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W-wave propagation in heterogeneous media : Velocity-stress 
finite-difference method 

Jean Virieux* 

ABSTRACT 

A new finite-difference (FD) method is presented for 
modeling SH-wave propagation in a generally hetero- 
geneous medium. This method uses both velocity and 
stress in a discrete grid. Density and shear modulus are 
similarly discretized, avoiding any spatial smoothing. 
Therefore, boundaries will be correctly modeled under 
an implicit formulation. Standard problems (quarter- 
plane propagation, sedimentary basin propagation) are 
studied to compare this method with other methods. 
Finally a more complex example (a salt dome inside a 
two-layered medium) shows the effect of lateral propa- 
gation on seismograms recorded at the surface. A corner 
wave. always in-phase with the incident wave, and a 
head wave will appear, which will pose severe problems 
of interpretation with the usual vertical migration meth- 
ods. 

INTRODUCTION 

Propagation in heterogeneous media has focused the atten- 
tion of seismologists for the last ten years. Analysis of effects of 
topography and internal interfaces concentrates a wide range of 
analytical and numerical tools. Direct time and space dis- 
cretization leads to finite-difference (Alterman and Karal, 1968; 
Boore, 1972; Alford et al., 1974) and finite-element (Smith, 
1975) methods. Spectral decomposition leads to different meth- 
ods depending upon how the space dependence is handled. 
Transforming to the horizontal wavenumber domain, dis- 
cretizing, and truncating it leads to the Aki-Larner method (Aki 
and Larner, 1970), in which the scattered field is described as a 
linear combination of plane waves having discrete horizontal 
wavenumbers. By a boundary integral equation approach in 
the space domain, a complete representation of the scattered 
field can be obtained along boundaries. Coefficients are deter- 
mined by a least-squares method, after discretizing the bound- 
aries (Sanchez-Sesma and Esquivel, 1979). An alternative to the 
full-wave methods described above are the asymptotic tech- 

niques known generally as ray theory (Cerveny et al., 1977). For 
laterally heterogeneous methods, glorified optics was proposed 
by Hong and Helmberger (1978), who took into account the 
curvature of the wavefront at interfaces of a 2-D medium, while 
Lee and Langston (1983) handled the 3-D case by introducing 
two curvatures called principal curvatures. 

In this paper, I focus attention on wave propagation solved 
by finite-difference (FD) methods. Two formulations can be 
distinguished, as pointed out by Kelly et al. (1976). The homo- 
geneous approach solves the propagation equation in each 
homogeneous medium, and it verifies explicit boundary con- 
ditions between the different media. The heterogeneous formu- 
lation, on the other hand, directly solves the propagation equa- 
tion in a heterogeneous medium where physical properties are 
spatially variable. Therefore, boundary conditions are satisfied 
implicitly. 

In the standard formulation of the second-order partial dif- 
ferential equation, only displacement is calculated at each node 
of the finite-difference grid. In the homogeneous formulation, 
the boundary conditions, which are the continuity of displace- 
ment and the stress at the interface, are solved explicitly. This 
method gives an infinite weight to displacements (that is also 
required by wave-equation discretization) and also an infinite 
weight to stress (that is not implied by wave-equation dis- 
cretization). Different approximations of the derivatives at the 
interfaces lead to different orders of accuracy at the boundaries. 
Kummer and Behle (1982) summarized most of the work done 
since Alterman and Karal(l968). Because this paper deals with 
the heterogeneous formulation, I refer to them for a review of 
the homogeneous approach. 

In the heterogeneous formulation discontinuities are re- 
placed by numerical transition zones in which elastic parameter 
gradients are bounded (Kelly et al., 1976). Another approach by 
Tikhonov and Samarskii (see references in Mitchell, 1969, p. 
23), discussed by Boore (1972), reduces this smoothing to a grid 
size by introducing a new variable, which is equivalent to stress 
(discussed below). 

In this paper, 1 propose to apply an FD scheme that includes 
both velocity and stress in the equations of motion. This 
method was used by Madariaga (1976) and Virieux and Ma- 
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FIG. 1. Discretization of the medium on a staggered grid. Black 
symbols are for velocities and lightness at time kdt. White 
symbols are for stresses and shear modulus at time [k + l/2]&. 

dariaga (1982) to solve crack problems. It was reviewed in Aki 
and Richards (1980, Chap. 14). I formulate the problem: equa- 
tions, initial and boundary conditions, and its numerical formu- 
lation. The quarter-plane problem will be studied to demon- 
strate the validity of the numerical method by comparison with 
analytical solutions, although its validity already was es- 
tablished by previous work on crack problems. The somewhat 
canonical problem of sedimentary basin excitation by an inci- 
dent vertical plane wave will be studied for comparison with 
other techniques; this study appears to be a difficult configura- 
tion for FD modeling. Finally, the FD method is applied to 
study a salt dome in a two-layered medium. The interpretation 
of seismograms at the surface will be discussed, emphasizing the 
importance of lateral wave propagation. I conclude with an 
analysis of the possibilities of this method and with the impor- 
tance of image representation for the interpretation. 

PROBLEM FORMULATION 

Equations 

I begin by presenting two-dimensional SH-wave propagation 
in a heterogeneous medium. Velocity and density are functions 

rigid edgas , + L l 

A 

FIG. 2. Quarter-plane geometry: Image theory interpretation 
for free edges (left) and for rigid edges (right). 

of .Y and 2. The horizontal displacement I’ along the y-axis 
satisfies the scalar wave equation: 

where p(x, z) is the density and u(x. z) the shear modulus at a 
point M(x, z) of the medium. Instead of using this second-order 
hyperbolic equation, we go back to the original elastodynamic 
equations, reintroducing shear stresses oXY and cr,). , i.e., 

PC% 4 $ = ; (o,J + ; (OLJ (equation of motion) 

and (Hooke’s laws) (2) 

0 .,=dx,z);. 

This system is transformed into a first-order hyperbolic system 
which states 

(3) 

and 

where P(x, z) is the inverse of density: the lightness or the 
buoyancy. Dots note a time derivative. System (3) propagates 
explicitly, velocity and stress inside the medium. 

I compare this formulation with the method of Tikhonov 
and Samarskii (see Mitchell, 1969, p. 23). The introduction of 
auxiliary variables in their method requires averaging the shear 
modulus over a grid mesh, so that the discretization of density 
and shear modulus is quite different. My equations, on the 
other hand, maintain a certain symmetry between velocity and 
stress so that density (or lightness) and shear modulus are 
concentrated at the nodes. as usual in an FD formulation. 

Initial conditions 

The medium is supposed to be in equilibrium at time t = 0, 
i.e., stress and velocity are set to zero everywhere in the 
medium. Because of these initial conditions, propagating stress 
and velocity is also equivalent to propagating “time-integrated 
stress” and displacement. 

Boundary conditions 

Internal interfaces are not treated by explicit boundary con- 
ditions because they are represented naturally by changes of the 
elastic parameters and density. Only five explicit boundary 
conditions are required: source excitation, and the four edges of 
the finite-sized vertical grid. Depending upon the problem, 
different boundary conditions can be used on the edges: 
approximate-radiation conditions (for simulating an infinite 
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medium), stress-free conditions (also known as Neumann con- 
dition or free-surface), or zero-velocity conditions equivalent to 
zero-displacement conditions (Dirichlet condition or rigid- 
surface). The radiation conditions are equivalent to the con- 
dition B-l of Clayton and Engquist (1980), and correspond to 
plane-wave radiation conditions. 

Source excitation is solved by using the approach of Alter- 
man and Karal(l968). For any kind of source, the excitation is 
applied to velocity. Incident velocity and residual velocity are 
both considered along a line around the source. The known 
incident velocity is applied outwardly from this line, while the 
source zone inside this line is transparent for the residual 
velocity coming from reflection, refraction, and diffraction of 
the incident velocity field. In our illustrative examples, two 
basic sources will be presented: the impulsive point source, and 
the impinging plane wave. 

For an implusive point source, the incident velocity is ob- 
tained by convolving the infinite-medium Green’s function with 
the source excitation as proposed by Alford et al. (1974). The 
convolution is obtained in the time domain instead of the 
frequency domain. The impulsive excitation will be 

f(t) = (t - t,)e-“(‘-‘“)Z, 

where a controls the wavelength content of the excitation. a is 
1 000 and t, is 0.2 s in the computations. 

For plane-wave excitation, the incident velocity is given by a 
Ricker wavelet as 

II 
f(t) = - (a - ))O, 

2 

where a = n(t - t,)‘/ti . In these computations, t, is 20 s and t, 
is 18.3 s. 

NUMERICAL SIMULATION 

Derivatives are discretized using centered finite-differences. 
Discretization of equations leads to a unique staggered grid, as 
shown in Figure 1. The numerical scheme, equivalent to system 
(3) is as follows: 

and 

where k is the index for time discretization, i for x-axis dis- 
cretization, and j for z-axis discretization. dt is the grid step in 
time dx and dz are the grid steps for the x-axis and for the 
z-axis, respectively, which are equal in these applications. 
Numerical velocity V’ at time [k + 1/2]dt, and numerical stress 

(Z, T) = (o,Y, ozy) at time kdt are computed explicitly from 
velocity at time [k - 1/2]dt and stress at time kdt. L represents 
the lightness inside the medium and M the shear modulus. I 
emphasize the fact that each component of stress has its corre- 
sponding value of M, allowing a possible extension of this 
method to anisotropic media. 

QUARTER-PLANE PROBLEM 

The quarter-plane problem is a particular case of the infinite- 
wedge problem where the angle 4 between the two edges is 90 
degrees. As underlined by Wait (1959, p. 13), the solution can be 
found by image theory. A source S inside the medium induces 
three virtual image sources, as shown in Figure 2. Two images 
S, and S, are symmetric with respect to the real source along 
the x-axis and z-axis edges. The third image S, is symmetric of 
the real source with respect to the corner. For a point source 
S(x,, zs) with a time functionf(t,), one can write the solution at 
the point M(x, z) as 

C(x, z, t ; x, , z, , ts) * f(t,) 

F C(x, z, t; -x, > zs 3 t,) * f(h) 

incident wave, 

edge reflection, 

FIG. 3. Block diagram representation of quarter-plane problem for free edges at different times. 
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Table 1. Quarter-plane parameters. 

Physical parameters 

Velocity Source 

3 000 m/s t, = 0.20 s 
a = 1 000 (half-wavelength = 300 m) 

Source position Observer position 

615 x 615 mz 255 x 615 m* 

Numerical parameters 

dx = 30 m, dt = 1.25E-3 s, grid of 60 x 60 points 

and 

f G(x, 2, t; x,, -zs, t,)*f@,) edge reflection, 

+ G(x, z, t; -xs, -z, , t,) * f(t,) corner reflection, 

where G(x, z, t; x,, z,, t,) is the Green’s function for the infinite 
medium given as H(t - r/c)/Jw with r* = (x - x,)* 

+ (z - 2,)’ and c the velocity which can be found in Morse and 
Feshbach (1953, p. 842). For free boundary conditions on the 
two edges, S,, S, , and S, are in-phase with S. However, for rigid 
boundary conditions on the two edges, S, and S, are in op- 
posite phase with S, while S, is still in-phase with S. Waves 
emitted by S, represent the constructive interference of waves 
emitted by S, and S,. This .so-called corner wave is always 
in-phase with the incident wave. 

This problem is solved by employing the previously de- 
scribed numerical method. Table 1 gives the physical parame- 
ters of the problem. The usual rule of using at least ten grid 
points for the shortest wavelength of the source is respected for 

this scheme, as it should be for any second-order scheme 
(Alford et al., 1974). The finite size of the grid introduces two 
extra boundaries where radiation conditions are applied. 

Results are depicted in a block diagram representation of the 
finite numerical grid at successive instants of time Figure 3 
concerns free edges. The first picture shows the incident solu- 
tion in an infinite medium with a negative-positive pulse. The 
second picture shows the two in-phase reflections by the 
boundaries of the quarter-plane. Two parasite reflections from 
the absorbing boundaries may be observed, although they are 
weak. The third illustration adds the always in-phase corner 
reflection. Figure 4 concerns rigid edges. The only change from 
Figure 3 is the opposite phase of the reflections against bound- 
aries. 

Seismograms at a given point (Table 1) show more quantita- 
tively the accuracy of the numerical solution by comparison 
with the analytical solution, given above. For free edges, Figure 
5 depicts the three reflected pulses in-phase with the incident 
pulse, coming from the three images of the source. For rigid 
edges, on the other hand, Figure 6 depicts two reflected pulses 
out-of-phase with the incident pulse and one reflected pulse 
in-phase with the incident wave, which is the corner wave. 

As proposed by Smith (1974), eliminating parasite reflections 
would have required solving four times the quarter-plane prob- 
lem with a different set of boundary conditions (Neumann or 
Dirichlet conditions on the absorbing boundaries). 

SEDIMENTARY BASIN AMPLIFICATION 

Among a number of models of heterogeneous media, one has 
emerged as a sort of canonical example, solved by different 
numerical techniques. This model is a soft sedimentary basin 
lying on a half-space proposed by Aki and Larner (1970). The 
interface has the following equation: 

z(x) = D + C/2{ 1 - cos [2x(x -w/2)/w]}, for -w/2 <x < w/2, 

and 

z(x) = D elsewhere, 

where w = 50 km, D = 1 km, and C = 5 km. Sediments have a 
density p, = 2.0 g/cm3 and a velocity u, = 0.7 km/s. The half- 
space has a density p = 3.3 g/cm3 and a velocity u = 3.5 km/s. 

An incident SH plane wave impinges normally from the 

FIG. 4. Block diagram representation of quarter-plane problem for rigid edges at different times. 
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FIG. 5. Seismogram at a given observer (Table 1) for free edges. Note the three in-phase reflections. 
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FIG. 6. Seismogram at a given observer (Table 1) for rigid edges. Note the two opposite phase reflections and the in-phase corner 
reflection. 
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half-space. Its source function is a Ricker wavelet, which is 
defined in a preceding paragraph, with t, = 20 s and t, = 18.3 s. 
In order to model correctly this plane wave, zero-stress con- 
ditions (equivalent to symmetric conditions) are applied to the 
two vertical boundaries. A radiative condition is chosen for 
simulating the half-space. The free surface of the earth ends the 
description of boundary conditions. The incident wave is ap- 
plied just beneath the basin. Because reflections are nearly 
vertical, parasite reflections from the lateral boundaries are 
drastically diminished, enabling us to compute seismograms 
over a long period of time in spite of the very high contrast in 
velocities. 

Six seismograms are depicted in Figure 7, starting from the 
center of the basin with a step of 4 km. Five traces represent 
each station. The first seismogram was obtained by glorified 
optics (GO) (Hong and Helmberger, 1978). The second one is 
the result of finite-element calculation (FE) (see Hong and 
Helmberger, 1978). The third graph results from the Aki-Larner 
method (AL) (Bard and Bouchon, 1980). The fourth seismo- 
gram is an application of principal curvature (PC) (Lee and 
Langston, 1983), and the fifth one is the result of my finite- 
difference method (FD). 

Good overall agreement is obtained, although the FE and 
FD methods are essentially long-period techniques while the 
GO, PC, and AL approaches are high-frequency approxi- 
mations. A remarkable fit is observed between my result and 
the AL trace. FD reflections arrive a little earlier than the AL 
reflections but with the same waveform. This slight shift in time
is due to the spatial discretization choice (dx = 150 m). A better 
agreement would have been observed with a finer grid. 

This comparison between quite different techniques gives 
confidence in the accuracy of the implicit description of internal 
boundaries in FD method. Consequently, I turn attention 
toward a more difficult problem. 

FIG. 7. Seismograms at six different positions over a sedi- 
mentary basin. Five traces are compared, coming from different . . 

SALT DOME: CORNER WAVE AND HEAD WAVE 

Because of their time-space domain resolution, FD methods 
are designed for solving wave propagation in heterogeneous 
media where very abrupt changes occur in the interfaces (a 
fault, for example). Alford et al. (1974) and Kelly et al. (1976) 
studied corner diffractions. I intend to obtain seismic profiles 
over a rather simplified salt dome, and interpret strong reflected 
and diffracted phases. 

The medium is composed of two layers. A dome rising from 
the lower medium intrudes the upper medium. The velocities 
are 2 500 m/s for the top layer and 4 500 m/s for the bottom 
layer. The precise geometry is shown in Figure 8. The distance 
between the horizontal interface and the free surface of the 
Earth is slightly larger than twice the distance between the top 
of the dome and the free surface. Therefore, two different waves 
arrive nearly on the same reflection hyperbola. 

This rather simplified geometry is a combination of a 
quarter-plane problem and a 270 degree wedge problem. The 
first problem implies only reflections, while the second one 
induces diffraction. Tolstoy (1973, chap. 8) decomposed, for any 
angle 4 of the wedge, the scattered field into a reflected part 
explained by image theory, plus a diffracted part emitted by the 
apex of the wedge. The second part vanishes for the quarter- 
plane problem. I use this interpretation in sketching wavefronth 
at different times. 

The source is the impulsive point source of Alford et al. 
(1974) which I provided above. Its main advantage is a pulse of 
rather short time possessing a negative part and then a positive 
part, which is especially suited for identifying wavefronts in 
block diagrams. Three different shooting points on the Earth’s 
surface illuminate the vertical wall of the dome, inducing lateral 
propagation in which I am interested. Radiation conditions are 
applied on the two vertical boundaries and on the lower hori- 
zontal boundary. 

By choosing physical parameters of the lower medium, three 
different conditions can be studied at the interface between the 
two layers: free interface (stresses set to zero), rigid interface 
(velocities set to zero), and real interface (velocity contrast of 
2 500 m/s over 4 500 m/s). Seismic profiles are shown over 8 km 
with 4 s of duration. The left end is chosen as the origin for 
measuring horizontal offsets, 

FIG. 8. Geometry of salt dome taken by finite-difference . . . 
methods. modenng. 
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FIG. 9. Seismic profile for a source above the dome with a horizontal offset of 4 km. 

FIG. 10. Seismic profile for a source with a horizontal offset of 3.2 km. 

FIG. 11. Seismic profile for a source with a horizontal offset of 2.4 km. 
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Presenting the result for this FD simulation or other exam- 
ples of complex wave propagation requires special graphic 
representation methods. I have used three. The first method 
incorporates standard seismic profiles, which are presented in 
Figures 9, 10, and 11. A saturation of the signal (set to l/20) is 
used; this means that the maximum and minimum values are 
divided by 20 before plotting. Weak signals can be visualized in 
this way. The second method is a raster or point representation 
on a 5 12 x 5 I2 screen using a gray table. The advantage is that 
of showing, with equal importance, the positive (white) and 
negative (black) parts of the signal as they depart from the zero 
(gray) level, while the standard representation emphasizes the 
negative part (black) of the signal. The third one is a movie 
(over 1 000 pictures for a 2 s duration) which enables one to 
follow the different wavefronts as they propagate. The impor- 
tance of these representations for interpreting seismic profiles 
must be emphasized. I do not intend to explain in the following 
paragraphs every phase that was observed, but rather, I intend 
to emphasize those that are strong or characteristic of lateral 
propagation. 

4 km source: Symmetric case 

Figure 9 depicts the case where the source is just above the 
dome, with a horizontal offset of 4 km; in this case, the seismic 
profiles are symmetric. Following the incident wave, which has 
a reversed “V” shape, three sets of arrivals can be observed. In 
my interpretation, parasite reflections, which can easily be seen 
on pictures, will not be taken into account. I give a letter to 

8 km PROFILE 

Source 
4 km . 

FREE INTERFACE 

upward fronts which are expected to be recorded at the Earth’s 
surface. 

Free interface.-The first profile is characterized by reflec- 
tions in-phase with the incident wave. I show different phases 
arriving at the Earth’s surface in Figure 12, and I interpret them 
with the help of diagrams of the medium showing wavefronts 
arriving at different times (Figures 13 and 14). 

The first set of arrivals consists of the primary reflection at 
the top of the dome and primary diffractions by the upper 
corners of the dome. In the forward direction with respect to 
the corner, the diffraction, called phase A, is in-phase with the 
incident wave. In the backward direction, the diffraction, called 
phase B, is in opposite phase with the incident wave. This phase 
shifting has been explained by Tolstoy (1973, chap. 8). In Figure 
13, I sketch these different waves. 

The second set of arrivals which contains a first group of 
multiples shows an even more complex pattern. The phase A is 
again reflected by the top of the dome, giving the phase C, 
which is strong just above the dome. Behind this phase, the 
reflection, called phase D, of the incident wave on the horizon- 
tal interface arrives at the Earth’s surface. Masked by this 
phase, the reflection of the phase A, called phase D, is missed, 
except maybe at the edges of the profile. The phase B is also 
reflected by the horizontal interface, giving the phase E with its 
specific black signature. The diffraction of the phase D on the 
upper corners follows immediately. Figure 14 summarizes these 
different phases. 

The third set of arrivals contains mainly the reflection of the 
phase C, which is the double reflection of the phase A on the 

4 km 
SO”Ke 

. 

FIG. 12. Analysis of the free-interface profile is given in terms of the phases A, B, C, D, D’, E, and F. 
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FIG. 13. Schematic interpretation of primary reflected and dif- 
fracted wavefronts. The free surface, in discontinuous line, does 
not reflect these phases in this figure. 

top of the dome, and the reflection of the phase B on the 
horizontal interface, after being reflected by the free surface. 
This concludes our description of the free-interface symmetric 
profile, which will be the frame for explaining the other profiles. 

Rigid interface.-The second profile is characterized by re- 
flections in opposite phase with the incident wave. The inter- 
pretation is analog to the free-interface one, taking into account 
the phase shifting of reflections. Of course, double reflections on 
the interface will again be in-phase with the incident wave. The 
only difference is a rather weak phase B, due to a phase shift. Its 
interpretation is left to a subsequent paragraph. 

Real interface.-The third profile is characterized by weaker 
opposite phase reflections than previous ones. Part of the 
energy is carried away by the refracted wave, producing these 
weaker reflections, which can still be observed. No precise 
interpretation is given here, because the features of interest are 
not developed in this symmetrical case. 

3.2 km source: Intermediate case 

Figure 10 depicts profiles where the source is beginning to 
illuminate one of the two vertical walls of the dome. This figure 
provides a transition to the more asymmetrical case where 
lateral propagation features are well developed. 

2.4 km source: Asymmetrical case 

Figure 11 exhibits profiles where the source illuminates a 
vertical wall of the dome, inducing a lateral propagation that 
must be seen, somehow, at the surface of the Earth. Three sets 
of energy are still observed, after the incident wave. Depending 
upon which side of the dome the observer and the source are 
on, reflected waves will be strongly asymmetrical. 

Free interface.-This profile presents strong lateral propaga- 
tion features. The first set contains phases A and B, with their 
typical signatures. Horizontal offsets are due to the relative 
position of the source and the top of the dome. 

In the second set, phase C is observed again with an increas- 
ing horizontal offset, thereby diminishing drastically the energy 
twice reflected on the top of the dome. Phase D, a reflection of 
the incident wave on the horizontal interface, is observed 
mainly on the side of the dome where the source is located, still 
masking the phase D’. Phase B which belongs to the first set, 

FIG. 14. Schematic interpretation of multireflected and diffrac- 
ted wavefronts. 

slightly perturbates phase D. The constructive interference be- 
tween phase A and phase D gives the corner wave, which 
arrives after phase D, and with a rather steep slope. This corner 
wave, already observed in the quarter-plane problem, is a typi- 
cal feature of lateral propagation and is only observed on the 
illuminated side of the dome. Just behind it, phase E writes its 
specific signature twice, depending on the concerned upper 
corner. Phase F is too weak to be observed. 

Finally, in the third set, the reflection of phase C is outside 
the profile. The first reflection is simply the reflection of phase 
D on the top of the dome. 

Rigid interface.-Two features must be emphasized in this 
profile. 

In the first set, the weakness of phase B is explained this way: 
the source and the nearest difliacting upper corner play op- 
posite roles because they diffract out-of-phase at the other 
corner. For the free interface, roles were added. 

The second set shows that the corner wave is in-phase with 
the incident wave, while phases A and D are out-of-phase. This 
typical feature of the corner wave was already pointed out for 
the quarter-plane problem. 

Real interface.-Similar features are observed, as for the rigid 
interface, but with a striking difference. A very strong wave 
arrives before the corner wave, which is not observed for free or 
rigid interfaces. This wave is a head wave for the diffracted 
wave from the lower corner of the dome, and is in-phase with 

/ %“/lrrP 

FIG. 1.5. Constructive interference of phases A and D gives the 
corner wave. For a real medium, the lower diffracting point 
develops a head wave in front of the corner wave. 
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the incident wave. It also partially overlaps the corner wave. dariaga critically reviewed this paper. We thank two unknown 
Figure 15 sketches this head wave in front of the corner wave. reviewers for their helpful comments. 

A partial conclusion is that lateral propagation stemming 
from the geometry of the medium implies two kinds of waves: 
the corner wave and the head wave, both inside the range of 
horizontal offsets for a reflection profile. Of course, these waves 
would have been less developed for a more complex geometry. 
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