field v (x ,  z, t )  in the plane (0x2) where axis Oz is pointing downards (in direct 
frame). The governing equation can be written in a fixed reference frame (Oxz) under 
its general form 

with a mass conservation condition that is reduced t o  

div v = 0 (2) 

because p ,  the density of the medium, is assumed to  be explicitly independent of time. 
C,, is the  heat capacity, k the conductivity and A the hcat generation term. Dividing 
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equation (1) by pC,, we introduce the diffusivity K = k/pC,. Table 1 presents values for 
parameters used in this study in the §I system. 

The numerical method used is an immediate extension of the ‘splittingup’ method 
(ADI) of Peaceman & Racheford (1955) and Douglas (1955) which gives an absolutely 
stable, second-order (in space and time) scheme when only the conductive terms are 
considered (see Marchuk 1975 for example). The extension of this method to the solution 
of the equation with convective terms gives a second-order (in space and time) scheme which 
is no longer absolutely stable because the velocities of the particles change with time. In 
spite of this mathematical restriction, we have not found any unstable behaviour for the 
velocity interval commonly assumed in lithosphere extension. Therefore, there was no  need 
to use more complex numerical formulations that are shown to be absolutely stable under 
conditions of smoothness (Marchuk 1975). The numerical discretization is explicated in 
Appendix A. 

The basic assumption we use to describe the velocity field is that the horizontal strain 
rate ix is independent of depth as well as time for a given moving column of particles. 
Equation (2) implies further 

Ex = - P, = - l/z dzldt = g (3 1 
where g is constant through depth and time for a given column of particles. Thus, within 
the mobile reference frame fixed to a column of particles, the finite relative extension can 
be obtained by integration 

1.3 = exp ( g A t ) .  (4) 

Note that 0 and g are respectively the finite and instantaneous extension factors of McKenzie 
(1 978) and Jarvis & McKenzie (I  980). 

Table 1. Parameters for thermal computation and main symbols used. 

Lithosphere 
Thermal conductivity 
Coefficient of thermal expansion 
Thermal capacity 
Thermal diffusivity 
Thickness of crust 
Thickness of lithosphere 
Density of crust a t  0°C 
Density of mantle a t  0°C 
Temperature of asthenosphere 
Grid mesh 
Time increment 
Finite extension factor 
Half-width of rifting zone at  the end of rifting 
Subsidence under water 
Height of uplift on  the edges of the rifting zone at the end 

of rifting 

k ~ =  3.1395 

CL = 1.172X lo3 

h ,  = 3X lo4 
h L  = 1.25 X l o5  

= 3 . 2 8 ~ 1 0 - ~  

~ ~ = 8 . 0 4 X 1 0 - ’  

pc = 2 . 7 8 ~  103 
P m =  3.35 x l o 3  

5 x  l o 3  
1333°C 

5 x lo5  yr 
p with y = 1 - l / P  
L, km 
S. m 

Sediments 
Thermal conductivity k ,  = 2.10-0.97 exp (-2/1210) 
Volumetric heat capacity psc, = 2.09 X lo6 + 2.09 X lo6 exp (- 2/1210) 
Density ps = ( 2 . 5 2 - 1 . 3 9 ) ~  lo3 exp(-2/1210) 

= 2.52X103-1.39X103exp(-z/1210) 
Sea- wa ter 

Density 1.03 X 10’ kg m - 3  
Temperature 0°C 

W m-’ K - ’  

J kg-‘ K-’ 
m2 s-’ 
m 
m 
kg mF3 
kg m-’ 

m 
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C z  
Figure. 1. Physical model geometry. Before extension, the h~ thick lithosphere has a h ,  thick crust. At 
the top of the figure, the horizontal velocity, and associated instantaneous coefficients, are presented 
along the profile. On the right, vertical velocity is shown with respect to the depth. 

As g does not change with time for a given column of particles, the distribution g(Z) is 
independent of time in a deformable reference frame ( I )  fixed to the particles where 

g(l)  = l/l  dl/dt. ( 5  1 
The problem, then, is to resolve ( 5 )  to obtain g ( f )  and to go from the g(I) to the g(x, t )  at 
a given time t. In practice, we compute the deformation of the grid by numerical interpola- 
tion, starting from the an initial stage and using spline functions (see Appendix B). Note that 
this allows us either to impose a distribution g(x, 0 )  in the initial undefomed state or to 
give the distribution with respect to the final extended state g(x, T )  based for example on 
the present distribution of  finite extension factor Pfx). In the later case, the program will 
d o  the necessary contraction of the basin to  find the initial distribution g(x, 0). 

Then, knowing g(x, t),  we obtain the velocity field v at each instant by using the 
equations 

u, (x,  t )  = 

u,(x, z ,  t )  =g(x,  t )  

(6) g(u, t )  du s:: 
z 

with ux (xo,  t )  = 0 at the origin of the frame (generally chosen at the axis of the basin to 
minimize numerical integration errors) and with u, ( x ,  0, t )  = 0 on the free surface (see 
Fig. 1). When stretching ceases, v is identified to 0 everywhere. 

The thermal boundary conditions chosen are fixed temperatures at the top ( z  = 0) and 
bottom ( z = h L ,  where h L  is the thickness of the lithosphere). Continuity of heat flow 
is imposed through the vertical boundaries to avoid any heat accumulation on them. Any 
initial distribution of temperatures may be imposed. In this paper, we assume steady thermal 
state in the absence of convection. If the heat production is null, the temperature gradient is 
linear. In the case of heat production, we choose 

A ( z )  = A .  exp ( -Z/D) ( 7 )  
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within the crust and A ( Z ) = O  in the mantle. Then, knowing T ( z = O )  and assuming 
continuity of heat flow and temperature, we solve 

a2 T 

az k - y  + A ( Z ) = O .  

This imposes a value of T(hL) which depends on A(Z) .  For consistency, we have chosen 
A ( 2 )  such that T(hL)= Ta where hL (thickness of lithosphere) and T, (temperature of 
asthenosphere) are constants which do not change whatever the initial distribution of 
temperature (see Fig. 2). 

The sedimentation perturbation method 

We treat the thermal effect of the sediments as a perturbation by relaxing the temperature 
condition at the top surface of the lithosphere. This can be done if the sedimentary cover 
is considered to be a thin insulating layer in instantaneous thermal equilibrium with the 
heat flow at its base and the imposed surface temperature. Then, knowing the heat flow at 
its base, which is the heat flowing out of the lithosphere, we compute the temperature at  
the base of the sedimentary layer which becomes the new top surface temperature T,(O, t )  
for the lithosphere. We then make a second-order correction to obtain the heat flow at 
the surface of the sediments, taking into account the heat absorbed by the sediments 
because of their increasing thickness and increasing average temperature. At each time step, 
new average thermal parameters are computed for the sedimentary layer (see Appendix C). 
Note that the thin layer approximation implies that the sediment thickness h, is small with 
respect to the length of penetration of the thermal perturbation caused by the sediments 

where t is the total sedimentation time. Note that it also implies that heat is only flowing 
vertically through the sedimentary cover. 

Figure 2. Initial lithospheric temperature distribution with or without radioactivity in the crust. 
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We treat the sedimentation in the same way as the velocity field, considering that it is 
fixed to the moving column of particles. Then, knowing the sedimentation history for each 
column of  particles, we go from the mobile to the fixed frame by the interpolation described 
above. For the computations made in this paper, we have assunied a linear increase of 
sediments through time for each column of particles, independently of the extension rate. 
As discussed in Appendix C, the average density of the sedimentary layer is assumed to 
depend only on its thickness. Thus, a linear increase of the sedimentary cover with time 
requires a sedimentation rate which increases through time because the sedimentary cover is 
also stretched and because it is continuously compacted. This rather artificial hypothesis is 
adopted here for simplicity of computations although the sedimentation history could have 
been made as complex as we like. 

Computations of thermal subsidence (or uplift) 

We assume a lithosphere of no lateral rigidity floating on an asthenosphere which has its 
upper surface at a constant depth h L .  Thus the level Z = hL is an isobaric surface. If mo is 
the initial reference mass of the lithospheric column and m, the mass of this column at time 
1, the subsidence under waters is 

S = (mr - mo)/(Pa - pw) (10) 

where pa is the density of the asthenosphere and p, the density of water. Above water, pw 
is set equal to zero. Note that the thermal computations method used does not take into 
account the deformation of the grid due to thermal expansion and consequently does not 
conserve mass (Beaumont, Keen & Boutillier 1982). But this error does not affect the 
estimation of the subsidence with the hypothesis made here that the level of compensation 
is at a constant depth and consequently that the thickness of the lithosphere changes 
slightly with expansion. Note also that, if there is no stretching ( 0  = I ) ,  the only variation in 
topography of the upper surface of the lithosphere is due to thermal expansion. One has 

where Tt is the average teniperature of the lithosphere at time t and To is the initial average 
temperature of the lithosphere. S is negative (corresponding to uplift) when > To. 

The computation of topography in the presence of sediments is then obtained with 

where h,  is the depth of water at  the top of the sedimentary layer. 

Unidimensional computations 

We first tested our numerical method with the analytical solution proposed by Jarvis & 
McKenzie (1980) in the case of unidiinensional uniform stretching of a lithosphere without 
sedimentation. The accuracy of our solution is excellent in all the tested cases, using 
stretching durations as long as 20 Myr and values of 0 as high as 3.25. Computations were 
extended to 300 Myr to test the return to  thermal equilibrium. 

We next tested the sedimentation perturbation method using the analytical solution 
proposed by Carslaw & Jaeger ( 1  959, p. 388) for a homogeneous medium with an initial 
linear temperature gradient and a constant upward movement of the free surface. This 
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Figure 3. Sedimentary perturbation; comparison between the numerical solution and the analytical 
solution for an initial linear thermal gradient of 1.06 X lo-* 'Cm" and for a sedimentary rate of 
500 m M y r - '  (without compaction). 

Figure 4. Sedimentary perturbation; comparison between the numerical solution and the analytical 
solution for an initial linear thermal gradient of 4.16X OCm-' and for a sedimentary rate of 
500 m Myr-l (without compaction). 

siniulates unidimensional constant rate sedimentation without compaction in the absence of  
extension (0 = 1). We considered both a 'normal' equilibrium temperature (in the absence 
of radioactivity) of 1.06 x lo-* "C m-' and a high (four times higher) gradient. The 
diffusivity was chosen equal to the adopted lithospheric diffusivity (0.804 x m2 s-', 
see Table 1) .  This value is about 15 per cent too  large for the equivalent diffusivity of a S kni 
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thick sedimentary column (as discussed later) but the analytical solution does not allow for a 
changing diffusivity with depth. The spatial discretization step used is 5 km and the time is 
0.5 Myr. In spite of the relatively coarse grid used, the accuracy of the method is still fairly 
good at sedimentation rates of 200 m Myr-' (better than 4 per cent). It deteriorates rapidly 
at  rates higher than 500 m Myr-' (maximum error of 16 per cent). 

Figs 3 and 4 show the temperature profiles after 10 Myr of sedimentationat 500 m Myr-' 
for both 'normal' and 'high' temperature gradients. It is seen that the problem is well related 
to the spatial discretization step, the maximum error occurring at the first node below the 
sedimentary interface. However, as 500 m Myr-' is a high Sedimentation rate for basins 
produced by stretching and continental margins in general, this method can be used to 
obtain with reasonable accuracy estimates of the thermal effect of the sedimentation cover 
in most geological cases. Its advantages are, of course, simplicity and a small computing time. 
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Bidimensional computations without sedimentation 

We now consider idealized extensional basins produced by a linear symmetrical distribution 
of P(x) over a final width (after extension) of 100 and 300 km. The linear distribution is 
chosen because the thickness of crust, over many continental margins, varies approximately 
linearly with distance (Le Pichon & Sibuet 1981). The lOOkm width corresponds to the 
smallest width described for a set of margins (the Corsican and Provenqal margins which 
are 50 km wide each, Le Douaran, Burrus & Avedik 1984). The 300 km width corresponds 
approximately to the width of a double East American margin (150 km, e.g. Le Pichon & 
Sibuet 1981). Thus, the two cases described span the complete range of continental margins 
which have been described. We have also assumed that the crust thins to a minimum 
thickness of 5 km from an original thickness of 30 km, as on the Armorican margin for 
example (Le Pichon & Sibuet 1981), this stretching corresponds to a maximum of 6. 
Finally, the duration of extension is chosen to be 10 Myr, which is small compared to the 
Armorican margin but is comparable to the time of stretching of the West Mediterranean 
margins (Le Douaran e f  al. 1984). Thermal relaxation is computed during another 10 Myr. 

We assume no radioactivity and parameters as in Table 1. At the beginning, with thermal 
equilibrium, the lithosphere is in isostatic equilibrium with a 2.5 km water depth ridge 
crest. In the absence of oceanic crust, the asthenosphere would rise to 3.6 km instead of 
2.5 km and thus instantaneous infinite stretching would produce a subsidence from sea- 
level to 3.6 km water depth. Le Pichon et al. (1982) have shown that the instantaneous 
stretching of a lithosphere originally at sea-level produces a subsidence S under water 

S = 3600 (1 - I/@ = 36007 in metres. (13) 

Thus subsidence increases linearly with y which is the proportion of lithosphere instan- 
taneously removed by stretching (McKende 1978). Figs 5 and 6 show the evolution of the 
distribution of heat flow and of the subsidence (or uplift) with time. For comparison, the 
corresponding distribution at 10 Myr, assuming instantaneous stretching, using (1 3), is shown 
in Fig. 5. 

Fig. 5 clearly shows that the effect of conduction is to increase the subsidence consider- 
ably and decrease the heat flow with respect to the instantaneous stretching solution of (13). 
In addition, as noted for example by Beaumont et al. (1982), an uplift appears on the edges 
of the zone of extension which reaches an absolute value equal to 12 per cent of the 
maximum subsidence. This uplift and corresponding increased heat flow in a zone of no 
extension is obviously the result of lateral conduction. 

We consequently need to investigate more closely the role of lateral conduction with 
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respect to vertical conduction. To do that, we compare bidimensional computations with 
unidimensional ones and with instantaneous stretching solutions (using equation 13) in 
Figs 7-10. Subsidence and heat flow distributions for 10 and 3 0 M y r  are shown for a 
basin with a final width of 100 km (Figs 7 and 8) and 300 km (Figs 9 and 10). In both 
cases, /3 reaches a maximum of 6 at  the axis a t  the end of  the extensional process. In both 
cases, if stretching were instantaneous, one would obtain an axial heat flow of 200 m W  ni-’ 
and an axial subsidence of  3 km (equation 13). 

and S1 the surface heat flow and the subsidence without conduction, @, and 
S ,  with only vertical conduction, qh3 and S3 with both vertical and lateral conduction. We 
consider the heat flow vertical conduction effect Ev = G I  - G2 and the heat flow lateral 
conduction effect EL = $J, - G 3 .  Similarly, we consider the subsidence vertical conduction 

Call 
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Figure 6 .  Thermal flux and subsidence are presented during the cooling phase from 10 to 20 Myr, every 
2 Myr. The basin is the same as for Fig. 5 .  

effect Sv = S2 - S1 and the subsidence lateral conduction effect S L  =,S3 - S2. Then, 
Fig. 7 shows that for the narrow basin, at the axis 

$3 = 0.52 $ 1  

whereas $* = 0.90 

thus EL = 3.8 Ev. In the wide basin case (Fig. 9) G3 = 0.75 
In the same way, we see that S, = 1.75 Sv in the narrow basin case but SL = 0.25 Sv 

in the wide basin case. 
In the following, we give empirical curves and relations to evaluate the necessity of 

using bidimensional computations rather than unidimensional ones during the stretching 
phases of continental margins. These estimations are valid for final extension factors at the 
axis 0 ranging from 2 to 6,  total stretching times f from 10 to 30 Myr and half-widths of 
basin L (which is the width of one continental margin after stretching) ranging from 50 to 

thus EL = 1.5 Ev.  
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Figure 7. Three solutions are compared for the same hypothetical basin as  for Fig. 5. The instantaneous 
stretching solutions are indexed by 1, the unidimensional by 2 and the bidirnensional by 3.  The thinning 
factor is displayed at  the bot tom of the figure. 

200 kni. As mentioned earlier, this set of parameters can be-used to describe most continental 
margins. 

Jarvis & McKenzie (1980) have shown that conduction can be ignored in the 1-D case if 
t *  0' < 60Myr as the effect of 0 is to decrease the time constant of the lithosphere by 
lip2. In this case, EL and Ev are small. We evaluate the relative effect of lateral and vertical 
conduction by computing the ratios EL/Ev  and SL/Sv for variable axial p, f and L. 

Fig. 1 l(a) shows the variation of EL/Ev  as a function of 0 for 10, 20 and 30 Myr total 
times. This ratio varies linearly with the ratio of the thickness of lithosphere h L  over the 
half-width of the basin L.  In general, the lateral conduction effect is larger than the vertical 
one if L is of the order of h L  or smaller. The ratio is maximum for a value of 0 close to 2 .  
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It goes toward 0 when f i  tends towards infinity. It is larger than 0.2 over most margins and 
basins of high stretching ratios (0 > 2) .  Actually a good empirical fit can be obtained by 
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ELIEV = K ( t )  /3-1.6 h J L ;  0 2 .  (14) 

K ( t )  varies approximately as 175/t for t larger than 15 Myr and smaller than 50 Myr. 
Fig. 1 l(b) shows the variation of S,/Sv as a function of t for L 4 0 ,  125 and 200 km. 

This variation is independent of 0; in other words, S, and Sv have the same dependence on 
0. A good empirical fit can be obtained by 

s L / s V  = 14.4 exp (- ~ L / / I ~ )  t-"'. (1 5) 

The lateral conduction.effect is smaller than the vertical one if L is larger than about 
75-100 kin. The lateral effect becomes negligible (S,/Sv < 0.2) for L larger than about 
200 km. Note that relations (1 4) and (1 5) have no meaning if E v  and  SV are small and 

! i n  

100 . 

8 0  

4u 11 L 0 2 0  

1 -  

4 

1 -  

4 

0 5  O S  

$ 1  I 0  

Figure 8. Three solutions are compared for the same hypothetical basin as for Fig. 6 ,  exccpt that the 
cxtension duration is now 30 Myr instead of 10 Myr as in Fig. 7. 
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Figure 9. The final width of  the basin i s  300 km instcad of 100 krn and the extension duration is 1 0 M y r .  

consequently if r < 60/p2. Thus, they will in general be meaningless for p < 2. On the other 
hand, both relations can be used with a good approximation t o  evaluate the effect of 
increasing L .  

Consider continental margins where L may go from 50 t o  200 kin and niaxiinuni 0 is of 
the order of  3-6; the above results indicate that the horizontal conduction effect dominates 
the vertical one over most margins and in general cannot be ignored. Note that, in 
percentage, much larger errors occur on  the flanks of  the basins if one ignores lateral conduc- 
tion. Actually, the errors in computation of excess heat flow and elevation are infinite on  
the edges of  the basins! We conclude that, over continental margins, 1-D computations d o  
not  represent a significant improvement over the instantaneous (zero conduction) approxi- 
mation. If there is a significant conduction effect, then bidimensional computations are 
necessary. 

Finally, we have computed the variation of the thermal uplift on the edges of a 
symmetrical basin as a function of total time t, axial and half-width L .  Fig. I l(c) shows 



402 F. Alvarez, J. Virieux and X.  Le Pichon 

hm 

5 3  

o~ , , l \ i i  ,km 

05 

y', I D 

Figure 10. The final width o f  the basin is 300 km and the cxtcnsion duration is 30 Myr. 

this uplift as a function of time and stretching factor. A good empirical fit is obtained for 
the height B of the uplift by using: 

B = 21.5 PhLIL 5 < t < SO (16) 

where B is in metres and t in Myr. 
Equation (16) indicates that B,  as the heat flow, varies linearly with the ratio ~ L / L .  It is 

consequently possible to predict the amplitude of B with a good approximation. In most 
geologically pkausibk cases, the thermal uplift will not exceed a value o f  500 m. It will 
in general be two t o  three times smaller and the maximum value will be obtained with t 
of the order of  30 Myr. 

Temperature profiles and partial melting 

Figs 12-15 show the temperature sections corresponding to Figs 7-10. Note that the 
horirontal scale is normalixd to  the width of  the basin (vertical exaggeration is 2.5 L / h L ,  
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Figure 1 1 .  (a) Variation of EL/Ev  with respect to extension factor 0 for extension duration of 10, 20 
and 30Myr.  (b) Variation of SL/SV with rcspect to time for differcnt basins, whcre L is the half-width 
of the basin. ( c )  Variation of a scalcd lateral uplift with rcspect to timc for different extension factors p. 
The scaling factor is hL/I , ,  which is the thickncss of the lithosphcrc over the width of thc lithosphcrc. 
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Figure 12. Isothermal contours for thc hypothctical basin o f  I.ig. 5, a t  the end of  thc cxtcnsion. Partial 
melting zone is t t x  shaded arca. 
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Figure 14. Isothermal contours for the hypothetical basin of I:ig. 9, at  the end of cxtension. 

which is 1 for L = 50 km and 3 for L = 150 km). Thus, in the absence iof conduction, 
Figs 12-15 should be identical, and the 320°C isotherm should coincide Aith the base of  
the  continental crust. Obviously this is not the case and the difference is much larger for 
L = SO km (Figs 1 2  and 13) than for L = 150 kni (Figs 14 and 15). 

Following Le Pichon et  al. (1984) we ask what is the value of L below which the cooling 
will be sufficiently large t o  prevent the possibility of melting and thus prevent the formation 
o f  oceanic crust. Our investigation here is only qualitative and we use the very simple 
nielting relationship proposed by Foucher, Le Pichon & Sibuet (1982)  T,, = 1100 + 32,  
where Z is in kni and T,,, is in "C. Then it is seen in Fig. 12 that there will be very limited 
melting for L = SO k m  whereas large-scale melting exists for L = 150 km (Fig. 14). 
Actually, with the melting relationship adopted here, oceanic crust formation requires 
L > h l , m ,  where r is the total stt-etching time in Myr. For reasonable stretching times 
(10-20 Myr), a minimum width of the stretched basin is 2 I, - 70-100 kni which is 
equivalent to  40 -60 kni for the uristretched width (using a linear distribution of 7 ,  
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Figure 15. Isothermal contours for the hypothetical basin of I'ig. 10, a t  thc end of extension. 
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Le Pichon & Sibuet 1981). Thus Le Pichon et al. (1984) have argued that it is unlikely that 
the North Aegean trough will ever reach the oceanization stage in spite of high stretching 
factors. We conclude that lateral conduction imposes a minimum width to a continental 
margin and that this width may be of the order of 35-50 kni if the melting relationship 
used here is approximately correct. 

Bidimensional computations with sedimentation 

De Bremaecker (1984) has shown that sedimentation need to  be taken into account in 
thermal computations if the sedimentation rate is larger than 100 m Myr-'. To illustrate 
the  effect of  sedimentation, we consider the same cases as previously (narrow L = 50 km 
and wide L = 150 k m  stretched continental margins) with a total sediment thickness of  
1 and 5 kni deposited during the 10 Myr long stretching phase at the axis of  the trough. 
The variation of sediment thickness with time is linear. The lateral variation of sediment 
thickness is chosen to be proportional to  y (which is the proportion of crust removed by  
stretching). The distributions of  heat flow and subsidence at  the end of the 10 Myr long 
stretching phase are shown in Figs 16 and 17.  Note that ,  as mentioned earlier, 5 km in 
10 Myr is a very high rate o f  sedimentation for a basin produced by extension. For example, 
synrift sediment thickness is only about 2 kni on  the Western Mediterranean margins 
(Le Douaran et al. 1984) and much less on  the Armorican margin (Montadert et al. 1979). 
In the Gulf o f  Suez, 2.5 km of  synrift sediments were accumulated in 20 Myr since Lower 
Miocene (Garfunkel & Bartov 1977). Only in the North Aegean trough d o  we find a rate 
of sedimentation equivalent t o  500 m Myr-' ( 5  km in 10 Myr, Le Pichon et al. 1984). 

In the computations, we take into account the effect of compaction on sediments. This 
is done by adopting exponential variations of density, conductivity and heat capacity with 
depth. It is well known that, t o  the first order, density within sediment ps varies linearly 
with porosity. In the same way, the thermal conductivity K ,  varies approximately linearly 
with porosity (Sclater & Christie 1980). Finally, the volumetric heat capacity pscs is the sum 
of the heat capacity of the solid and liquid phases and consequently also varies approximately 
linearly with depth. As the porosity closely follow, an exponential variation with depth 
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(Sclater & Christie 1980), the variation with depth of  the three parameters ps, K ,  and pscs 
can  be approximated by the same exponential decrease. 

To determine this rate of exponential decrease, we use the study of  the North Aegean 
trough by Le Pichon et al. (1984) because 5 km of sediments accumulated there in only 
10 Myr. The density law of variation with depth, which was obtained indirectly through 
compressional velocity determinations, determines the rate of  exponential decrease with 
depth.  At the seafloor (for 2 = 0), the values adopted are in agreement with those measured 
b y  Jongsnia (1974) in the North Aegean trough. For large 2, the adopted values are reason- 
able for the  upper crust. The three relations are given in Table 1 .  

Note that  the conductivity approximately doubles from the surface t o  a depth of 5 kin 
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Figure 16. Thcrmai computations across an hypothetical sedimentary basin with a final width of  100 km. 
The  extension factor distribution is symmetrical, with a maximum extension factor o f  6 at  the axis after 
10 Myr.  The total sediment thickness deposited during the 10 Myr are 1 km (case 1) and 5 km (case 2). 
Thermal tlux, subsidence and temperatures at the bottom of the sedimentary layer arc presented. 
(a) thermal tlux over the basin without sediment. @*: thermal flux over the sedimentary basin (case 1 )  
(dashed area represent the portion of the flux absorbed by the sediment. a3: thermal flux over the 
sedimentary basin (case 2). (b) Above the horizontal axis, temperature at the bottom of the sedimentary 
layer, below the computed topography and bascrnent for case 1 (dashed lines reprcscnt sedimentary 
laycr). (c)  S a m e  as ( b )  t o r  case 2 .  
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Figure 17. Thcrnial computations across an hypothctical scdimcntary basin with B final width o i  300 k m .  
Thc extension factor distribution is symnictrical, with a maximum extension factor o f 6  at thc axis aftcr 
1 0 M y r .  The total scdirnent thickncss dcpositcd during the 10Myr arc 1 kin (casc 1 )  and 5 kni (case 2). 
Thermal flux, subsidence and tcnipcraturcs a t  the bottom of the scdimcntary laycr arc prcscntcd. (a), 
(b) and (c) as in I$. 16. 

where it is close to  the conductivity of the crust. But the volumetric heat capacity is 
halved over the same interval because of the much larger heat capacity of water. Thus, 
the diffusivity increases by a factor of 4 from the surface to  5 km depth. However the 
exponential variation is such that at a depth of  2 k m ,  80 per cent of the variation has 
already occurred and any further change with depth is small. This is why the equivalent 
diffusivity for a 5 km thick sedimentary basin is close to  the value for the asthenosphere. 

Knowing the law of  variation of thermal conductivity and volumetric heat capacity with 
depth within the  sediments, our method requires the determination of  a single equivalent 
conductivity and heat capacity f o r  the whole layer. For the heat capacity, we simply take 
the arithnictic mean psc,. However, for thc conductivity, we need to take the harmonic 
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mean K. where 

F. Alvarez, J. Virieux and X. Le Pichon 

This is done at each time step for the corresponding sediment layer. 
Figs 16 and 17 show that the heat flow at the axis is greatly reduced by the 

sedimentation. This reduction is about 20 and 65 per cent respectively for the 1 and 
5 km thicknesses. However, there is a significant lateral conduction effect and the reduction 
depends on the width of the basin. It is 22 per cent in the narrow basin ( L  = 50 km), instead 
of 19 per cent in the wide basin (L = 150 km) for the 1 km case and 68  instead of 60 per 
cent for the 5 km case. 

On the other hand, the tectonic subsidence (subsidence obtained by removal of the 
sediment layer and local isostatic readjustment) does not change significantly with the 
presence of sediment. The introduction of the sedimentary layer does not modify suffi- 
ciently the thermal structure of the lithosphere at depth, in such a small amount of time 
(1 0 Myr) to produce variations in tectonic subsidence. The changes correspond to 20 and 
6 0 m  of increase of tectonic subsidence for L = 50 km and 20 and 70 m for L = 150 km. 
Thus, the modification of the subsidence is only due to the weight of the sedimentary 
layer and the consequent isostatic readjustment. We conclude that to obtain the subsidence 
during the early margin rifting phase, one does not need to include the effect of sedimen- 
tation in the thermal computations whereas this is absolutely necessary when computing 
the heat flow. 

Finally, we show in Figs 16 and 17 the predicted temperatures at the bases of the 
sedimentary sections. For L = 50 km, the maximum temperatures reached are 70°C for 
1 km thickness and 175°C for 5 km thickness whereas for L = 150 km they are 90 and 
245°C. The effect of compaction is the principal cause of the non-linear increase of 
temperature with sedimentary thickness. Using a formula such as the one given by Royden 
el  al. (1 980), it would be simple to obtain the corresponding maturation index for each case. 

Conclusion 

We have presented a numerical method to compute the thermal evolution of a lithosphere 
submitted to laterally variable stretching. The method incorporates the effect of sedinien- 
tation by considering the sedimentary cover as perturbing the surface temperature condition. 
The initial horizontal strain rate distribution is obtained from the final distribution of 
stretching factors with the hypothesis that strain rate for a given columnbof particles is 
independent of depth and time. The accuracy of the method has been tested by comparing 
it to unidimensional analytical solutions. It is excellent in the absence of sedimentation 
but the accuracy deteriorates when sedimentation rates equal to or larger than about 
500 in My-' are adopted. 

The main conclusion of our work is that lateral conduction introduces significant 
changes in the evolution of the rifting phase of a continental margin. In particular, the 
lateral conduction effect is larger than the vertical one over most continental margins during 
their stretching. We propose a way to evaluate the relative importance of lateral and vertical 
conduction effects at the axis of a zone of rifting just prior to oceanization. We show that, if 
the initial width of the zone of stretching is less than 40-60 km, lateral conduction will be 
so strong as to prevent the possibility of melting and consequently prevent the oceanization 
for reasonable stretching times (f  > 10 Myr). Thus, an unsedimented continental margin 
should have a minimum width of 35-50 krn. 
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We propose a simple way t o  evaluate the amplitude o f  the thermal uplift on  the edges of  
the zone of rifting. The thermal uplift does not exceed 500 in for reasonable geological 
conditions. It is in general two t o  three times smaller. 

Finally, we discuss the effects of  high sedimentation rates. The effect of  the sedimen- 
tation is t o  increase the  surface temperature of  the lithosphere and consequently t o  signifi- 
cantly decrease the surface heat flow. However, the tectonic subsidence is not significantly 
changed by  high sedimentation rates during a time of the order of  10 Myr. 
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Appendix A: numerical scheme of thermal problem 

The numerical method we are using is a straightforward extension of the splitting-up method 
developed by  Peaceman & Racheford ( 1  955) and Douglas ( 1  955), by including convective 
terms. 

At a given point in space ( i A x ,  j A z )  and in time ( 2 n  + 1 )  A t ,  the  temperature is noted 
T::". A x  is the horizontal grid step, A z  is the vertical one, and A t  is the time step. 

By using splitting-up technic, temperature distribution at  time (2n + 2 )  A t  is deduced 
f r o m  temperature distribution at time 2n A t ,  with the following two-step procedure. 

I.: Alvarez, J, Virieux and X .  Le Pichon 

The velocity distribution is assumed to  be known at  any point in space ( i A x ,  j A z )  and 
in time ( 2 n  + 1/2) A t .  Velocity is noted (v:,y''/', u : , ; + ~ ' ~ )  where u is the horizontal 
component and u the  vertical one. The internal heat production is given by C,?y+1/2  at  the 
same point. 

Appendix B: instantaneous extension coefficient evaluation 

The differential equation (5) has t o  be solved numerically in the moving frame (Lagrange's 
frame). The present instantaneous extension coefficient distribution will be the 'initial' 
condition of  the resolution by going backwards in time (noted by e = -  1). By this way, 
t h e  instantaneous extension coefficient distribution, a t  the initiation of the extension, is 
obtained. This distribution will be the  initial condition when solving equation (5) by going 
forwards in time (noted by e = I ) ,  during thernial computations. 

At every time needed by thermal computation, instantaneous extension coefficients are 
evaluated in the fixed frame (Euler's frame) from the  moving frame, by  inter6olation. 

The numerical discretization of equation (5) is obtained by Euler's method: 

where 1: is the position of  the ith point a t  time t in the moving frame, with respect t o  the 
fixed point where extension is initiated. 

Appendix C: sedimentary layer: its thermal equilibrium 

The thermal perturbation o f  sediments is taking into account by modifying the  temperature 
condition a t  the top  of lithosphere. Assuming that sediments are in thermal equilibrium at  
each time n A t ,  and knowing the thermal flux at  the top of  the lithosphere @:, allow t o  
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evaluate the mean temperature T,!,!, inside sediments by 

n I I  3 & T I  T:=hs4,/- s 

where h: is the sedimentary thickness and k! is the mean harmonic sedimentary conduc- 
tivity. Vertical heat transfer is also assumed inside elements. 

Because sediments are in thermal equilibrium (constant temperature gradient), the 
temperature a t  the lithosphere--sediment boundary is given by  

T: = 2T:,. 

This temperature will be the new temperature condition a t  the top  of the lithosphere for the 
next time step. 

A more accurate surface heat flux can be made by taking into account heat (t@ absorbed 
by sediments to increase its mean temperature from Tk- '  to  T," ; 

The last term conies from sedimentary layer extension. Therefore the surface heat flux is 
deduced: 

4: = 4; - dQ:/At 

lower than the bot tom heat flux. 
Mean values, inside sediments, are obtained by using the following depth-dependent laws: 

(see Table 1 )  


