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Two-dimensional nonlinear inversion of seismic waveforms: 
Numerical results 

Odile Gauthier*, Jean Virieux*, and Albert Tarantola* 

ABSTRACT 

The nonlinear problem of inversion of seismic wave- 

forms can be set up using least-squares methods. The 
inverse problem is then reduced to the problem of mini- 
mizing a (nonquadratic) function in a space of many 
(lo4 to 106) variables. Using gradient methods leads to 
iterative algorithms, each iteration implying a forward 
propagation generated by the actual sources, a back- 
ward propagation generated by the data residuals 
(acting as if they were sources), and a correlation at 
each point of the space of the two fields thus obtained, 
which gives the updated model. The quality of the re- 
sults of any inverse method depends heavily on the rea- 
lism of the forward modeling. Finite-difference schemes 
are a good choice relative to realism because, although 
they are time-consuming, they give excellent results. Nu- 
merical tests performed with multioffset synthetic data 
from a two-dimensional model prove the feasibility of 
the approach. If only surface-recorded reflections are 
used, the high spatial frequency content of the model 

(but not the low spatial frequencies) is recovered in few 

(= 5) iterations. By using transmitted data also (e.g., be- 
tween two boreholes), all the spatial frequencies are re- 
covered. Since the problem is nonlinear. if the initial 

guess is far enough from the true solution, the iterative 
algorithm may conveige inti3 a secondary solution. A 
nonlinear inversion with 8 shots, each shot recorded at 
400 receiver locations. with 700 samples in each seismo- 
gram, corresponding to a 2-D model described by 
40 000 grid points, takes approximately 1 hour in a 
CRAY 1S supercomputer. 

INTRODUCTJON 

Linearized inversion of seismic waveforms has received con- 
siderable attention in the iiterature. For instance, Clayton and 
Stolt (1981) and Tarantola (1984a) propose methods for solv- 
ing the linearized multidimensional inverse problem with 

multioffset seismic reflection data. Woodhouse and Dziewon- 

ski (1984) and Tanimoto (1984) also use linearized inversion of 
waveforms to obtain global Earth models, 

If a starting model is known to be close enough to the 
actual medium, linearized inversion will probably perform 
well. Unfortunately, since there is no practical test to check 
the accuracy of the linearization, nonlinear inverse techniques 
are more promising. There are two basic options: a full ex- 
ploration of the parameter space (systematic or Monte Carlo), 
or a local descent method. The first approach has the advan- 
tage of avoiding local minima, but it is too time-consuming 
for modern computers. The second approach gives the correct 
solution when the starting model is inside the valley of the 
global minimum, irrespective of the choice of starting point. 
Thus the starting model plays a much less crucial role than in 
linearized inversion. 

Tarantola (1984b) suggested an approach to the general 
nonlinear inverse problem of interpretation of acoustic seismic 
waveforms. Our aim here is to prove the feasibility of that 
method numerically by using synthetic data. 

We briefly discuss the choice of the finite-difference tech- 
nique as the numerical method to solve the forward problem 
of computing synthetic seismograms. We then review the main 
steps involved in the inversion method, emphasizing the physi- 
cal interpretation. A pomt diffractor is the first numerical ex- 
ample: results clarify the essential features of the inverse pro- 
cedure. Other geometries help show the circumstances in 
which the numerical algorithm can recover the parameters of 
the medium. Mathematical details are in the appendixes. A 
review of the formulation of the inverse problem can be found 
in Tarantola (1984~). 

THE FORWARD PROBLEM 
(COMPUTATION OF SYNTHETIC SEISMOGRAMS) 

Performance of the inverse procedure depends critically on 

the technique used for solving the forward problem. Because 
of their low cost, ray methods and their extensions have been 
applied for linearized inverse formulations (e.g., Chapman and 
Orcutt, 1985a) or nonlinear inverse formulations (Mora, 1985). 
The main limitation of ray methods is that because of the 
high-frequency approximation, the physical parameters of the 
medium must vary slowly over several wavelengths. Even so, a 
low gradient in the velocity structure creates a low-frequency 
reflection which will be neglected by ray methods, which are 
only interested in the high-frequency content (Chapman and 
Orcutt, 1985b). Moreover, zero-order discontinuities in pa- 
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rameters (i.e., the interfaces) must be handled explicitly by 
reflection or transmission coefficients. Whole sets of converted 
rays cannot be modeled (creeping waves), or approximately 
modeled (diffracted waves), unless a specific asymptotic theory 
accounts for them (Keller, 1962). 

On the other hand, numerical methods based on dis- 
cretization of the wave equation synthesize the different waves 
arriving at the station as a whole. This can make physical 
interpretation of a forward calculation difficult, but it does not 
prevent inversion. The main limitation of numerical methods 
is their computational cost, in both time and memory require- 
ments. 

Inside a numerical grid in the space-time domain, the 
acoustic wave equation (or its equivalent) must be verified at 
different nodes, approximating the derivatives by finite- 
differences. Basically, the initial conditions give the value of 
the pressure field p(x, to) and its velocity 0(x, to) everywhere in 
space at time t,. The wave equation then gives the value at 
time t, of the acceleration of the field fi(x, to). Given the den- 
sity p(x) and the bulk modulus K(x), from knowledge of 
p(x, to), fi(x, to), and ji(x, to), it is possible to estimate p(x, tl) 
and j(x, tI) with t, = t, + At. Iterating the procedure gives 
the values of the pressure field for any time t, = t, + iAt. 

Since the pioneering work of Alterman and Karal (1968), 
two different formulations have arisen in the finite-difference 
literature: the homogeneous formulation and the hetero- 
geneous formulation (Kelly et al., 1976). The homogeneous 
formulation solves the propagation equation in each homoge- 
neous area, and it verifies explicit boundary conditions be- 
tween the different areas. The heterogeneous formulation, on 
the other hand, directly solves the propagation equation in a 
heterogeneous medium, where physical properties are spatially 
variable. Therefore, conditions at interfaces are satisfied im- 
plicitly. The heterogeneous formulation gives results com- 
parable with the homogeneous formulation when the order of 
the approximation at interfaces is the same as the order of 
approximation of the propagation equation. The homoge- 
neous formulation may give more accurate results (Kummer 
and Behle, 1982), but it considerably increases the complexity 
of the algorithm for computing derivatives. Discretizing the 
elastodynamic equation instead of the acoustic equation will 
lead to the staggered grid used for modeling heterogeneous 
propagation of SH waves (Virieux, 1984) or P-SV waves (Vir- 
ieux, 1986). The discrete values of the medium parameters 
correspond to a given physical quantity velocity for density 
and stresses for the bulk modulus K. The bulk modulus K is 
shifted one-half node with respect to the velocity, in both the 
horizontal and vertical directions. Because this method uses a 
first-order hyperbolic system, the computation is well-adapted 
to vector (and parallel) computers. Appendix A describes the 
equations used to solve the forward problem and the exten- 
sions to the forward problem necessary for the inversion. A 
complete description of the numerical method may be found 
in Virieux ( 1984). 

THE INVERSE PROBLEM 

An acoustic medium can be described using the density p(x) 
and the bulk modulus K(x). For simplicity, we assume the 
density known: the problem is to evaluate K(x). We later use 
the terminology of functional analysis, so the unknown is the 
.fincfion itselj; which is not assumed to be discretized. Never- 
theless, for numerical computations it will be discretized. For 

instance, in the numerical examples. K(x) is defined on a grid 
of 200 x 200 points. In more realistic problems. grids of 
I 000 x I 000 points should be used. 

Let I be a time variable reset to zero at each new shot x,~ 
(s = I, 2, , NS) a generic source position, and x, (r = 1, 2, 
. . . . NR) a generic receiver position. The pressure at the 
receiver location x, at time t for a shot at point x, is denoted 
P(x,, I: x,,). Let fix,, I; x,),,,, denote the particular measured 
(observed) values. For a model K(x), p(x,, I; x,),,, denotes the 
prcdictcd seismograms. 

The easiest formulation of the inverse problem is as follows: 
W-hich Earth’s_ mode! K(x) predicts- sei~mograms~ p(x, , t; x,Jca, 
which arc closest to the observed seismograms p(x,, 1; xJobr? 
The simplest results are obtained with a least-squares criterion 
of closcncss. The problem is to obtain the model K(x) for 
which the misfit function 
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s= c dt 1 P(X,, r; X,)“& - P(X,. t; x&,1 (I) 
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is a minimum. This criterion can, of course, be generalized to 
take into account the estimated observational errors or the 
a priori information in the model space. Such details are left to 
Appendix B. 

In principle, very different methods can be used to obtain 
the minimum of the (nonquadratic) functional S, such as (gen- 
erali7ed) gradient methods or Monte Carlo (i.e., pseudo- 
random) methods. Gradient methods have the disadvantage of 
being local. That is, they converge to the nearest local mini- 
mum (if such local minima exist) instead of converging to the 
global minimum. However, they have the advantage of being 
tremendously effective. There are many good textbooks about 
gradient methods of minimization; Walsh (1973, Fletcher 
(19X0), and Scales (1985) are well-documented, classical books, 
while CCa (1971) emphasizes infinite dimensional (i.e., func- 
tional) problems. 

The simplest gradient method is the steepest descent 
method, which gives 

K(x),+ 1 = K(x), + a. Y(X), , (2) 

where y(x), corresponds to the direction of the steepest descent 
for the misfit function S in the infinite dimensional model 
space, and where a, is simply a constant scaling factor (either 
analytically estimated or chosen by trial and error). For more 
details. see Tarantola (1984~). The philosophy of the method is 
simple. Because s{(x), is by definition a direction of descent for 
S, for a sufficiently small a, the value of S for K(x), + a, y(x), 

must be smaller than its value for K(x), Iterating long enough 
will lead to models with acceptably low values of the misfit 
function S, i.e.. models whose predicted seismograms fit the 
observed seismograms acceptably well. 

The main computational task at each iteration is evaluation 
of r(x),. K(x), denotes the current model we wish to update, 
and p(x, I; x,), denotes the pressure field predicted from this 
current model. Then 6p(x,, I ; x,), = p(x, , t ; x,),~~ - pfx, , t ; x,), 
are the data residuals for the current model. A new field 
~(x. t: x,), is defined as follows. For a given source point x,, 
we consider all the 4ata residuals 6p(x,, I; x,), At each point 
x, where there was a receiver (for the given source point x,J, 
we set a source whose time function is the residual 6p(x,, I; 
x,),. For a given x,, all the points x, radiate in-phase, and the 
propagation is made backward in time
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Then, as demonstrated by Lailly (1984) and Tarantola 
(1984b, c) and as outlined in Appendix C, 

Y(X)” = & ‘! I’dl li(x, f ; X,)” @(x, r : x,), (3) 
ns 1 0 

The physical interpretation of equation (3) is that p(x, r; x,), is 
the predicted field in the current model K(x),. Because 
~(x, t; x,),, is obtained by propagating the data residuals back- 
ward in time it represents the missing field, i.e., a field we need 
to obtain null data residuals. If, for a given shotpoint x, at a 
given point x of the space, the missing field is correlated in 
time with the predicted field this missing field may be created 
by adding a diffractor at point x. Equations (2) and (3) imply 
setting the value of the diffractor at point x as proportional to 
the time correlation of the time derivatives of the predicted 
and missing fields. Equation (3) shows that these time corre- 
lations have to be computed at each point x of the space for 
each of the shots x,; then the results for each of the shots have 
simply to be added. 

The following is our operational approach. We start with 
some arbitrary model K(x),,, the closer to the true model, the 
better. Since K(x), is simply the first current model K(x),, we 
keep the index n for more generality. We select the first shot- 
point x,~ = x, and solve the forward problem using the finite- 
dif’i‘erence scheme introduced above. The result is the field p(x, 
f: xl)“. In particular, we obtain the predicted seismograms 
P(X” / I; x,), and the residuals Fp(x,, I: x,), = p(x,, r; xl)+_ 
- p(x,, t; x,)” corresponding to the current model for the first 

shotpoint. These residuals are propagated (simultaneously for 

all values of r) backward in time again using the finite- 
difference scheme, thus giving the field \v(x, r; xl),,. At each 
point x of the space we compute 

‘I 
U(x; x,) = 

s 
df fix, t; x,).@(x, t: x*Jn. (4) 

0 

The process is repeated for the second shotpoint x, = x2, thus 
yielding U(x, x,); the process continues until all shotpoints 
have been considered. y(x), is then obtained from the sum 

Y(X), = & f w6 x,1. 
“S 1 

If we do not have an estimate of the correct value for a,, we 

select a few reasonable values (three values, for instance). For 
each of the selected values of u, we compute the correspond- 
ing value of the misfit function S for K(x),+, = K(x), + 

any(x),. A good value for a, can be chosen by interpolation, 
and the updated model K(X),+, is then obtained. This will be 
the current model for the next iteration (in Appendix C we 
discuss an alternate, linearized approach for obtaining an ade- 
quate value for a,,). Typically, we stop iterations when synthet- 
ic seismograms look like the observed ones, or when little 
advance in the value of the misfit function S is gained between 
subsequent iterations. 

Technical details of the computations have to be modified 
for an optimal (and practical) utilization of available computer 
resources. The modifications are left for Appendixes A and B. 

NUMERICAL EXAMPLES 

Point diffractor 

Take as the true medium a single dXracting point @K + n) 
superimposed on a homogeneous medium (K,) which is also 

the starting medium. For now, assume that the four edges are 
absorbing. For a single source, seismograms are recorded at 
receivers located at each point of the grid just below the sur- 
face of the medium. Figure 1 shows the gradient y(x). It is 
peaked at the true diffracting point, but spreads over several 
nodes. The “smile” is due to the particular geometry con- 
sidered (a single source and a line of receivers). Note that this 
figure does not represent the solution of the inverse problem, 
but only the first iterate. 

Considering discrete receivers may lead to some compli- 
cations: with one receiver at each point of the grid or equally 
spaced receivers, the waves generated by the residuals are co- 
herent. However, if some receivers are missing, the residuals 
may destructively interfere and produce some unexpected 
spikes in the gradient. 

In Figure 2, nine sources were used. The peak now clearly 
predominates over artifacts. The true diffractor is located with 
a spatial resolution corresponding to the main wavelength of 
the source. 

In the next example, consider a free surface instead of an 
absorbing surface. Source and receivers are located a few grid 
points below the surface; Figure 3 shows the corresponding 
gradient. Essentially the same features are present as in Figure 
2. However, the amplitude of the secondary lobes is stronger 
due to ghosts in the source that are produced by the surface 
reflection. To a lesser extent, ghosts are also due to multiply 
reflected (or diffracted) waves between the scatterer and the 
surface. The amplitude of the artifacts is roughly inversely 
proportional to the number of sources. Again, the figure repre- 
sents the first iterate. not the result ofthe inversion. 

Figure 4 illustrates a case with two ditfractors. The true 
model is a homogeneous medium with two point diffractors of 
equal amplitude (SK, = SKZ # 0). The peaks of the gradient 
have very different amplitudes; the diffractor near the’sources 
and receivers appear predominant. In this example of simulat- 
ed seismic reflection data, this leads to a decrease of the ampli- 
tude of the gradient roughly proportional to the square root 
of the distance to the surface. The gradient computed here 
gives the direction of descent for the misfit function S, but the 
direction of steepest descent is only optimal for infinitesimal 
moves (which implies an infinite number of iterations). Some 
preconditioning of the gradient may accelerate convergence in 
any practical algorithm. The result shown in Figure 4 suggests 
replacing equation (5) with 

+f 
U(x, xs) 

Y(x)n = K(x),z ,_, (Ix - x, ((1:2 

“Camembert” model 

To see what happens when the size of the perturbation is 
much larger than the mean wavelength of the signal, consider 
a model composed of a circular perturbation, the diameter of 
which is about ten wavelengths. superimposed on a homoge- 
neous medium (K,). As shown in Figure 5. we use a grid of 
200 x 200 points to describe our model, which is thus defined 
by the values of K(x) at 40 000 points. The relative pertur- 
bation of K in the disk (with respect to the surrounding 
medium) is E = 6K:‘K. 

Before performing any inversion, we look at the range of E 
in which the problem is linearizable around the medium K, to 
determine where to start our iterative algorithm. We first 
placed sources Andy receivers ail around the Camembert, and 
the computation of S(K) for different perturbations E leads to 
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c 

FIG. 1. A “true” model has been defined by an homogeneous medium with a single point diffractor (SK # 0). The 
medium is defined by a grid of 50 x 50 points, and the four edges satisfy absorbing boundary conditions. A single 
source has been shot (a star indicates its location), and the seismograms recorded at each grid point on line A-B. This 
data set is used for a synthetic inversion. The starting model is an homogeneous medium with the right background 
values. The figure shows the gradient obtained at the first iteration. It is peaked at the right position, but shows spatial 
spreading and some artifacts. 

C 

FIG. 2. Same as Figure 1 but using nine sources (stars). The smile of Figure 1 disappears. 
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C 

FIG. 3. Same as Figure 3 but using a free surface boundary condition above sources and receivers. The ghosts (surface 
reflections) of the source introduce some artifacts. 

FIG. 4. Same as in Figure 2, but the true model now contains two identical diffractors. The amplitude of the peaks is 
roughly proportional to the square root of the distance to the surface. This suggests a “preconditioned” gradient, as 
discussed in the text. 
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FIG. 5. The model is now a circular inclusion (the “Camembert”) in a homogeneous medium. The size of the 
Camembert is about 10 wavelengths. The model is numerically defined in a grid with 200 x 200 points, so the model 
contains 10” parameters (unknowns for the inversion). 

FIG. 6. Using sources and receivers all around the Camembert 
(see Figure 1 I), the seismograms have been computed for dif- 
ferent values of the perturbation E = &K/K inside the disk. 
The figure represents the value obtained for the misfit function 
S when comparing the seismograms obtained with a given 
value of E with the seismograms obtained for E = 0. For values 
of E great than 10 percent, the function S clearly departs from 
a parabola. The saturation of S corresponds to a shift of the 
seismograms of the order of a wavelength. Thus, for E > 10 
percent, the problem is strongly nonlinear. 

Figure 6. As soon as E reaches about 10 percent, the values of 
S saturate and the curve clearly diverges from a quadratic 
function. This behavior corresponds to the phase shift of seis- 
mograms reaching the mean period of the signal. 

In the finite-difference propagations, we use the following 
numerical values; A.Y = AZ = 5 m, AI = I.1 5 ms f ) SO”ICC z 50 
Hz, K, = 0.25 x IO” N’m’, L, = 0.25 x 10m3 m3/kg. Lines 
of receivers are defined with one receiver every two points of 
the grid. Absorbing boundary conditions are set at the four 
edges of the medium. We generate the data using eight 
sources, and the relative position of the sources and lines of 
receivers will be chosen to deal with different geometries. The 
total propagation time T will be chosen to cut the reflections 
from the corners, due to imperfectly absorbing edges. The 
medium is assumed perfectly known in a band of width h 
around the sources and receivers (so that the gradient is not 
computed there). 

The following examples present the results of the inversion 
using different source-receiver configurations, and different 
values of E. 

Seismic reflection data 

Eight sources and 100 receivers are located a few grid points 
below the surface. Figure 7 shows the synthetic seismograms 
for one of the shots (at corner A of Figure 8). The direct wave 
has been suppressed in the representation, so that these seis- 
mograms correspond to the starting residuals with respect to 
the homogeneous model (K,). Primary reflections at the top of 
the Camembert are followed by primary reflections at the 
bottom. Between them. small wrinkles are the surface manifes- 
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A complete physical description is difficult so we give an 
intuitive point of view. Each point of the edge of the Camem- 
bert acts as a diffractor and gives a hyperbolic signature at the 
surface. The sum of the horizontal top and bottom of the 
Camembert gives the strong primary reflections, while isolated 
signatures from other points of the edge are the previously 
noted wrinkles. We expect the signature to be strong for the 
vertical part of the edge in transmission. Reflected and creep- 
ing waves propagating at curved interfaces deserve a complete 
study where different methods such as finite-difference meth- 
ods or ray theory are used for a correct interpretation (George 
et al., 1986). 

the gradient iterative algorithm is trapped. The only way to 
deal with multiple solutions is to start the iterations at differ- 
ent points and check for a “deep” global minimum. Limited 
computer time prevented us from searching for a global mini- 
mum. Imposing a priori smoothness on our solution. or using 
better preconditioning, might help avoid the problem of local 
minima. 

tation of the curved shape of the Camembert. 

Figure 8 shows the first iteration, while Figure 9 shows the 
fifth iteration. The envelope of the perturbation is accurately 
found after the first iteration, although the bottom necessarily 
is not accurately described because the velocity has not 
changed in the interior of the disk. Vertical edges are also 
located. Iteration number 5 does not greatly improve the 
result of iteration number 1. In particular, the low spatial 
frequency content is not recovered after five iterations. The 
artifacts around the main diffracting zones and at the bottom 
of the model are due to the small number of sources used and 
to parasitic reflections coming from the imperfectly absorbing 
edges. The final residuals (not shown) present essentially the 
same features as the initial ones, with smaller amplitude. The 
misfit function S, given by equation (l), takes the values 14.2 
x 103, 7.5 x 103, 5.7 x 103, 4.9 x 103, 4.3 x 103, and 3.9 
x 103, respectively. 

Tomographic data 

Sources and receivers are placed all around the disk. Figure 
10 shows the data corresponding to one of the eight sources, 
for which receivers are placed at the same and opposite edges. 

The results of the first, third, and fifth iterations are shown 
in Figure 11, 12, and 13 respectively. All the essential features 
of the model are recovered well by the inversion. In particular, 
unlike the previous example, the low spatial frequency compo- 
nent is obtained. There remain some artifacts in certain parts 
of the medium, particularly at the corners, which are not well- 
resolved because of the number and positioning of the eight 
sources. The average amplitude of the inverted Camembert is 
about 90 percent of the true value. The misfit function S takes 
the values 38.7 x KPi~ 10.0 x !06, 3.5 x !@‘, !A x I@‘, 0.7 
x 106, and 0.5 x 106, respectively. After five iterations, the 

final value of S is about 1 percent of its initial value. 

Highly nonlinear inversion 

To explore the limitations of inversion, we study the tomo- 
graphic configuration, which has a perturbation of E = 20 per- 
cent. In Figure 14, the initial residuals show phase shifts of the 
order of h. We performed five iterations. as in the previous 
case. Figures 15 and 16 show the first and fifth iterations, 
respectively. The misfit function S takes the values 12.4 x lo’, 
11.9 x lo’, 11.2 x lo’, 10.5 x lo’, 9.9 x lo’, and 9.4 x lo’, 
respectively. 

As for all nonlinear problems, the present problem may 
have secondary minima. The results of Figure 16 suggest that 
this is indeed the case here. Due to the strong nonlinearity of 
this problem, correlation between the incident field and re- 
sidual field takes the wrong sign in the vicinity of the disk, and 

CONCLUSION 

The two-dimensional non-linear inversion of seismic wave- 
forms is feasible even if it takes a lot of computer time (3 500 s 
on a CRAY 1 S for the example of Figure 13). 

For a problem using only surface sources and only surface- 
recorded reflected waves, the proposed gradient algorithm 
cannot recover the low spatial frequencies of the model, at 
least with the few iterations (five) performed here. Only the 
high spatial frequencies of the model are mapped, and the 
inaccuracies are due to the errors in the low spatial fre- 
quencies (and thus of the velocity field). The situation is simi- 

FIG. 7. For the first inversion, eight sources were used (the 
stars in Figure 8). and each source has been “observed” by 
100 receivers in line A-B (one receiver at every other grid 
point). This figure shows the data corresponding to one of the 
sources (the star near corner A). The direct wave has been 
substracted. A value of E = 5 percent was used. 



FIG. 8. Model obtained at the first iteration. The scale is 0.33 compared to Figure 5. 

FIG. 9. Model obtained after five iterations. The geometry of the Camembert is well-recovered, but the low spatial 
frequency content is not. The gradient algorithm converges very slowly with surface seismic reflection data configura- 
tion. 
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lar to migration with an incorrect velocity. It does not seem If the starting model is far enough from the true model, 
that the algorithm has been trapped in a secondary minimum; secondary solutions exist, but they are easily identified. 
rather, the experiment was too time-consuming to iterate fur- Future interpretation of seismic records will certainly be 
ther. Our preliminary conclusion is that, although in principle performed through very accurate forward modeling. The 
the formulation of the problem allows for all the spatial fre- method described here shows that accurate forward modeling 
quencies of the model to be obtained, in practice only the high codes can be used for waveform matching. 
frequencies converge rapidly enough. The numerical experi- 
ments by Kolb et al. (1986) for 1-D models (with multioffset ACKNOWLEDGMENTS 
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FIG. 13. Result after five iterations. This tomographic example has a highly redundant data set, containing in particular 
transmitted waves, Both the geometry of the Camembert and the low spatial frequencies are well-recovered by the 
inversion. Some numerical artifacts remain. 
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FIG. 14. Same as Figure IO, but a value of E = 6K/K = 20 percent was used. The problem is highly nonlinear. 
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FIG. 15. Result of the first iteration. Same scale than Figure 5. 

FIG. 16. Result after five iterations. This figure suggests that the algorithm converges into a secondary minimum of the 
misfit function. This kind of secondary minimum may probably be avoided by introducing some a priori smoothing 
condition on the model. 
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APPENDIX A 

THE FORWARD PROBLEM 

Finite-difference scheme 

To use a staggered velocity-stress finite-din‘erence method 
(Virieux, 1984), instead of the wave equation, discretize the 
system 

FP(.Y, 1) -= 
c’t 

K(x) div WX, t)) + ??(x, I: x,), (A-1) 

and 

?w(x, t) 
- = L(x) grad[p(x. 01, 

?r 

where p(x, 1) is the pressure in the medium and w(x, I) the 
particle velocity. K is the bulk modulus, while L is the inverse 
of density, namely, the lightness. Equation (A-l) represents 
Hooke’s law differentiated with respect to time and the equa- 
tion (A-2) is the fundamental equation of dynamics. The 
source term 3(x. t), included in the scheme as a second 
mcmbcr of Hooke’s law, corresponds to an explosive source 
located at x = x, when 9(x. t) = f(k: - x$((t). Differentiating 
equation (A-l) with respect to time and introducing equation 
(A-2) leads to the following wave equation. obeyed by the 
pressure p(x_ t) 

(A-3) 

I ciqx. I; x,) 
S(x, 1: x,) = - 

K(x) 6t (A-4) 

IT S(x. /: x,) = 0 for t < 0 with identical initial conditions 
and boundary conditions, the pressure solution of our system 
is identical to the pressure solution of the wave equation pro- 
vidcd the relation (A-4) between source terms if fulfilled. We 
simply reformulated the acoustic problem inside the frame of 
the SH propagation equations used by Virieux (1984). No 
benefits for the inverse problem are obtained by this manipu- 
lation. 

The numerical scheme belongs to the explicit heterogeneous 
formulation of finite-difference techniques. The precision of 
the scheme is of second-order, implying the rule of thumb of 
ten nodes per wavelength. This numerical scheme allows gen- 
eration of pressure waves [and, correspondingly, a set of data 
po(xC;, I; xs)j for any given medium (K, L) and any geometry 
of shots and receivers. 

Extensions of the forward problem 

As shown in the text, computation of the direction of the 
steepest descent y. requires (1) knowledge of the field p,(x, t; 
Y.$). which is the solution of the for_ward~ problem; (2) knowl- 
edge of the field \~r,,(x; t; xs) obtain& by propa+&ng then 
residuals 6p,(x,. t; xs) backward in time (Appendix B), with 
the initial conditions y,(x. T; x5) = +“(x, T; xS) = 0; and (3) 
the correlation of the two fields pe and v,, at each point of the 
medium. 
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Computing pU, then v., and correlating them after propa- 
gation would require storing the whole time history of the p. 

fields. A better way is to perform the correlation for each 
source. starting from the final time T. q~,, is computed by a 
single propagation (with At < 0), starting from the final time
of the computation T. Since the wave equation is reversible in 
time p, can be recovered by moving backward in time taking 
as the “initial” state the field p,(x, T; xs) and using the same 
source 6(x - x,).7(t). For this field p,,, explicit boundary con- 
ditions such as Neumann or Dirichlet conditions are left un- 

changed: in the case of absorbing boundary conditions the 
values of P”(x, I: xJ, which can be known for all t E [0, T] 
from the forward propagation, must be imposed on the ab- 
sorbing boundary. The required storage is far less than for the 
whole medium. We checked the field p, so obtained against 
the one calculated in the forward propagation. They are the 
same to a relative precision of IO-“. Therefore, the correlation 
can be performed for each point of the medium and for each 
decreasing time

APPENDIX B 

Formulation of the problem 

The data set is composed of the seismograms p(x,, t; x,), 
where x, and x, denote receiver and source (discrete) position, 
and where the time variable /, (reset lo Lero for each new shot) 
runs from 0 to T. Actually. because seismic data are digital, t 
is also discrete, but to simplify the notation, we do not intro- 
duce the sampling explicitly. 

We assume the source is exactly known. An acoustic Earth 
model may then be described using density p(x) and bulk 
modulus k’(u). We assume that p(x) is known, so that the only 
remaining unknown is K(x). 

For compactness. an Earth model is denoted K and a data 

set is denoted p. The computation of the seismograms corre- 
sponding to the model K is written 

P = g(K)> (B-1) 

where the operator g is nonlinear. Let pohq represent the ob- 
served data set and Cp the covariance operator describing 
experimental uncertainties. The kernel of the covariance oper- 
ator is diagonal: 

C,(x,. I; x,: x;. I’; x;) = 02(x,, t; x,)S”‘G(r - t’)s”“‘. (B-2) 

so that the expression 

sp = c’,sg (B-3) 

is written, explicitly, 

s 

7 
he,, t: x,1 = c dt’ 1 Cn(x,. t; x,: x:. t’; xi) 

\‘” I’ 

x sfi(x:, 1’: xi) 

= o?x,. 1; x,)Sp^(x,, t; x,). 

The reciprocal relation 

sfi = c, ‘6p 

simply gives 

(B-4) 

(B-5) 

sl;c x, . I; x,) = 
w, 1 f ; x,) 
4x,, t : x,J 

(B-6) 

The best model (in the least-squares sense) is defined by the 
minimization of the squared norm 

S(K) = fll g(K) - &,i I/’ (B-7) 

where, with the notation 

<sfi,, 6p,) = 6B;6p, = sp; sp, 

=; bl-dr 7 Sb,, r; x,),W,, t; xs)s. (B-8) 

the norm I/ Sp (/ is defined by 

IIripl12 = (C,‘6p, Sp) = sp’C;%p. (B-9) 
Then 

S(K) = fCg(K) - d,d’C, ‘k(K) - 4d. (B-10) 

The Frichct derivative of the nonlinear operator g at a 
point K, of the model space is the linear operator G, that 
associates the data perturbation G,6K defined by the first- 
order development to any model perturbation 6K. G,6K is 
written 

g(Y + SK) = g(_K_) + &ijK+ higher-order terms. (B-11) 

Introducing in the model space notation corresponding to 
that in equation (B-S), 

(S&,, 6K,) = 6&6K, 

= 6K’,&, 

= 
I 

dV(x) 6&X),6K(X),) (B-12) 
Y 

and given a linear operator Cj,, the transpose operator Gi can 
be defined by the identity (Taylor and Lay, 1980) 

(a$. G,6K) = (G;Sfi, 6K) 

for any @ and 6K. 

(B-13) 

The least-squares minimization problem can then be solved 
using a gradient algorithm. This easily gives (Tarantola, 
1984b) 
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K n-l = K, - P, $0 Cr, Cd ‘(g(K,) - d,,,), (H- 14) 

where 5,) is an arbitrary, positive delinite operator, the “pre- 
conditioning operator” which is chosen for accelerating the 
convergence. In our case, we choose an operator S, whose 
application corresponds to an amplification increasing with 
depth. Equation (R-14) corresponds to a steepest descent algo- 
rithm. Use of a conjugate gradient did not improve our re- 
sults: rather, the preconditioning was of primary importance. 

and we have the integral representation (Morse and Feshbach, 
1953) 

Frixhet derivative 

As explained in the text, we use different boundary con- 
ditions in our simulations of wave propagation. The formulas 
derived here are only valid for free boundaries; the demon- 
strations for rigid boundaries are similar to those in the text, 
and the absorbing boundaries can be accounted for by con- 
ceptually replacing them with distant boundaries of any sort. 

For free boundaries, we solve the forward problem by dis- 
crctiLing the system (Appendix A) 

5 (x. I; x,,) = K(x) div w(x, I; x,) + .‘?((r, I: x,), (B-15a) 

2 (x, f; x,,) = -& grad p(x, t; x,), (B-15b) 

p(x. t : x,) = 0 (for x-belonging to the boundary S), (B-! 5~) 

P(X, 0: x,) = 0, (B-15d) 

and 

fi(x, 0; x,) = 0. (B-15e) 

where $x, I; x,) is the source function describing the sth shot. 
Dcfning 

I 

I 
9(x, I: x,J = K(x) dt’ S(x. t’. x,) (B-16) 

0 

gives 

& $6, I; x,) - div &) grad ~6, 1; x,) I 
= S(x. t; x,). (B-17a) 

p(x, I ; x,) = 0 (for x t S), (B-17b) 

PC% 0; X‘) = 0, (B-17~) 

and 

P(x, 0; x,) = 0. 

The Green’s function T(x, t; x,, t’) is defined by 

(B-17d) 

1 g (x, t; x’, I’) - div 
K(x) dt2 

-& grad I-(x, I; x’, t’) 
I 

= 6(x ~ X,)S(f - t’), 

where 

l-(x, t; x’, t’) = 0 

l-(x, t; x’, t’) = 0 

and 

i-(x, t; x’, t’) = 0 

(for x E S), 

(for t < t’). 

(for t < t’), 

(B-l 8a) 

(B-18b) 

(B-18c) 

(B- 18d) 

P(X, 1; x,) = s dV(x’) l-(x, t; x’, O)* S(x’, t; x,). (B-19) 
” 

To obtain the Frechet derivative of the displacements with 
respect to the bulk modulus [as defined by equation (B-11)], 
introduce the wav’e field p(x, r; x,J, propagating in the medium 
K(x), Then 

1 c7*P(x, 1; X,1” 1 

- K(X)” c112 
div - grad p(x, f; x,), 

P(X) 1 
= SC% t; x,), (B-20a) 

and 

pix, I: x,), = 0 (ror x E S), 

p(x, 0; x,1, = 0. 

(B-20b) 

(B-20~) 

fix, 0; X,)” = 0. (B-20d) 

The corresponding Green’s function obeys 

1 PI-(x, 1: x’, f’), 
div 

1 

K(x), ?fZ 
- grad T(x, 
P(X) 

where 

= SIX ~ x$(r - I’), 

and 

f-(x, t; x’, t’), = 0 

T(x, I; x’. I’), = 0 

(for x E S), 

(for f < t’), 

i-(x. t; x’, f’), = 0 (for t < t’). 

t; x’, 0, 1 
(B-21a) 

(B-21b) 

(B-21~) 

(B-2ld) 

A perturbation of bulk modulus K(x),- + K(x), + M(x) will 
produce a field p(x, t; x,),, + 6p(x, t: x,,) defined by 

in i’[p(x, f ; x,), + &4x, t ; x,)1 
K(x), + M(x) it* 

div & grad CP(X. t; x,), + sptx, I ; x,)~ 

where

= xx, I ; x,). (B-22a) 

and 

p(x, I: x,), + 6p(x, t; x,) = 0 (for x E S), (B-22b) 

P(X? 0; x,),, + Wx, 0; x,J = 0, (B-22~) 

d(x, 0; x,), + @(x, 0; X,$) = 0. 

This gives 

(B-22d) 

1 PSp(x. t; s,) 

it2 
- div 

K(u), 
& grad 6p(x, 1; x,) 1 

= ?*p(x. I ; x,), SK(x) 
it2 K(X)L + 0@K2,, 

n 
(B-23a) 

where 

6p(x, I ; x,) = 0 

6p(x, 0; x,,) = 0, 

(for x E S), (B-23b) 

(B-23~) 
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and 

Sd(x, 0; x,) = 0. 

Using theorem (B- 19). 

(B-23d) 

Q(x, 1 t; x,1 = 
s 

dUx) rtx, , t ; x, 01, 
” 

*ii@, t; x,), 
Wx) 
__ + O(SK’). (B-24) 
K(x),z 

The Frkhet derivative operator G, introduced in equation 
(B-l 1) is then defined by 

(c;, SK)b,, t; xv) = s dV(x) Ux,, t; x, 01, 
k 

SK(x) 
* ii(x, t; XS)” - W),z ’ 

(B-25) 

where T(x, t; x’, t’), is the Green’s function defined by equation 
(21), corresponding to the medium K(x), and p(x, t; x,), is the 
wave field defined by equation (B-20) corresponding to K(x),. 

Transpose operator 

We have defined the FrCchet derivative operator G,. Its 
transpose 6: was defined by equation (B-13). To solve the 
inverse problem, we need to be able to compute C!,S@ for 
arbitrary Sk. Using the notation introduced in equations (B-8) 
and (B-12), equation (B-13) is written as 

r; x,XG,~K)(x,, t; x,) 

= s dV(x) (C&G’. sp)(x)sK(x). (B-26) 
” 

Using equation (B-25), this becomes 

; FlS V(% > t; x,) l w4 ux, 1 t ; x, 0)” 

Wx) * ti(x, f; X,J” - 
fw,Z 

= I Wx) (6’. wXx)wx)> (B-27) 
” 

i.e., 

s dV(x) SK(x) 
Y i 

(G:WH - & 
II 

I-(x,, t; x, 0)” * b(x, t; x,),8$(x,, t ; XJ 1 =O. (B-28) 

Because this is valid for any SK(x), we obtain 

(G:, %Xx) 

dt x,, t; x, 0),*$(x, t; x,), Sb(x,, t; x,). (B-29) 

We introduce a field ul(x, t; x,), defined by the differential 
system 

1 @P(x, t; x,), 

K(x), Bt2 
- div -& grad Y(x, l; x,), 1 

= Sj(x, t: x,), (B-30a) 

where 

Y(x, t: x,), = 0 (for x E S), (B-30b) 

Y(x, T; x,), = 0, (B-30~) 

and 

q(x, T; x,), = 0. (B-30d) 

W(x, t; x,), satisfies final (instead of initial) conditions. Using 
the property 

r(x, t; x,, t’), = r(x, f + T; X, , t’ + T), , (B-31) 

and reversing time in theorem (B-19), 

s 

T 
Vx, t; x,), = c dt’ T(x, 0; x,, t - t’), 63x,, t’; x,). 

I 0 

(B-32) 

We then have 

i‘(x, t’ - t: x,, O)Sp^(x,, t’; x,), 

(B-33) 

where 

Using integration by parts, we have 

P(x, 1 t; x, O)*fi(x, t; x,) 

= 
i 

7 
dt’ l-(x,, t - t’; x, 0)$(x, t’; x,), 

0 

= ryx, , t - T; X. OMX, 7- ; x,) - rcx,, t; X, 0)$(x, 0; x.) 

s 

T 
_ dr’ i-(x,, f - t’; x, 0)$(x, t’; XJ, 

0 
and using the initial conditions (B-20d) and (B-21c), 

J-(x,, t; x, 0) */7(x, t; x,) = -F(x,, t; x, 0)*0(x, t; x,). 

(B-35) 

Using equation (B-35) gives 

1 jr(lf c w, , f ; X, 01, * ii(x, t ; x,mk, t ; x,~) 
7 0 I 

* 0(x, f ; ov(x, > t; XJ, 
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= - c pi* pt. 1 f-(x,, t - t’; x, 0) = c j’d’ $(x, t; xs)9(x, t; x,). (B-36) 
5 0 I I 0 

x lo, f ; x,Fw, , t ; XJ, 

from which, using equation (B-33), we obtain 
From equation (B-29) we then obtain the result 

$9 t-(x,, t ; x. o), * p(x, t; x,)F~(x,, t ; x.j c Jrdr 0(x, t ; x,), 9(x, t ; x,), (B-37) 
s 0 

APPENDIX C 

COMPUTATION OF THE STEP LENGTH 

The gradient algorithm gives [equation (B- 14)] 

K n+, = K, - i+%GC;‘Cg(K,) - Pad 

Defining 

(C-1) 

3, = Gb C; ‘[g(K) - ~or,s) (C-2) 

and 

d, = s,?, (C-3) 

gives 

K “+I = K, - p”d,. (C-4) 

This brings the problem of obtaining an adequate estimation 
of the scalar I,, , For given K, , 

SK - P* d,) = t i Cg(K - u, d,) - ~obsl’ 

x C, ‘l&K, - u,d,) - ~obsll- (C-5) 

If p,, is small enough, using the definition of Frechet derivative 
[equation (ti- t t)] we have 

g(K, - cc, 4) = g(W - P, G, d, > K-6) 

which gives 

SK - cc. d,) = S(K) - u(n (G, d,)‘C, ‘k(K) - PA 

and the condition &S,/i?p, = 0 gives 

~ 
n 

2 (G, WC, ‘MK,) - ~obsl 

(G, d,YC, ‘(!A d,) 
(C-8) 

Using the definition of the transpose operator [equation 
(B- I3)l we finally obtain 

dbr^. 
= f G, WC’, ‘(G, 4,)‘ 

(C-9) 

To compute 6, d,, we could use the result equation (B-25), 
but it is more practical to invoke the definition of derivative 
operator and use a finite-difference approximation. We thus 
use 

G,d, = i MK, + Ed,) - gK)l, 

with a sufficiently small value of c. 

(C-10) 


