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ABSTRACT
Random field cross-correlation is a new promising technique for seismic exploration,
as it bypasses shortcomings of usual active methods. Seismic noise can be considered
as a reproducible, stationary in time, natural source. In the present paper we show
why and how cross-correlation of noise records can be used for geophysical imag-
ing. We discuss the theoretical conditions required to observe the emergence of the
Green’s functions between two receivers from the cross-correlation of noise records.
We present examples of seismic imaging using reconstructed surface waves from re-
gional to local scales. We also show an application using body waves extracted from
records of a small-scale network. We then introduce a new way to achieve surface
wave seismic experiments using cross-correlation of unsynchronized sources. At a
laboratory scale, we demonstrate that body wave extraction may also be used to im-
age buried scatterers. These works show the feasibility of passive imaging from noise
cross-correlation at different scales.

I N T R O D U C T I O N

Traditional observational methods in seismology are based on
earthquake records which results in two main shortcomings:
1 Most techniques are based on waves emitted by earthquakes
that occurred only in geologically active areas, mainly plate
boundaries. This results in a limited resolution in all other
areas where earthquakes are not present. In particular, at sta-
tions far away from the source region, all the high-frequency
information is lost due to the attenuation of the medium.
2 The occurrence of earthquakes is too low, preventing the
study of real time change of active structures such as volcanoes
or faults.

∗E-mail: pierre.gouedard@ujf-grenoble.fr

In the case of active seismic at smaller scales, the resolution
is limited by the number and power of sources. It is thus diffi-
cult to image large areas or deep structures. Furthermore, con-
trolled sources are difficult to carry out on hardly accessible
places, like at the ocean bottom, where passive imaging could
be much more convenient. For time-lapse monitoring, repro-
ducible sources are necessary. This is very difficult to achieve
for surveys of long duration, whereas noise wavefields may be
stationary on these time scales.

Here we explore an alternative way of probing the Earth’s
interior using noise records only. The main idea is to consider
seismic noise as a random source field when averaged over a
long time series. In this particular case, cross-correlation be-
tween two stations yields the Green’s function between these
two points. As the seismic noise is mainly generated by atmo-
spheric and oceanic forcing at the Earth’s surface, the surface
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wave part of the Green’s function is mostly extracted from the
cross-correlation process.

At smaller scales, the same principle can be applied to study
local structures. In this case, higher frequencies are used. At
these frequencies, the wavefield is believed to be governed by
local sources, which are unlikely to have the expected proper-
ties of randomness. This has to be taken into account in the
processing.

In this paper, the theoretical relationship between noise
cross-correlation and the Green’s function is first discussed
in section 2, based on theoretical derivations from (Colin de
Verdière 2006a,b). Several applications are then presented,
from large to small scales, using noise wavefields of differ-
ent origin and physical properties: surface wave tomography
at the regional scale in Western Europe (section 3) and at a
more local scale in section 4 at the ‘Piton de la Fournaise’
volcano (Brenguier et al. 2007); local P-waves extraction in
the Parkfield network at the San Andreas Fault (Roux et al.

2005a) in section 5; site characterization using surface waves
extracted from noise cross-correlation (Gouédard et al. 2006)
in section 6; passive imaging of a buried scatterer at laboratory
scale (Larose et al. 2006b) in section 7.

B A C K G R O U N D A N D M AT H E M AT I C A L
A P P R O A C H

Historical background

The Green’s function of a medium between two points A and
B represents the record we would obtain at A if an impulsive
source is applied at B.

In the case of a completely random wavefield, the cross-
correlation of signals recorded between two points converges
to the complete Green’s function of the medium, including all
reflection, scattering and propagation modes (Weaver 2005).
To demonstrate this result and to define more precisely under
which assumption it is valid, various experimental, numerical
and theoretical approaches have been developed.

Historically speaking, helioseismology was the first
field where ambient-noise cross-correlation performed from
recordings of the Sun’s surface random motion was used to
retrieve time-distance information on the solar surface (Duvall
et al. 1993; Gilles et al. 1997). The idea of day-light imaging
was proposed by Claerbout (1968) in the context of prospect-
ing. More recently, a seminal paper was published by Weaver
and Lobkis (2001) that showed how diffuse thermal noise
recorded and cross-correlated at two transducers fastened
to one face of an aluminium sample provided the complete

Green’s function between these two points. They theoreti-
cally interpreted this result by invoking equipartitioning of the
modes excited in the aluminium sample. This result was gener-
alized to the case where randomization is not produced by the
distribution of sources, but is provided by multiple scattering
that takes place in heterogeneous media (Lobkis and Weaver
2001).

The use of a spectral representation (Lobkis and Weaver
2001), the fluctuation-dissipation approach (Weaver and
Lobkis 2001, 2003; van Tiggelen 2003; Godin 2007) or a
correlation-type representation theorem (e.g. Wapenaar 2004)
are rigorous theoretical approaches to interpret experimental
results.

Experimental evidences demonstrated the feasibility of pas-
sive imaging in 1) acoustics (Lobkis and Weaver 2001; Weaver
and Lobkis 2001; Larose et al. 2004), 2) seismology where
Campillo and Paul (2003) retrieve the Green’s function be-
tween two seismic stations from a collection of earthquakes,
and 3) oceanography in shallow underwater acoustics where
both direct and reflected wavefronts were retrieved from
ambient-noise cross-correlation (Roux and Kuperman 2004;
Sabra et al. 2005b). By summing the contributions of all
sources to the correlation, it has been shown numerically that
the correlation contains the causal and acausal Green’s func-
tion of the medium (Wapenaar 2004). Cases of non-reciprocal
(e.g. in the presence of a flow) or inelastic media have also been
theoretically investigated (Wapenaar 2006; Godin 2007).

Derode et al. (2003a,b) proposed to interpret the Green’s
function reconstruction in terms of a time-reversal analogy
and showed that correlation of multiply scattered waves could
be used for passive imaging in acoustics. The convergence of
the noise correlation function towards the Green’s function in
an unbounded medium can also be interpreted through the
stationary phase theorem (Snieder 2004; Roux et al. 2005b).

In seismology, Aki (1957) proposed a long time ago to
use seismic noise to retrieve the dispersion properties of sur-
face waves in the subsoil. Shapiro and Campill (2004) re-
constructed the surface wave part of the Green’s function by
correlating seismic noise at stations separated by distances
of hundreds to thousands of kilometres, and measured their
dispersion curves at periods ranging from 5 to about 150 sec-
onds. This method led to the first application of passive seismic
imaging in California (Shapiro et al. 2005; Sabra et al. 2005a)
with a much greater spatial accuracy than for usual active tech-
niques. Larose et al. (2005) also used noise cross-correlation
at small distances on the moon.

For the problem of elastic waves, it has been theoreti-
cally shown that the convergence of noise correlation to the
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Green’s function was bonded by the equipartition condition
of the different components of the elastic field (Sánchez-Sesma
et al. 2006a, 2007). In other words, the emergence of the
Green’s function is effective after a sufficient self-averaging
process that is provided by random spatial distribution of the
noise sources when considering long time series as well as scat-
tering (Campillo 2006; Larose et al. 2006a).

The case of homogeneously distributed white noise sources

The scope of this section is to summarize the different theoret-
ical approaches using mathematical tools that allow a global
view of the correlation problem in any propagation medium.
We will see that cross-correlation of noise recorded at two
distant stations A and B yields the Green’s function, assuming
that the wavefield is a white noise distributed everywhere in
the medium, with no assumption about the medium.

We consider any medium X, that does not need to be homo-
geneous, where the wave propagation equation is controlled
by a damped equation that can be written as:

∂2u
∂t2

+ 2 a
∂u
∂t

− Lu = f (1)

Here a > 0 is a constant that corresponds to the attenua-
tion of the medium, f (t, �r ) is the source field (i.e. the noise
field in our case) and u(t, �r ) denotes the displacement field. If
L = c2(�r ) �, we recognize the usual wave equation. In a more
general calculation, L can be any negative self-adjoint elliptic
differential operator. In more physical terms, L is an operator
which preserves energy.

First of all we will introduce a definition of the Green’s
function in the frequency domain using the integral kernel of
the operator L, and show that this definition is equivalent to
the usual one. Then, by expressing the displacement field using
the Green’s function, we will calculate the cross-correlation
and find how the derivative of the cross-correlation function
is linked to the Green’s function.

We introduce the integral kernel of an operator P, denoted
by [[P]](x, y) by:

∀u : X �−→ R
3, (Pu)(x) =

∫
X
[[P]](x, y) u(y) dy

This is the ‘continuous matrix’ of the operator P. It has to be
linked to the case of a finite space where one can define the
matrix (Pij) of P and write the following formula:

∀u : X �−→ R
3, (Pu)i =

∑
j

Pi j u j

We first consider a medium without attenuation, i.e. a = 0
in equation 1. Let us define the Green’s function of L in the
frequency domain, denoted by Ĝ(ω + i ε, �r , �rs), with ε a small
positive value, as the opposite of the integral kernel of ((ω +
i ε)2 + L)−1. In other words, Ĝ is the resolvent of L evaluated
at point (ω + i ε)2. The ·̂ denotes a function defined in the
Fourier space. ε ensures that ((ω + i ε)2 + L) is invertible as
L has real eigenvalues. We will show that this mathematical
definition of Ĝ is the same as the usual one, which is the causal
solution of the wave equation (equation 1) when the source
function f is a Dirac impulse in time and space δ(t, �r − �rs).
The Green’s function Ĝ(ω + i ε, �r , �rs) admits a limit as ε →
0+, denoted by Ĝ(ω + i0, �r , �rs), as a Schwartz distribution on
the real axis. If L has a continuous spectrum, this limit is a
smooth function (the ‘limiting absorption principle’). Ĝ can
thus be written as:

Ĝ(ω + i0, �r , �rs) = −[[((ω + i0)2 + L)−1]](�r , �rs)

= −
∫

X
[[((ω + i0)2 + L)−1]]

× (�r , �r ′) δ(�r ′ − �rs) d�r ′

= −((ω + i0)2 + L)−1 δ(�r − �rs)

which yields:

−((ω + i0)2 + L) Ĝ(ω + i0, �r , �rs) = δ(�r − �rs)

The inverse Fourier transform of this equation gives a relation
that is the usual definition of G in the case of a medium without
attenuation:

∂2G
∂t2

(t, �r , �rs) − L G(t, �r , �rs) = δ(t) δ(�r − �rs)

G is thus the solution of equation 1 in the case of an impulsive
source in time and space. One can compute the inverse Fourier
transform of Ĝ(ω + iε, x, y) using residue calculus, and take
the limit as ε goes to 0 to obtain

G(t, �r , �rs) = Y(t)

⎡
⎣
⎡
⎣ sin t

√−L√−L

⎤
⎦
⎤
⎦(�r , �rs)

where Y is the Heaviside-step function, and where we denote√−L the operator which eigenvalues are the images of the
eigenvalues of L by the function x �→ √−x (idem for the sinus
function).

If we consider an attenuating medium, the Green’s function
Ĝa(ω, �r , �rs) is defined by the resolvent of L evaluated at point
ω2 + 2 i a ω instead of (ω + i0)2. It thus becomes

Ga(t, �r , �rs) = Y(t) e−a t

⎡
⎣
⎡
⎣ sin t

√−L − a2

√−L − a2

⎤
⎦
⎤
⎦(�r , �rs) (2)
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We now define the time domain cross-correlation between
the displacement at two points A and B as:

C(τ, �rA, �rB) = lim
T→+∞

1
T

∫ T

0
u(t, �rA) u(t + τ, �rB) dt (3)

where the bar denotes the conjugate. u(t, �r ) can be expressed
using the Green’s function Ga (here attenuation is necessary
to ensure convergence of the integral, see Roux et al. (2005b))
and the source function f as follows:

u(t, �r ) =
∫ ∞

0
dt′

∫
X

Ga(t′, �r , �rs) f (t − t′, �rs) d�rs

We assume that f is a white noise distributed everywhere in
the medium X, acting at any time t. In the frequency domain, a
white noise contains all the frequencies with a random phase.
In the time domain, this is a random wavefield such that the
position and the activation time of each source are uncorre-
lated. In this case, and considering a damping medium, we
replace the large T limit in the correlation by an ensemble av-
erage. We then obtain the following explicit expression for the
correlation between the wavefields recorded at A and B (see
Appendix A for mathematical details):

C(τ, �rA, �rB) = σ 2 e−a |τ |

4 a[[
(−L)−1

(
cos τ

√
−L − a2 + a

sin |τ |√−L − a2

√−L − a2

) ]]
(�rA, �rB)

(4)

where σ is the variance of the noise wavefield.
The time derivative of this equation is expressed in terms

of the Green’s function using (2), giving the more familiar
expression:

d
dτ

C(τ, �rA, �rB) = −σ 2

4 a
(Ga(τ, �rA, �rB) − Ga(−τ, �rA, �rB)) (5)

This means that for any medium, the time-derivative of the
cross-correlation computed between the wavefields recorded
at two stations A and B is the Green’s function of the medium,
provided that the damping coefficient is small enough and
that noise sources behave as white noise acting everywhere in
the medium. This is the same hypothesis as stated in Roux
et al. (2005b), Lobkis and Weaver (2001) and others, but L is
now an arbitrary negative definite elliptic operator, and so the
present result is more general.

The case of a scattering medium

The previous calculation was made using sources randomly
located anywhere and randomly active at any time. This is

a very strong hypothesis that is not valid in practical cases.
Another demonstration of the link between cross-correlations
and Green’s functions can be made without any assumption
about the noise sources location or their activation time. We
only assume that there is equipartition at the boundaries of the
region of interest, which means that each eigenmode is excited
with the same level of energy.

A simple view of the relation between equipartition and cor-
relation is given by the reconstruction of the Green’s function
of the homogeneous space using the azimuthal averaging of
the correlation of plane waves, which are the eigenfunctions
of the problem. Sánchez-Sesma and Campillo (2006) consider
an isotropic distribution of P and S plane waves in an elastic
medium. They found that the azimuthal average of the cross-
correlation of motion between two points is proportional to
the imaginary part of the exact Green’s tensor between these
points under the condition that the energy ratio S/P of the
incident waves is the one predicted by equipartition. These re-
sults clearly show that equipartition is a necessary condition
to retrieve the exact Green’s function from correlations of the
elastic field. In practice, one has to deal with complex media
for which the eigenfunctions are unknown and therefore for
which equipartition conditions cannot be explicitly specified
in terms of local properties of the field.

Sánchez-Sesma et al. (2006a) discussed a particular case.
They considered the field in the vicinity of a cylindrical scat-
terer embedded in an homogeneous space and illuminated
isotropically with incident P and S plane waves in the ratio of
equipartition of the homogeneous space. Taking into account
the scattered waves, they showed that the azimuthal average
of cross-correlations of motion between two points still yields
the imaginary part of the exact Green’s tensor of the hetero-
geneous medium, including the scattered waves, even at close
distance from the scatterer. Is such a property still valid for any
scattered or type of heterogeneity? What are the conditions re-
quired for the incident field? Weaver and Lobkis (2004) used
an integral representation approach to study the problem of
an heterogeneous region in an open medium. The essence of
this property is expressed in the spectral theory of scattering
that shows that the properties obtained in the simplest case of
a homogeneous medium are formally valid in presence of het-
erogeneities. This is discussed in Colin de Verdière (2006a,b)
as follows.

In the first step we will define the spectral projector and ex-
hibit its expression using the cross-correlation function (equa-
tion 7). In a second step, will prove the relation between this
projector and the Green’s function, the so-called Stone formula
(equation 8).
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We denote e0(�r , �k) = ei �k·�r as the plane waves that are the
eigenmodes of the homogeneous infinite space. In the case of
a complex medium, the scattering theory (Ramm 1986; Reed
and Simon 1978) tells us that, if the medium is heterogeneous
only in a finite region, the eigenmodes in the whole space can
be written as:

e(�r , �k) = e0(�r , �k) + es(�r , �k)

where es, the scattered waves, satisfies the so-called Sommer-

feld radiation condition, which ensures that es will vanish
when �r goes to infinity. This decomposition is still valid in
the near field of the scatterers (i.e. inside the heterogeneous
region).

For I ⊂ R+, we define the spectral projector of L on I, de-
noted by PI, from its integral kernel [[PI]] at any points �r1 and
�r2 of X by:

[[PI ]](�r1, �r2) = (2 π )−d
∫

λk∈I
e(�r1, �k) e(�r2, �k) |dd�k| (6)

where d is the dimension of the space and λk denotes the eigen-
value associated with the eigenfunction e(�r , �k). This is the pro-
jector on the sub-eigenspaces of L which eigenvalues are in I.
Again, what PI represents can be easily understood in the case
of a finite number N of eigenvalues {λn}, where we can write:

[[PI ]](�r1, �r2) =
∑

n∈[1,N]
λn∈I

ei (�r1) en(�r2)

In this case, I represents a subset of values of n ∈ [1, N] that
are preserved, all the other being removed by the projector PI.
For example, if u(�r ) = ∑N

n=1 un en(�r ), we have:

(PI u)(�r ) =
∑

n∈[1,N]
λn∈I

un en(�r )

We now will demonstrate that the derivative of the spectral
projector on an interval around a value ω2 ∈ R+ is linked to
the cross-correlation function at the corresponding pulsation
ω. We thus consider an interval I = [ω2

−, ω2
+] around ω2. The

integral over λk = c2 |�k|2 ∈ I in equation 6 defines a volume of
integration of dimension d that can be decomposed into two
integrals, one over a volume of dimension d − 1 defined by
c2 |�k|2 = ω2 and the other over |�k|:
[[PI ]](�r1, �r2) = (2 π )−d

×
∫

c2|�k|2∈I

∫
c2|�k|2=ω2

e(�r1, �k) e(�r2, �k) |dd−1σ | |�k|d−1 d|�k|

where |dd−1σ | is the usual measure of the unit (d − 1)–
dimensional sphere. In the case d = 3, d2σ is the infinitesimal
solid angle. Taking the derivative with respect to ω+ in this

I

γ+
I

γ−
I

Figure 1 γ I can be split into two contours γ +
I and γ −

I which are
complex conjugate and followed in opposite direction.

equation gives:

d
dω+

[[PI ]](�r1, �r2) = (2 π )−d

c

(
ω

c

)d−1

×
∫

c2|�k|2=ω2
e(�r1, �k) e(�r2, �k) |dd−1σ |

In this formula, one can recognize the cross-correlation of ran-
dom scattered waves of frequency ω recorded at points �r1 and
�r2 that can be written as:

Ĉ(ω, �r1, �r2) = 1
σd−1

∫
c2|�k|2=ω2

e(�r1, �k) e(�r2, �k) |dσ |

where σ d−1 denotes the total volume of the unit sphere in R
d−1:

σ 0 = 2, σ 1 = 2 π , σ 2 = 4 π , . . .

Using the two previous equations, we find

d
dω

[[PI ]](�r1, �r2) = σd−1

(2 π )d

1
c

(
ω

c

)d−1

Cω(�r1, �r2) (7)

The projector PI defined previously can also be written using
the resolvent of the operator L using the Cauchy formula:

PI = 1
2 i π

∫
γI

(L + λ)−1 dλ

where a γ I is a contour in the complex plane which restriction
to the real axis is I. This contour can be split into two contours
defined by γ +

I = {λ ∈ γ I |  (λ) ≥ 0} and γ −
I = {λ ∈ γ I | (λ) <

0} ( denotes the imaginary part) as seen in Fig. 1. As γ +
I and

γ −
I are followed in opposite directions and as they are complex

conjugates, we obtain:

PI = 1
2 i π

∫
γ +

I

[(L + λ)−1 − (L + λ)−1] dλ

= 1
π

∫
γ +

I

(L + λ)−1 dλ
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and then, taking the integral kernel of this expression,

[[PI ]] = 1
π

∫
γ +
ε

[[(L + λ)−1]] dλ

= − 1
π

∫ ω+

ω−
[[(L + (ω + i0)2)−1]] 2 ω dω

which leads to the Stone formula, using the definition of Ĝ

[[PI ]](�r1, �r2) = − 2
π

∫ ω+

ω−
ω Ĝ(ω, �r1, �r2) dω

This formula gives, by taking the derivative with respect to
ω+,

d
dω+

[[PI ]](�r1, �r2) = − 2 ω

π
Ĝ(ω, �r1, �r2) (8)

The combination of equation 7 and equation 8 finally gives:

Ĉ(ω, �r1, �r2) = − 2d+1 πd−1

σd−1

cd

ωd−2
Ĝ(ω, �r1, �r2) (9)

This gives a generalization of equation 5 in the case of ob-
servation in a region without local sources, and requires no
hypothesis about attenuation. It shows that the equipartition
at boundaries of the region of interest is sufficient to obtain the
Green’s function from cross-correlation, whateveris the wave-
field inside the medium is. This equation, established in the
scalar case, can be extended to the elastic case using the same
calculation. The cross-correlation function becomes a tensor,
as well as the Green’s function. Particular attention needs to
be paid to velocities and dispersion relations as they depend
on the type of waves.

The rate of convergence towards the Green’s function

The question arises as to how much averaging is in principle
necessary after which the Green’s function is retrieved, and be-
fore which the cross-correlation remains dominated by noise.
In the case that the field is due to uniformly distributed random
sources, or in the case that the field is due to equipartitioned
incident waves, it is possible to make theoretical estimates
(Larose et al. 2004; Snieder 2004; Sabra et al. 2005c; Weaver
and Lobkis 2005a). All these authors have concluded, not sur-
prisingly, that the convergence proceeds like the square root
of the amount of data used in the cross-correlation. signal-
to-noise ratio, i.e. Green’s function amplitude over residual
fluctuations, is proportional to this square root. Quantitative
estimates of the quality of the convergence are more challeng-
ing. Weaver and Lobkis (2005a) calculated the residual error
in a scalar wave cross-correlation, and found it to be propor-
tional to the energy in the diffuse field times the bandwidth
times the fourth power of central frequency. A similar calcula-

tion for closed systems was confirmed in laboratory measure-
ments (Weaver and Lobkis 2005b). The residual error was
compared to the amplitude of a ray arrival expected in the
converged cross-correlation. Each ray arrival amplitude A de-
pends on 1) the geometrical spreading of the Green’s function,
and 2) the spatial extension of the noise sources that coher-
ently contribute to the Green’s function reconstruction. This
zone is characterized by a directivity angle δθ = √ c

r ω
, where r

is the source-receiver distance. The ray arrival was shown to
be apparent in the cross-correlation if δt δω � Ad−1, where δt

is the amount of data record employed (this is often months
in seismic applications), δω is the bandwidth of interest (of-
ten around 1 Hz or less in seismic applications), and A =
rω / c, (the source-receiver distance r times the wavenumber
k = 2π / λ). The power is equal to one less than the dimen-
sion d of the propagation; thus d − 1 = 1 for Rayleigh waves.
Propagation between distant source-receiver pairs, and prop-
agation in three dimensions, are especially challenging to re-
solve, largely due to the weakness of such ray arrivals.

S U R FA C E WAV E T O M O G R A P H Y O F E U R O P E

Practically, cross-correlation can be used at different scales to
image structures from noise. Here, we present an example of
seismic noise processing to produce high-resolution Rayleigh
and Love waves group velocity maps for a region surrounding
the European Alps. We focused on the [5–50 s] period band,
where surface waves are mostly sensitive to the crust.

Stehly et al. (2006) have shown that the seismic noise
sources in the [5–20 s] period band cover a large surface when
integrated over a long time. This allows us to retrieve the
Green’s function between two stations by correlating back-
ground seismic noise records. The emerging signal of the noise
correlation function is dominated by surface waves, since the
background seismic noise mainly consists of surface waves.
The reconstructed Green’s functions are stable over time and
robust enough to measure surface wave propagation times
with a precision of a few tenths of a second, independently of
the azimuth of the considered station pair path (Stehly et al.

2007).
Passive imaging from seismic noise and Rayleigh wave

group velocities was first used by Shapiro et al. (2005) and
Sabra et al. (2005a) who provided images of the Californian
crust. More recently, noise based surface-wave tomography
has been applied in Tibet (Yao et al. 2006), New Zealand (Lin
et al. 2007) and Korea (Kang and Shin 2006) and to produce
large-scale Rayleigh wave group velocity maps across Europe
(Yang et al. 2007).
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Figure 2 The 3000 selected paths where 16 s Rayleigh wave group velocity measurements were obtained from cross-correlations of ambient
seismic noise. White triangles show stations used for this study.

We used one year of continuous records from October 2004
to October 2005 from 150 3-components broadband Euro-
pean stations. Our aim is to focus on the Alps, where we have
a particularly high density of stations (Fig. 2). All the records
are processed day per day. First the data are decimated to
1 Hz and corrected for the instrumental response. North and
east horizontal components are rotated to obtain radial and
transverse components with respect to the inter-station az-
imuth. The records are then band-pass filtered and their spec-
trum whitened between 5 and 150 s. We correlated signals
recorded on the components that correspond to the non-zero
terms of the theoretical elastic Green’s tensor (ZZ, ZR, RZ,
RR, and TT, due to symmetry considerations). Subsequently,
correlations of one-day records are stacked. This is approxi-
mately equivalent to cross-correlating directly the whole year
of records.

Rayleigh and Love waves dispersion curves are evaluated
from the emerging Green’s function using frequency-time anal-

ysis (Levshin et al. 1989; Ritzwoller and Levshin 1998) for the
17,000 inter-station paths. For each path we obtain eight eval-
uations of the Rayleigh-wave dispersion curves by considering
four components of the correlation tensor (ZZ, RR, RZ and
ZR) and both the positive and the negative part of the noise
correlation function. Similarly, we obtain two estimates of the
Love-wave dispersion curves from positive and negative parts
of TT correlations.

We reject waveforms 1) with signal-to-noise ratio (ratio be-
tween Rayleigh wave’s amplitude and noise variance after it)
lower than seven; 2) with group velocities measured on the
positive and negative correlation time differing by more than
5 percent; and 3) with paths shorter than two wavelengths at
the selected period for the group velocity map. This results in
about 3,500 paths over the initial 11,000 inter-stations paths
at 16 s (Fig. 2). We then apply a tomographic inversion fol-
lowing Barmin et al. (2001) to this data set to obtain group
velocity maps on 100 × 100 = 10,000 cells of 25 × 25 km
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Figure 3 Rayleigh (a) and Love (b) wave group velocity maps at 16 s period constructed from 3,500 and 4,400 inter-station cross-correlations,
respectively. Black thick line delimits the area where there are more than 10 paths per 25 × 25 km cell.

across Europe (Fig. 3). Several geological features can be seen
on those maps. Low velocity anomalies are associated with
sedimentary basins, such as the Po basin (Northern Italy),
the North Sea basin and the Pannonian basin (Slovakia and
Hungary). Both Rayleigh and Love waves exhibit smaller val-
ues below the molassic sediments (Southern Germany and
Austria) than in the surrounding area. Close to the French-
Italian border, one can notice a high-velocity anomaly corre-
sponding to the Ivrea body, an intracrustal high- velocity and
high-density zone within the Adriatic plate. The final reso-
lution is good enough to see the contrast in Rayleigh wave
velocity between the sedimentary (north-west) and the moun-
tainous (south) part of Switzerland.

It is not possible to compare directly these group-velocity
maps with maps obtained by active methods: practically, be-
low 20 s of period, attenuation as well as scattering in the
medium are too strong, preventing accurate measurement of
surface-wave velocity from earthquakes or any active source.
At these periods, the number of usable paths is thus too low
to build any group-velocity map.

It is however possible to compare dispersion curves mea-
sured from passive and active methods in some other cases.
Shapiro and Campillo (2004) measured dispersion curves us-
ing noise cross-correlation computed between pairs of sta-
tions separated by distances ranging from one hundreds to
two thousand kilometres. At periods below 60 s, the resulting
dispersion curves are in good agreement with those predicted
by global group-velocity maps from Ritzwoller et al. (2002). In
Southern California, Shapiro et al. (2005) compared records of

an earthquakes which occurred close to a station and recorded
at two other stations, with noise cross-correlation signal com-
puted on the same path. The measured arrival time was iden-
tical at the period ranging from 5 to 20 s. These results shows
the robustness of measurements performed using noise cross-
correlations.

The Alpine region has intensively been studied using con-
trolled source and earthquake tomography. These studies gave
precise insight about the crustal and upper mantle structure
(Marchant and Stampfli 1996; Waldhauser et al. 1998, 2002;
Bleibinhaus and Gebrande 2005 and references therein). How-
ever, using seismic noise instead has several advantages. The
final resolution depends mostly on the density of stations and
is not limited by the available sources. This makes it possi-
ble to obtain high-resolution group velocity maps that cover
large regions, whereas controlled sources can only be used
for small areas. Surface wave tomography using earthquakes
records only provides group velocity maps at periods above
20 s, since all the high- frequency information is lost due to
attenuation in the medium.

3 D S - WAV E T O M O G R A P H Y O F T H E P I T O N
D E L A F O U R N A I S E V O L C A N O

The same seismic noise cross-correlation technique can be ap-
plied to study more complex structures. In this section we
present the 3D velocity model of a volcano obtained using
only noise records.
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Eighteen months (July 1999 to December 2000) of continu-
ous seismic noise recorded at 21 vertical short period stations
were collected by the Observatoire Volcanologique du Piton
de la Fournaise (Fig. 4a). An example of a noise record at one
of the stations (ANR) is shown in Fig. 4b. All noise records
are first band passed between 1 to 5 s and their spectral am-
plitudes whitened in order to avoid strong dominant spectral
peaks in the background noise.

For each available station pair, the one-bit noise correlation
function is computed day per day. Some of the noise corre-
lation functions are rejected upon a signal-to-noise ratio cri-
terion (i.e. if the energy of the Rayleigh arrival is lower than
1.5 times the energy of the noise). The remaining traces are
stacked over 18 months. For each path, group velocity dis-
persion curves are estimated using a frequency-time analysis
(Levshin et al. 1989; Ritzwoller and Levshin 1998). We man-
ually select dispersion curves according to group velocity lim-
its and for station-to-station distances longer than one wave-
length. We finally obtain 75 reliable dispersion curves from
which group velocities are extracted for periods equal to 2,
2.5, 3, 3.5, 4 and 4.5 s.

The 2D Rayleigh wave group velocity maps are obtained
from tomographic inversion of the arrival-time measurements
at each period using the algorithm described by Barmin
et al. (2001). Our 2D models involve 22 × 28 = 616 1 ×
1 km cells. Because of the sparse ray coverage and the low res-
olution of the data set, we choose to apply a strong smoothing
to the tomographic inversion which results in a ∼4-km spatial
resolution. The inversion results are thus robust and show a
moderate variance reduction varying from 38 to 18% with
increasing periods (from 2 to 4.5 s).

Dispersion curves are then extracted from the Rayleigh-
wave group-velocity maps for every model cell. We fit these
curves by polynomial functions in a least-squares sense and
invert them using a Monte-Carlo algorithm (Shapiro et al.

1997), the synthetic dispersion curve being calculated using a
method due to Herrmann (1987). We thus obtain a S-wave
velocity-versus-depth profile for each cell. We present six hor-
izontal slices as well as a 3D view of the 3D smoothed model
in Figure 5. The results clearly show the presence of a high-
velocity anomaly which moves westward with depth (+1.3
to −1.1 km above sea level). This structure is surrounded
by a low-velocity ring interpreted as effusive products asso-
ciated with the construction of the Piton de la Fournaise vol-
cano on the flank of the older Piton des Neiges volcano. This
high-velocity anomaly has also been detected by a previous
earthquake and active P-wave tomography on the Piton de la
Fournaise volcano (Lankar 1997). Recent works also imaged

Figure 4 a. Map of the Piton de la Fournaise volcano. Seismic stations
are represented as inverted triangles. The gray zone indicates the limits
of the rift zone. The thin dashed rectangle corresponds to the limits of
the presented tomographic images. Geographic coordinates are Gauss-
Laborde kilometric coordinates (Transverse Mercator). Contour lines
are spaced every 100 m. b. Two hours of ambient seismic noise at
station ANR. c. Causal and acausal reconstructed Rayleigh waves
(positive and negative times, dominant period 4 s) between station
RMR (not shown on the map) and the rest of the network. The trace
envelopes are represented as thin gray curves.
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Figure 5 3D S-wave velocity model. We
show 6 horizontal slices extracted from the
3D model at different depths. Average S-
wave velocity is shown in white boxes on
the bottom of corresponding slices. Black
dashed line at depth −0.5 km shows the lim-
its of the rift zone. We also plot a 3D view
of the model. The 3D blue patch delimits
the iso-velocity perturbation surface corre-
sponding to a 2.5% velocity perturbation.
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the presence of a high-velocity chimney on different volca-
noes (Laigle et al. 2000; Tanaka et al. 2002; Zollo et al.

2002; Sherburn et al. 2006; Patan et al. 2006). We interpret
this anomaly as solidified intrusive magma bodies. The high-
velocity anomaly is also well correlated with the rift zone at sea
level (z = −0.5 km). Imaging these intrusive bodies is of par-
ticular interest because the magma paths are usually believed
to follow their geometry (Laigle et al. 2000; Battaglia et al.

2005). Furthermore, other studies showed that a few months
of seismic noise data will yield similar three-dimensional re-
sults to that obtained from 18 months’ data (Brenguier et al.

2008). We also achieved a preliminary study on the temporal
variations of the reconstructed Green’s functions showing that
we could detect relative velocity variations of less than 0.1%
with a temporal resolution of one day.

P - WAV E S E X T R A C T I O N F R O M S E I S M I C
N O I S E C R O S S - C O R R E L AT I O N

A main issue in the convergence of the correlation process to
the transfer function is the influence of variations in the tempo-
ral and spatial distribution of the noise sources. From the tem-
poral point of view, the noise spectrum defines the frequency
bandwidth over which the impulse response can be retrieved.
When receivers are widely separated, the coherent propagat-
ing noise must have sufficient amplitude to be recorded on
both receivers despite geometrical spreading and attenuation.
This explains why the slowly-attenuated Rayleigh waves have
dominated the impulse response obtained so far from correla-
tions of seismic noise.

In this section, we present results from the correlation func-
tion of seismic noise recordings among pairs of stations in
the dense Parkfield network, California. When performed
on many station pairs at short ranges, the noise correlation
function demonstrates the presence of both a P-wave and a
Rayleigh wave in the noise correlation function.

We processed data recorded on the dense temporary seis-
mic network installed in the Parkfield area between July 2001
and October 2002. One month of seismic noise recordings
were cross-correlated between each pair of 30 broadband
3-component seismic stations located in an 11-km square
(Fig. 6, Thurber et al. 2004). We used only the vertical compo-
nent. This network has extensively been used to monitor and
image the San Andreas Fault using both man-made explosions
and earthquakes as part of the San Andreas Fault Observatory
at Depth (SAFOD) project. Inversion results have confirmed
the spatial heterogeneity of P-wave velocity across the Fault

Figure 6 Topographic map of the Parkfield area (an 11-km large
square) showing stations (triangles) and SAF (blue).

up to 6 km in depth (Ben-Zion and Malin 1991; Catchings
et al. 2002; Hole et al. 2006).

At first, frequency-incoherent beamforming is performed
using the N = 30 stations of the network to determine the
average velocity c and direction θ of the seismic noise (Fig. 7).
Beamforming is performed in two frequency bands of interest
[0.2–0.5 Hz] and [0.6–1.3 Hz], on data segments of one day
of seismic noise,which were recorded in February 2002, as:

B(θ, c) = 1
δω

ωc+δω/2∫
ωc−δω/2

N∑
i=1

Ŝi (ω) exp

(
i
ω

c
(xi sin θ + yi cos θ )

)
dω

where ωc is the central noise frequency and δω the frequency
bandwidth, Ŝi (ω) is the complex Fourier component at fre-
quency ω of the noise signal Si(t) recorded on the ith seismic
station (i ∈ [1, N]), and (xi, yi) are the longitude/latitude co-
ordinates of station i. Working with a dense seismic network
having a small coverage area allows determination of an aver-
age apparent incoming velocity for this zone using plane wave
beamforming. In both of the frequency bands, the noise field
clearly originates from the Pacific Ocean with an incident di-
rection θ0 = 55◦ on the Parkfield network. On the other hand,
the beamformer in the [0.2–0.5 Hz] band exhibits an appar-
ent velocity of 2.8 km/s compatible with a Rayleigh wave
(Fig. 7a), while the beamformer in the [0.6–1.3 Hz] band
shows an apparent velocity of 5 km/s (Fig. 7b).

Since Fig. 7 reveals a strong directivity in the seismic noise,
only station pairs aligned with the noise main direction θ0 are
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Figure 7 Angular-speed distribution of pre-processed incoming noise on the Parkfield network averaged over one month. Plane wave beam-
forming is summed incoherently over 100 frequencies from (a) 0.2 to 0.5 Hz and (b) 0.6 to 1.3 Hz. The x-axis corresponds to noise directivity
θ , north is 0◦.

chosen to compute the point-to-point noise correlation func-
tion. Restricting the cross-correlations to these pairs ensures
that 1) the travel time of the main peak of the noise correlation
function is not biased and corresponds to the actual travel time
of the Green’s function between the stations (Snieder 2004;
Roux et al. 2005b) and 2) the signal-to-noise ratio of the noise
correlation function is maximized. Practically speaking, 145
station pairs are selected in the Parkfield network whose angles
θ ij are included in a directivity angle δθ = |θi j − θ0| ≤

√
c

Ri j ωc

dependent on the distance Rij between stations and the fre-
quencies characteristics of the seismic noise field (Roux and
Kuperman 2004).

The noise correlation function is computed for each selected
station pair as in equation 3 of Section 2, and averaged over
30 days to further increase the signal-to-noise ratio. Figure
8a is a display of the noise correlation functions obtained for
the 145 selected pairs sorted by ascending offset Rij. A prop-

agating wavefront clearly appears at high frequency (Fig. 8b)
which corresponds to a ∼5 km/s velocity wave. A polarization
study between the Z-R and Z-Z components of the correlation
tensor confirmed the P-wave nature of this wavefront (Roux
et al. 2005a).

Going back to Fig. 7(b), we note that the apparent velocity
of the P-wave corresponds to the P-velocity at the turning
point. Recent inversions of the P-wave velocity profile reveal
a strong velocity gradient at the surface, the 5 km/s speed being
reached at no more than 1.5 km in depth on the west side of the
San Andreas fault. This confirms that the noise sources that
excite P-waves are local and cannot be confused with deep
incident waves that would hit the seismic array with a much
higher apparent velocity. One hypothesis is that P-waves are
locally generated by conversion of incident Rayleigh waves
coming from the Pacific by local heterogeneities at the Earth’s
surface or subsurface.
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Figure 8 Range-time representation of the Z-Z component of the
noise correlation tensor averaged over one month in two frequency
bands (a) [0.1–1.3 Hz], and (b) [0.6–1.3 Hz]. Each plot has been nor-
malized by its own maximum.

S M A L L S C A L E G E O P H Y S I C S U S I N G
S U R FA C E WAV E S E X T R A C T E D F R O M
N O I S E C R O S S - C O R R E L AT I O N

In this section, we achieve an experimental demonstration of
the correlation process of controlled noise sources at the me-
tre scale using a linear array of accelerometers. It is known
that the cross-correlation of seismic noise between two re-
ceivers converges towards the Green’s function when noise is
equidistributed in azimuth. The same result can be obtained
with directional noise if noise sources are located in the end-
fire lobes centered along the array line direction (Roux and
Kuperman 2004). When noise is not isotropic and noise
sources are not adequately located with respect to the receivers
array, ‘controlled’ noise sources can be used to produce appro-
priate wavefield satisfying the end-fire lobe criterion. This is
particularly useful at small scales and high frequencies where
local sources strongly contribute to the noise wavefield.

A 14-metre long line of 8 evenly-spaced vertical accelerom-
eters has been used to record human steps. We walked in
the alignment of the accelerometers line, 5 times one minutes

on each side, from 0 to about 30 metres away from the ac-
celerometer array. The experimental setup was designed to be
versatile: 1) the array configuration may include up to 16 one-
component seismic stations; 2) these seismic sensors could be
accelerometers or geophones depending on the expected fre-
quency bandwidth; 3) the array length is adjustable to the
surface wave wavelength.

The main advantage of this system is to be easy and fast to
setup. Our ambition was to achieve a complete deployment,
acquisition and processing in approximately 30 minutes. The
system design makes it very convenient for local and near sur-
face measurements.

The energy spectrum of the recorded steps spreads up to
150 Hz. Given the frequency response of the accelerometers
and the spatial extension of the array, a frequency interval
ranging from 10 to 100 Hz was selected for the analysis. Since
the frequency spectrum of the steps is not flat in this frequency
interval, and as correlating is mathematically equivalent to a
spectrum product, only the most energizing frequencies will
emerge in the correlation signal. To enlarge the effective fre-
quency bandwidth, the spectrum of the records is equalized in
the selected frequency interval [10–100 Hz] before the corre-
lation process.

To check the robustness of the correlation process, five one-
minute long records were separately correlated for each ac-
celerometer pair. The five time-domain correlations superim-
pose in phase, leading to the conclusion that correlation is ro-
bust and does not depend on the way we walked. As these cor-
relation signals superimpose, they are stacked to increase the
signal-to-noise ratio. The advantage of the correlation process
is then to perform an ensemble average over the ‘controlled’
noise sources without the need of synchronization. The super-
position of the correlations of one minute long signals is thus
just a verification of the repeatability of the steps. Stacking
five correlations of one minute long records is equivalent to
correlating directly a 5-minute long signal.

To obtain a seismic section from the correlation process,
signals are cross-correlated by the accelerometers located at
the extremity of the line array. Taking one or the other of
the accelerometers as the reference signal does not modify the
seismic section. This shows that seismic propagation from left
to right is identical to propagation from right to left on the
14-m long seismic array. The medium can then be assumed
1D in the frequency bandwidth of the recordings. The 1D
argument can be pushed even further. Two receiver pairs sep-
arated by the same range are stacked since propagation does
not depend on the pair location but only on the offset between
receivers.
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Figure 9 Seismic section obtained from the correlation process after
all averaging operations. The signal-to-noise ratio is above 30 dB for
each trace. Both phase dispersion and attenuation are observed. The
seismic propagation reveals the presence of two surface waves with
group velocity of about 90 and 120 m/s.

Figure 9 shows the seismic section obtained after the com-
plete spatial and temporal stacking. After a 10-minutes total
recording, signal-to-noise ratio is above 30 dB. Both phase
dispersion and attenuation during propagation is retrieved.
The final seismic section clearly reveals the presence of two
surface waves, with mean group velocities of about 90 and
120 m/s. Those low group velocities are good indications of
two Rayleigh modes.

We wish to insist on the fact that this section was obtained
from 10 minutes of unsynchronized human steps only, which
makes it almost a passive method. To obtain the same re-
sult with usual active seismic techniques, much more time
would have been needed to synchronize numerous sledgeham-
mer blows. The ‘passive’ method presented here is thus 1) easy
to implement, as there is a large flexibility in the array config-
uration, 2) fast, as it takes only about 30 minutes to complete
the array deployment and the recording, and 3) simple, as
there is no synchronization task and processing is performed
in real time.

A frequency-wavenumber (F-K) transform was applied to
the seismic section in Fig. 9 to identify each of the surface
waves (Fig. 10). As the accelerometers are evenly spaced by a
distance d = 2 m, the largest wavenumber before aliasing is
2π/d = π . In Fig. 10, this value of k corresponds to the green
line. Higher k’s are wrapped, and appear as low wavenumbers.
In this simple case, the wavenumber spectrum can be extended
by unwrapping the k axis.

Figure 10 Frequency wavenumber (F-K) transform of the seismic sec-
tion obtained in Fig. 9. The largest measurable wavenumber according
to the Shannon criterion is 2π /d with d = 2 m (green line). The aliasing
in the F-K diagram is resolved by unwrapping the k axis. The shape
of the two modes on the F-K diagram reveals dispersive modes.

From the F-K diagram in Fig. 10, modes are separated and
their phase velocity dispersion curves are extracted. Those
surface-wave dispersion curves are the starting point for a sur-
face wave inversion to retrieve the local velocity versus depth
profile of the medium.

PA S S I V E C O R R E L AT I O N I M A G I N G O F A
B U R I E D S C AT T E R E R

Up till now, most of geophysical applications of passive imag-
ing with ambient-noise cross-correlation have been used to re-
construct direct arrivals of Rayleigh or P-waves. Reconstruct-
ing other features of the Green’s function, like the reflections
following direct waves, is harder: the reflections are weaker
and the propagation is fully 3D. Nevertheless, passively imag-
ing a scatterer would form a major application to prospecting
and certainly deserves attention. In order to test the feasibil-
ity of passively imaging a buried scatterer, we set a controlled
ultrasonic experiment in the laboratory. We believe the prin-
ciples presented here also apply to ambient seismic noise.

To mimic micro-seismic vibrations, we use a highly rever-
berant body excited by a series of sources (see Fig. 11). A
12 mm diameter cylindrical hole was drilled through an alu-
minium block of dimensions 125 mm × 125 mm × 90 mm.
The hole is 25 mm beneath the surface. To excite elastic waves,
we employ a laser mounted on a step motor. For a complete
description of the experimental set-up, please refer to Larose
et al. (2006b). The laser emits mainly shear waves (Mason
and Thurston 1988) (see directivity in Fig. 11). The resulting
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Figure 11 Set-up of the ultrasonic experiment. The source scans the
surface with 1 mm steps along a line of 60 mm. The directivity (Mason
and Thurston 1988) of one laser shot is shown for shear (transverse
T) waves, and weaker compressional (longitudinal L) waves.

wave field is recorded by two pin transducers located at �r1

and �r2. The laser triggers the waveform acquisition. For each
position of the source �r i

s and receiver k, the record is noted
Sik(t) = G(t, �rk, �r i

s ) ⊗ Rk(t) where G is the elastic Green’s func-
tion, ⊗ is convolution and Rk(t) is the transfer function of the
receiver k. Each record is filtered in the [0.05–0.9 MHz] fre-
quency band, where the absorption time of the block is about
30 ms. Diffuse field decay is therefore slow enough to permit
record lengths greater than 100 ms, which represents thou-
sands of reverberations within the cavity. After each acquisi-
tion, the laser is moved to another position. 1 mm steps are
used to mimic a linear array of 60 points. By reciprocity, the
sources and receivers can be interchanged. Our experimental
set-up is therefore analogous to a conventional seismic exper-
iment where a linear array of 60 geophones would sense the
seismic diffuse wavefield generated by two distant sources.
The Green’s function between any couple of points (�r i

s , �r j
s )

of the array is recovered by processing the following time-
correlation:

Ck
i j (τ ) =

∫
Sik(t) Sjk(t + τ ) dt

= G(t, �rk, �r i
s ) × G

(
t, �rk, �r j

s

)
⊗ Rk(t) ⊗ Rk(−t)

To remove the receiver functions Rk, we deconvolve
the cross-correlations by the averaged auto-correlations
〈Ck

ii(τ )〉i ≈ Rk(t) ⊗ Rk(− t). This procedure has the additional
virtue of removing contaminations G(t, �rk, �rk) or ghosts, which
Derode et al. (2003b), Weaver and Lobkis (2006) related to
the environment of the receivers R. Then these correlations
are averaged over the available distant sources �rk=1,2 to obtain
Cij(τ ). As noted by several authors this correlation is essen-
tially the Green’s function G(τ, �r i

s , �r j
s ) and therefore should

contain the deterministic signature of the isolated scatterer.
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Figure 12 Time-distance wavefield (linear scale, arbitrary unit). Each
autocorrelation Cii(τ ) is plotted for different position i along the
X-axis, and time τ . Position 0 marks the center of the array; (a-e)
are different reflections (see the text).

In Fig. 12 we display the time-distance wavefield ob-
tained for all the available autocorrelations Cii(τ ). This auto-
correlation is the field sensed in i if i were both source and
receiver. Position 0 marks the centre of the array. The hyper-
bolic feature is the signature of the buried scatterer: the wave
labeled (a) is the wave reflected by the top of the cylindrical
hole placed at z = 25 mm and x = 4 mm. The arrival times
along the array correspond to a shear (transverse) wave (vT =
3.1 mm/μs). (c) is a compressional-to-Rayleigh reflected by
the lateral edge of the cavity, and (d) is a Rayleigh-to-Rayleigh
reflected by the same edge. The shear wave directivity of the
laser generation is clearly visible in the null at (b). Because lon-
gitudinal wave generation is much weaker than that of shear
waves (Mason and Thurston 1988), its reflection (e) is hardly
visible.

A noteworthy point is that the passive reconstruction of any
G(τ, �r i

s , �r i
s ) remains imperfect. The averaging used to construct

the correlation is finite, leaving visible fluctuations in Fig. 12.
To improve the quality of this image, one could increase the
record length, or employ additional receivers �rk (Weaver and
Lobkis 2005b). Alternatively, we could perform beamforming
in order to take advantage of all the Ci�=j cross-correlations.
Beamforming is a standard procedure to obtain medical or
seismic (migrated) image. The new point is that here the im-
pulse responses Ci�=j are obtained passively.

The image we now process is a 2D image of the reflectivity
of the medium. The first step is to apply beamforming to the
forward propagation to focus the wave on any point (x, y)
in the medium. This is achieved by summing the time-delayed
impulse responses Cij(τ ). The same beamforming technique
is then applied to the wave back-propagation (from the focal
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Figure 13 Reflectivity (linear scale, arbitrary unit) of the aluminium
block as probed by bulk shear waves. The array of 60 laser sources
is at z = 0. Black indicates a high reflectivity. The top of the hole is
clearly visible. The actual position of the cylinder is displayed in the
dotted line.

point to the receivers), the reflectivity φ of the medium is then:

φ(x, y) =
[∑

i j

Ci j (τi + τ j )

]2

where τi = 1
vT

√
(x − xi )2 + z2 and vT is the shear wave veloc-

ity. The 2D reflectivity map of the medium is displayed in Fig.
13. The top of the reflector is clearly visible. Because of the
finite size of the linear array, the sides and bottom of the cylin-
drical hole cannot be imaged. The shear wave directivity of
the laser spot induces a preferential reflection for oblique inci-
dences; additionally, the images in Figs 12 and 13 show a null
at apex. Speckle fluctuations are noticeable making these fig-
ures a little more noisy than the ones obtained with Rayleigh
waves. This is expected since the field at the free surface is
dominated by Rayleigh waves.

To conclude this part, we have shown here the feasibility
of imaging small details of the medium (like a buried isolated
scatterer) by means of the passive time-correlation technique.
By reciprocity this experimental set-up is analogous to an array
of seismic geophones sensing the diffuse wavefield originating
from distant sources. We therefore believe this technique could
be transposed and applied to geophysical prospecting, as well
as to medical imaging. The use of fully developed diffuse field
in a closed cavity is not a rigorous requirement for this imaging
technique. It could in principle be replaced by any other diffuse
field, like diffuse waves in an open medium, or ambient noise.

C O N C L U S I O N

In this paper, we theoretically reviewed how and under which
assumptions cross-correlation of noise recorded at two sen-
sors yields the Green’s function between them. This property
is based on equipartition of the wavefield that can be provided

either by an appropriate sources distribution or by wave scat-
tering in the medium. Any diffuse field, like diffuse waves in
an open medium, or ambient noise may be used to reconstruct
the Green’s function between two points.

We experimentally showed the feasibility of passive imag-
ing using noise cross-correlation. This technique bypasses the
usual shortcomings encountered in active imaging, especially
concerning the requirements about sources (strength, location,
occurrence, etc). Application to ambient seismic noise is par-
ticularly promising for improving images of the Earth as the
number of usable ray paths for tomography is directly linked
to the number of recording stations. In more complex struc-
tures like volcanoes, this technique was validated as the S-wave
velocity model obtained presents the same anomalies as in ac-
tive measurements. Nevertheless, in a context where standard
active methods are hampered by irregular sources distribution,
the possibility of using noise records is particularly interesting.
These results demonstrate the possibility to achieve surface-
wave tomography from noise cross-correlation. Results from
the Parkfield area show that P-waves are present in the corre-
lation on small-scale seismic networks, and could be used for
body wave tomography.

At smaller scales, cross-correlation imaging techniques
brings a new way to achieve seismic experiments that is
faster and easier to implement than usual active methods. The
recorded wavefield can be produced by active sources ade-
quately located or using scattering to produce a diffuse wave-
field. We showed that late arrivals, like reflections produced by
buried objects, can be retrieved. This passive imaging of scat-
terers would be a major application of noise cross-correlation
in geophysical prospecting. This technique is also promising
for geophysical surveys, as seismic noise is a reproducible, sta-
tionary in time, natural source, that could also be used to give
new insights into 4D seismic exploration.
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Sànchez-Sesma F.J. 1997. Surface-wave propagation across the
Mexican Volcanic Belt and the origin of the long-period seismic-
wave amplification in the Valley of Mexico. Geophysical Journal
International 128, 151–166.

Shapiro N.M., Campillo M., Stehly L. and Ritzwoller M.H. march
2005. High-resolution surface wave tomography from ambient seis-
mic noise. Science 307, 1615–1618.

Sherburn S., White R.S. and Chadwick M. 2006. Three-dimensional
tomographic imaging of the Taranaki volcanoes, New Zealand.
Geophysical Journal International 166, 957–969.

Snieder R. 2004. Extracting the Green’s function from the correlation
of coda waves: a derivation based on stationary phase. Physical
Review E 69, 4 Pt 2, 046610.

Stehly L., Campillo M. and Shapiro N. 2006. A study of the seismic
noise from its long range correlation properties. Journal of Geo-
physical Research 111, B10306.

Stehly L., Campillo M. and Shapiro N.M. 2007. Travel time mea-
surements from noise correlation: stability and detection of instru-
mental time-shifts. Geophysical Journal International 171, 223–
230.

Tanaka S., Hamaguchi H., Nishimura T., Yamawaki T., Ueki S.,
Nakamishi H., Tsutsui T., Miyamachi H., Matsuwo N., Oikawa
J., Ohminato T., Miyaoka K., Onizawa S., Mori T. and Aizawa
2002. Three-dimensional P-wave velocity structure of Iwate vol-
cano, Japan from active seismic survey. Geophysical Research Let-
ters 29, 59–62.

Thurber C., Roecker S., Zhang H., Baher S., Ellsworth W. and
Tanimoto T. 2004. Fine-scale structure of the San Andreas Fault
Zone and location of the SAFOD target earthquakes (2004).
Geophysical Research Letters 31, L12S02.

van Tiggelen B.A. 2003. Green function retrieval and time reversal in
a disordered world. Physical Review Letter 91, 24, 243904.

Waldhauser F., Kissling E., Ansorge J. and Mueller S. 1998. Three-
dimensional interface modelling with two-dimensional seismic data:
the Alpine crust mantle boundary. Geophysical Journal Interna-
tional 135, 264–278.

Waldhauser F., Lippitsch R., Kissling E. and Ansorge J. 2002. High-
resolution teleseismic tomography of upper-mantle structure using
an a priori three-dimensional crustal model. Geophysical Journal
International 150, 403–414.

Wapenaar K. 2004. Retrieving the elastodynamic Green’s Function of
an arbitrary inhomogeneous medium by cross-correlation. Physical
Review Letter 93, 254301.

Wapenaar K. 2006. Nonreciprocal Green’s function retrieval by cross
correlation. The Journal of the Acoustical Society of America 120,
1, EL7–E13.

Weaver R.L. 2005. Information from seismic noise. Science 307, 5715,
1568–1569.

Weaver R.L. and Lobkis O.I. 2001. Ultrasonics without a source: ther-
mal fluctuation correlations at MHz frequencies. Physical Review
Letter 87, 13, 134301.

Weaver R.L. and Lobkis O.I. 2003. Elastic wave thermal fluctua-
tions, ultrasonic waveforms by correlation of thermal phonons.
The Journal of the Acoustical Society of America 113, 2611–
2621.

Weaver R.L. and Lobkis O.I. 2004. Diffuse fields in open systems and
the emergence of the Green’s function. The Journal of the Acoustical
Society of America 116, 5, 2731–2734.

Weaver R.L. and Lobkis O.I. 2005a. Fluctuations in diffuse field-
field correlations and the emergence of the Green’s function in open
systems. The Journal of the Acoustical Society of America 117,
3432–3439.

Weaver R.L. and Lobkis O.I. 2005b. The mean and variance of diffuse
field correlations in finite bodies. The Journal of the Acoustical
Society of America 118, 3447–3456.

Weaver R.L. and Lobkis O.I. 2006. Diffuse fields in ultrasonics and
seismology. Geophysics 71, SI5–SI9.

Yang Y., Ritzwoller M.H., Levshin A.L. and Shapiro N.M. 2007. Am-
bient noise Rayleigh wave tomography across Europe. Geophysical
Journal International 168, 259–274.

Yao H., van der Hilst R.D. and de Hoop M.V. 2006. Surface-wave
array tomography in SE Tibet from ambiant seismic noise and two-
station analysis – I. Phase velocity maps. Geophysical Journal In-
ternational 166, 732–744.

Zollo A., D’Auria L., Matteis R.D., Herrero A., Virieux J. and Gas-
parini P. 2002. Bayesian estimation of 2-D P-velocity models from
active seismic arrival time data: imaging of the shallow struc-
ture of Mt Vesuvius. Geophysical Journal International 151, 566–
582.

APPENDIX: DETAILED CALCULATION OF THE
CROSS-CORRELATION FUNCTION (EQUATION 4)

We start from the definition of the cross-correlation function
between two points A and B (equation 3) in which we express

C© 2008 European Association of Geoscientists & Engineers, Geophysical Prospecting



Cross correlation of random fields 393

the wavefield u using the Green’s function G:

C(τ, �rA, �rB)

= lim
T→+∞

1
T

∫ T

0
u(t, �rA) u(t + τ, �rB) dt

= lim
T→+∞

1
T

∫ T

0
dt

∫ ∞

0
ds

∫
X
d�rs Ga(s, �rA, �rs) f (t − s, �rs)

×
∫ ∞

0
ds ′

∫
X
d�rs

′ Ga(s ′, �rB, �rs
′) f (t + τ − s ′, �rs

′)

The large T limit can be replaced by an ensemble average,
which gives the mathematical expectation denoted by E. As f

is a white noise, we have:

lim
T→+∞

1
T

∫ T

0
f (t − s, �rs) f (t + τ − s ′, �rs

′) dt

= E[ f (t − s, �rs) f (t + τ − s ′, �rs
′)]

= σ 2 δ(τ + s − s ′) δ(�rs − �rs
′)

where σ is the variance of the white noise. This property sim-
plifies the previous equation, and we obtain:

C(τ, �rA, �rB) = σ 2
∫ ∞

0
ds

∫
X
d�rs Ga(s, �rA, �rs) Ga(s + τ, �rB, �rs)

Using the expression of the Green’s function (equation 2):

C(τ, �rA, �rB) = σ 2
∫ ∞

0
ds

∫
X
d�rs Y(s) Y(s + τ ) e−a s e−a (s+τ )

×
[[

sin s
√−L − a2

√−L − a2

]]
(�rA, �rs)

×
[[

sin (s+τ )
√

−L−a2√
−L−a2

]]
(�rB, �rs)

We use two properties of the integral kernel:

[[P]](x, y) = [[P]](x, y) = [[p]](y, x)

∫
X
[[P1]](x, z) [[P2]](z, y) dz = [[P1 · P2]](x, y)

to obtain a new formula for the cross-correlation function:

C(τ, �rA, �rB) = σ 2
∫ ∞

0
ds Y(s + τ ) e−a (2 s+τ )

×
[[

sin s
√−L − a2

√−L − a2

sin (s + τ )
√−L − a2

√−L − a2

]]
(�rA, �rB)

Using sin α sin β = 1/2 (cos (α − β) − cos (α + β)) and
computing the integral over ds, we obtain equation 4:

C(τ, �rA, �rB) = σ 2 e−a |τ |

4 a

×
[[

(−L)−1

(
cos τ

√
−L − a2 + a

sin |τ |√−L − a2

√−L − a2

) ]]
(�rA, �rB)
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