GEOPHYSICS, VOL. 56, NO. 12 (DECEMBER 1991); P. 2057-2069, 14 FIGS.

Ray tracing in 3-D complex isotropic media:

An analysis of the problem

Jean Virieux* and Véronique Farra*

ABSTRACT

Procedures for accurate ray tracing in complex
three-dimensional media with interfaces are proposed.
The ray tracing equations and the associated paraxial
linear equations are solved either by a numerical
solver or by an analytical perturbation approach.
Interfaces are described with an explicit representa-
tion or an implicit representation using B-spline inter-
polation. For the implicit representation, we exploit
two important properties of B-splines, the convex hull
and subdivision properties, in order to determine the
intersection of the ray with the interface.

At the free surface where the recording system is
located, a sampling strategy is proposed: limits of
branches at caustics, shadow zones, and medium
boundaries are detected for a fixed azimuth while the
take-off angle is automatically adjusted in order to
have a roughly homogeneous spacing between end
points of the rays. The same strategy is also possible
for a fixed take-off angle. The assumed continuity of
the traveltime surface between two adjacent azimuths
enables one to obtain the initial condition of a ray
arriving at any station located on the portion of surface
delimited by these two azimuths. This procedure al-
lows for the classification of rays arriving at a given
station as we show on different synthetic examples.

INTRODUCTION

Tracing rays in a three-dimensional medium is a formida-
ble problem which has many applications in seismology.
Introducing complicated interfaces considerably increases
the difficulty. In order to reduce the problem to a tractable
one, different simplifications are usually made in the param-
eterization of either the velocity or the interfaces. Chiu et al.
(1986) or Haas et al. (1987), among others, assumed constant
velocities between interfaces. These interfaces are simply

described by explicit sinusoidal or polynomial functions of
the horizontal coordinates and do not allow for complex
shapes. These different simplifications result in fast ray-
tracing methods, but their impact on the tomographic image,
for example, are difficult to analyze. Several research groups
(Cerveny and Psencik, 1983; Cerveny, 1987; Pereyra et al.,
1980; Pereyra, 1988; Gjoystdal et al., 1984; Hanyga, 1988)
have attempted to go one-step further and solve with good
accuracy the ray-tracing problem in three-dimensional media
with interfaces.

In this article, we analyze the classes of difficulties met in
ray tracing and we investigate methods to solve them in an
efficient way. The first step is to solve the ray-tracing
equations. Analytical perturbation techniques proposed by
Farra (1990) or Virieux (1991) are emphasized as an efficient
and accurate alternative to numerical solvers. We must also
check intersections with interfaces and compute them when
they occur. The intersection problem is strongly related to
the geometrical description of interfaces and the assumed
complex shape of interfaces leads us to introduce implicit
representations. Finally, we investigate a first attempt to find
rays arriving at a station for different branches of the
traveltime surface.

Before addressing these problems, let us summarize
briefly the ray theory and the associated first-order linear
technique called the paraxial approximation.

RAY-TRACING THEORY AND THE PARAXIAL
APPROXIMATION

Tracing rays inside a medium is a powerful tool for
extracting information, because the computed quantities
(traveltime, slowness vector, polarization vectors, and am-
plitudes) are related to simple quantities in a seismogram and
are perfectly associated with different features of the me-
dium. In this section, we only introduce the notations we use
in this paper.

In a three-dimensional medium, the rays can be found by
solving the eikonal equation, (VT)? = u? = ¢ %, where ¢ is
the wave speed and u is the corresponding slowness. The
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2058 Virieux and Farra

vector p = VT orthogonal to the wavefront represents the
slowness vector. The traveltime 7(x) is deduced afterwards
by simple integration along the ray.

The eikonal equation can be recast into a Hamiltonian
formalism. The conjugate quantity (corresponding to mo-
mentum) of the position is the slowness vector p. Introduc-
ing the Hamiltonian proposed by Burridge (1976),

1
H(x, p) =3 [p? - u’(x)], (1)

we observe that the eikonal equation implies that H = 0
along a ray. Solving the relation (1) can be performed by the
method of characteristics. The canonical equations,

x=V,H
(2)
p = _VxH’

define the evolution of the ray. In relation (2), the dot
denotes derivative with respect to the sampling parameter 7
defined by

dT =p - dx = u*(x) dr (3)

Moreover, V, and Vp denote the gradients with respect to
vector x and p, respectively. Let us mention that equations
(2) are not independent, as discussed by Virieux et al. (1988).

Using first-order perturbation techniques (Luneberg,
1944; Farra and Madariaga, 1987), one can investigate what
occurs around a reference drawn ray. The deduced trajecto-
ries are often called paraxial rays. Let us introduce the
canonical vector yo(1)" = (x4(1), po(7)) of the reference ray,
where the superscript ¢ denotes the transposition operation.
A paraxial ray is defined by x(7) = x4(7) + 8x(7) and p(1) =
po(7) + dp(r). The perturbation of the canonical vector y,
given by 8y’ = (8x, 8p), satisfies the paraxial ray tracing
equations,

8y = Ady, (4)

deduced by linearization of (2) with the matrix

R RAL
37V, V. H

V,V,H
RAN )

Solutions of linear system (4) can be found by standard
propagator techniques (Aki and Richards, 1980, p 273).
From a given value 8y(7,), the paraxial canonical vector

Oy(7) = P(r, 19)dy(79) (6)

is expressed with the help of the propagator ®(r, 19). The
obtained trajectory is a ray if the canonical vector 8y satisfies
the extra condition,

6H=VPH~8p+VxH-8x=0, 7)

derived from first order perturbation of the Hamiltonian.
Inversely, relation (7) implies that the Hamiltonian is zero to
first order along paraxial rays. Moreover, using relations (2),
one can verify that 8H is constant along any solution of the
system (4). Therefore, it is sufficient to guarantee 3H = 0 at
a given position on the paraxial ray. Practically, the relation
(7) will be set either at the beginning or at the end of the ray.

Paraxial rays are very important in many applications of
ray theory, because they provide stable information around
a given ray [see Cerveny (1985) for description of many
applications]. We use them for detecting any contact of the
ray with a caustic and for two-point ray tracing.

Looking for caustics is very important because the shape
of the propagating signal is modified when the ray touches a
caustic. For a two-dimensional medium, rays belong to
either a forward branch or a reverse branch. These branches
are separated by caustics and shadow zones: partition in
branches is easy to build. In three-dimensional media, we
have two initial angles, the azimuthal and take-off angles,
and the pattern of caustics and shadow zones at the free
surface is much more complicated than in a two-dimensional
medium. In any case, determination of branches requires a
detection of caustics with the computation of index KMAH
(Ziolkowski and Deschamps, 1980).

We trace the three paraxial independent trajectories cor-
responding to the following point source initial conditions
8y,(0) = (0, 0, 0, 1, 0, 0), &y,(0) = (0, 0, 0, 0, 1, 0) and
8y;(0) = (0, 0, 0, 0, 0, 1). These trajectories are not
necessarily paraxial rays, because they do not generally
satisfy the equation (7). They must be combined in order to
generate paraxial rays. Let us denote 8q,;, 8q,, and 8q5 the
perturbations of position of the three corresponding paraxial
trajectories with respect to the reference ray. Let us con-
sider a ray with initial slowness vector p; and two indepen-
dent paraxial rays with initial point source conditions
8y(0) = (0, 0, 0, 0, p;, —py;) and 8y'(0) = (0, 0, 0, p;,
0, —p,;), respectively. These paraxial rays are obtained by
linear combinations of the three paraxial elementary trajec-
tories 8y;, 8y, and 8y;. The cross-section of the ray tube at
any position x along the ray is p. (8x X 8x'), where 8x and &x’
are position perturbations associated to the initial perturba-
tions 8y(0) and 8y’(0), respectively, and p is the slowness
vector at X. Developing the mixed product, we obtain the
equivalent global determinant

Px Bqix Bdqy ¥qax

Py 66] 1y 6612y 6613)1

P 66] 1z 66] 2z 66131
0 pu Py Pu

(8)

for every point along the ray. Selecting other independent
initial paraxial rays will end up with a global determinant
equivalent to the one defined by equation (8). When this
determinant changes its sign, the index KMAH is incre-
mented by 1. The minor determinants with respect to p,;,
pyi and p; are also estimated to detect a possible focal point.
In that case, the KMAH index ray is incremented by two.

When the medium has interfaces, the parameters of parax-
ial rays follow a generalized transformation proposed ini-
tially by Deschamps (1972) and reformulated by different
workers (see Cerveny et al. (1974) for a differential geometry
approach, Farra (1987) for a Hamiltonian approach in gen-
eral coordinate system and Farra et al. (1989) for a Hamil-
tonian approach in Cartesian coordinate system). This trans-
formation can be obtained by two equivalent approaches:
the matching procedure for traveltimes [see Cerveny (1985)
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for references] or the perturbation of Snell’s law (Chapman,
1985; Farra, 1987; Farra et al., 1989).

Basically, two elementary transformations have to be
performed on the paraxial canonical vectors when the cen-
tral ray hits an interface. A first-order linear transformation
denoted by IF gives the canonical vector dy of any paraxial
ray along the interface. This paraxial canonical vector dy is
transformed by another linear transformation T into the
paraxial canonical vector d§ of the converted paraxial ray
along the interface. The canonical vector dy is used as the
initial condition of the converted paraxial ray [see Farra et
al. (1989) for further discussions]. The transformation matri-
ces II and T involve the structure of the interface (normal
vector and curvature matrix C) at the intersection point, as
well as the velocity distribution of the incident medium and
the medium associated with the converted ray. Computing
matrices IT and T depends on the interface representation, as
we shall see later in the section on that subject.

In addition to the estimation of the index KMAH, the
paraxial rays are also used in order to obtain convergence at
a given station once an initial guess is given. This technique
has been discussed by Cerveny (1985). For the selected
Hamiltonian of this article, a previous description has been
given by Virieux et al. (1988): we outline the procedure in the
following. Let us assume that we have traced a ray with
initial azimuthal and take-off angles & and 0. This ray hits the
free surface at a position x; away from the observer position
Xobs- We consider the two paraxial rays with initial point
source conditions, i.e., 8x(0) = 0, such that one has an initial
slowness perturbation 6p¢(0) associated to a variation of
angle ¢ and the other one has an initial slowness perturba-
tion 8py(0) associated to a variation of angle 6. These
paraxial rays are obtained by linear combinations of the
three paraxial elementary trajectories 8y,, 8y, and 8y;
previously introduced. Using these two paraxial vectors as
well as the projection matrix II at the free surface, we may
construct the following linear system

Xobs — Xf od
{yobs _ yfjl [Qd) Qe]liae}a (9)
with an obvious definition for Q, and Q,. The deduced
variations 8¢ and 80 are then used to update shooting angles
for another iteration to reach for the station: the nonlinear
problem of shooting at a given station is linearized around
the hitting point and a few iterations (typically between three
and ten) are needed in order to converge.

SOLVING RAY TRACING EQUATIONS

Solving ray equations (2) and (4) in heterogeneous media is
one of the two crucial points we address in this paper. The
second point, the intersection of rays with an interface
separating two different media, will be discussed in the
following section. We shall concentrate here on three dif-
ferent strategies to integrate the ray equations: a numerical
solver, a finite element approach with analytical rays and a
finite element approach with perturbed analytical rays.

Numerical ray tracing approach

Solving the ray tracing equations (2) and (4) requires an
integration of a system of ordinary differential equations,

problem widely discussed in textbooks on numerical analy-
sis (Conte and de Boor, 1983). Simple numerical schemes as
second-order or fourth-order numerical integrations are suf-
ficient and, basically, Runge-Kutta and predictor-corrector
numerical integrations are used in the seismological litera-
ture.

These two solvers with very different philosophies (Stone
and Forbes, 1990) require the computation of partial deriv-
atives of the velocity distribution up to the second order.
While the predictor-corrector scheme uses one evaluation at
each integration step whatever its order of precision may be,
the Runge-Kutta algorithm demands two evaluations for the
second-order scheme and four for the fourth-order scheme.
In spite of that, the Runge-Kutta approach has been widely
used because it is self-starting (second-order predictor-
corrector algorithm requires a Runge-Kutta integration at
the first step) and easy to program. More sophisticated
solvers have been discussed by Gjoystdal et al. (1984).

Estimating the integration step used by the numerical
solvers is quite difficult. Although self-adapting solvers exist
generally based on the comparison of the solutions for two
different orders of integration, most of the approaches re-
quire the selection of this parameter and lead to a very
inefficient integration when rays are nearly straight lines
over large distances. One might compute the Hamiltonian
(1), which must be equal to zero, and verify a posteriori the
adequate choice of the integration step for the numerical
scheme. We found a drift from 1073 to 10™° during integra-
tion when integration steps give accurate rays. More impor-
tant drifts are the warning for incorrect integration step. In
our trial tests to evaluate this drift, we have checked the
accuracy of the ray with the one obtained for half the
selected integration step. A discussion about the precision of
numerical solvers can be found in Sambridge and Kennett
(1990).

Programming efficient estimations of partial derivatives of
the velocity can speed up dramatically the ray tracing. We
have found that the representation of the square of slowness
as a three-dimensional tensorial product of cardinal
B-splines of order 4 (de Boor, 1978) gives very simple
expressions for partial derivatives (see below for a more
detailed description of B-splines which are also used in the
description of interfaces).

Analytical ray-tracing approach

Numerical integration of ray trajectories is a rather
lengthy procedure, especially in three-dimensional media.
Moreover, choosing the sampling parameter is always a
difficult problem. The ray tracing scheme can be simplified
as proposed by different workers (Miiller, 1984; Chapman,
1985; Cerveny, 1987; Virieux et al., 1988). The medium is
divided into elementary cells where analytical solutions of
ray tracing are available. A constant gradient of the square of
slowness inside triangles or tetrahedra leads to the simplest
solutions for ray trajectories, paraxial rays and traveltimes.
We refer the reader to Cerveny (1987) or Virieux et al. (1988)
for a complete description and we shall only quote the final
results in this article.

Let us consider an element where the square of slowness,
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uz(x)=u§+'y-x, (10)

presents a constant gradient y. The ray-tracing equations (2)
have a very simple solution (Virieux et al., 1988),

1
po(T) = 5 v(t — 19) + Po(tg)
(11

1
xo(7) = n y(r = 19)% + Po(To)(7 — 7o) + Xo(79),

where the position x¢(7g) and the slowness of py(r,) are
given at parameter 3. The traveltime is obtained by direct
integration of the relation (3). This velocity distribution is
very inferesting because the propagator matrix Py(r, 7o)
associated to the paraxial system (4) turns out to have a very
simple analytical expression '

I (r—79)1

where I is the identity matrix. The jump of the gradient
between cells requires projections of the paraxial canonical
vectors at each boundary [see Farra et al. (1989)]. However,
because the gradient of the square of slowness suffers from
abrupt jumps between cells, an anomalous behavior of
paraxial quantities 1s likely to occur. Perturbation methods
can be used in order to obtain ray trajectories in media with
more complex parameterizations.

Perturbed analytical ray-tracing approach

Considering quadratic interpolation in each element
makes the gradient of the square of slowness continuous in
the whole medium. Moreover, increasing the degree of the
interpolation will also reduce the number of elements needed
to describe a given velocity distribution. Unfortunately, no
analytical solution for ray tracing is available for such an
interpolation. We have to resort to perturbed analytical
solutions as proposed by Farra (1990) or Virieux (1991). We
refer to them for details and present here an outline of the
proposed strategy.

The perturbation approach allows us to consider simpler
elements as parallelepipeds instead of tetrahedra. In each
element, the linear part of the development of the square of
slowness is used in order to define a reference medium with
a constant gradient of the square of slowness. In this simple
medium, rays have the simple analytical expressions (11).
The higher order polynomial terms in the development of
u’(x) are considered as a perturbation Au? and produce a
corresponding perturbation of the Hamiltonian AH =
—172Au2.

We assume that a ray has already been traced in the
reference medium. To first order in Au?, it is possible to
obtain rays of the perturbed medium that deviate slightly
from this reference ray (Farra and Madariaga, 1987). Fol-
lowing Farra et al. (1989), we introduce the perturbed
canonical vector y(7) = yo(1) + Ay(7) of these rays. The
perturbation Ay(t) = (Ax, Ap) contains the perturbation in
position and slowness vector at 7; y,(t) is the canonical
vector of the reference ray. Expressions of rays in the
perturbed medium are given by (Farra and Madariaga, 1987):

T

Ay(s) = Po(r, 10)Ay(rg) + j Po(r, 7)AB(x') dr',
" (13)

where P, is the propagator of the paraxial rays in the
unperturbed medium, Ay(tg) is the initial perturbation and
0
=11
AB EV Au? | (14)

Using the expression of the unperturbed propagator (12), we
can write:

Ax(7) = Ax(rp) + (1 — 79)Ap(7y)
1 +
+£J (r — v)VAu? dr’,

1 (s (13)
Ap(x) = Ap(ro) + j Vau? dv',

0

where Ax(7y) is the initial position perturbation and Ap(t,) is
the initial slowness perturbation. The perturbation of the
traveltime, defined as AT(t) = T(r) — Ty(1), is given by the
expression

AT(7) = AT(xy) + JT v - Ax(7')dr' + JT Au’(") dv'.

K (16)

The perturbed propagator is the sum of two terms (Farra
and Madariaga, 1987)

0

AP 11AP
Po(r, 70) and I:A@ﬂAg)ZZjl

with the unperturbed propagator ®, given by the relation
(12), while the submatrices A% ; are functions of the second
order derivatives of Au? (Farra et al, 1989). All these
expressions can be computed analytically because Au? and
its partial derivatives can be expanded into polynomials in
the 7 parameter [see Farra (1990) or Vinieux (1991)].

Although the expressions to be evaluated are more com-
plicated, the perturbation technique is still a fast method and
eliminates the accuracy problem encountered in the semian-
alytical approach. Moreover, we simplify the cell decompo-
sition and we get rid of the sampling parameter of the
numerical solvers. Implementing it into the three-dimen-
sional ray tracing requires the distinction between cells with
a potential interface and cells without any interface. In the
second case, the procedure will compute the solution at the
boundary of the cell, while the first case requires searches
along the ray for the intersection. This feature is added to the
box strategy presented below.

REPRESENTATION OF INTERFACES AND INTERSECTIONS

When performing ray tracing, searching for an intersection
is a critical task which must be achieved efficiently. Which
interface must we look for? A common approach is an
ordered description, called signature (Cerveny et al., 1977),
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of the different media and interfaces that must be crossed by
the ray. At a current position on the ray, the next potentially
crossed interface is given by the signature. This method is
fast but the signature of the ray has to be given explicitly.
Another useful approach describes the ray by the type of
conversion (reflection or transmission) expected at each
intersected interface. This procedure might be more time-
consuming because rays can be trapped in an unwanted area.
A maximum number of crossed interfaces prevents an infi-
nite loop. Both strategies are useful and depend on the
problem considered.

The precise strategy to compute the intersection depends
dramatically on the interface representation. We are going to
investigate both the mostly used explicit description and the
more difficult implicit description which allows greater flex-
ibility to generate complex interfaces.

Explicit parameterization

The simplest description of interfaces for computing inter-
sections with rays is an explicit representation of the inter-
face where one cartesian coordinate is given with respect to
the two others. Without loss of generality, we might say that
the z coordinate is a function of x and y coordinates. Any
two-dimensional function z = f(x, y) is suitable for our
purpose, as long as the first and second order partial deriv-
atives, which guarantee local definitions of a tangent plane
and a curvature matrix, are available.

We have found cardinal B-splines of de Boor (1978) very
fast to compute because the interpolating kernels, also called
blending functions, are predefined whatever values are given
by the user. In order to assure the continuity of the second
order derivatives, we must choose cubic interpolation which
is associated to the order four of the B-spline. This repre-
sentation has two weaknesses. One must specify a regular
grid in x and y coordinates and the surface does not go
through the given points, which are not data points but
control points that attract the surface to them with a specific
tension (de Boor, 1978). Computing the control points from
the data points can be achieved by an inversion procedure,
as suggested by Inoue (1986) for example. We assume that
the control points are already specified for the ray tracing
program.

Other interpolations based on more complex distributions
of points are sometimes desirable. For example, an abrupt
depth variation of the interface will require a very fine
sampling which will over-sample any flat area of the inter-
face. Other spline functions can be used (de Boor, 1978),
where one must compute initially the interpolation kernels
associated with the more complex spacing between points
and with the values at these points [see Farra and Madariaga
(1988) for 2-D applications]. We have not investigated fur-
ther these more complex parameterizations of interfaces in
3-D geometry, because over-sampling still exists from ten-
sorial products.

Whatever the explicit representation is, it is not difficult to
compute the intersection between an interface and a ray
described by its Cartesian position. Let us assume that the
ray is above the interface (we are still considering the z
coordinate of the interface as a function of x and y coordi-
nates). As the ray advances, it is easy to check the relative

vertical position of the ray with respect to the interface: from
the x and y coordinates of the ray, we estimate the z position
of the interface and compare it to the z coordinate of the ray.
If the interface is still deeper, we continue to integrate the
ray trajectory. As soon as the z coordinate of the ray is larger
than the z position of the interface, we have to compute the
intersection of the ray and the interface knowing two points
one above and one below the interface: any numerical root
finder will perform well, but we prefer fast Newton methods.
Of course, the required position during this search is ob-
tained by integrating ray equations with smaller and smaller
integration steps. Checking where the ray is with respect to
the interface is fast in case of explicit parameterization.
Taking into account that we have to do it very often, one will
try to preserve the explicit representation even for complex
surfaces. Of course, everything we have said for the z
coordinate also applies to the two other coordinates or any
direction for which the explicit representation is valid [as
proposed by Pereyra (1988)].

Unfortunately, different geometries required by geophys-
ical structures, such as salt domes or faults, are not easily
described by an explicit parameterization. One must con-
sider, as Pereyra (1988) did, different patches where a local
explicit representation is available. Relations between
patches and between patches and rays are difficult to define:
Pereyra (1988) only guarantees first-order continuity be-
tween patches which induces instability in paraxial ray
tracing. Another alternative is the implicit representation
which is known in interactive computer graphics (Foley and
Van Dam, 1982) to be far more flexible to describe complex
surfaces than explicit representation.

Implicit parameterization

For computer synthetic images, the implicit representa-
tion has met with great success for the last twenty years with
the pioneer work of Bézier (1972). It provides a description
of any surface that is so simple and fast it is surprising that
it is not intensively used in ray-tracing programs. The reason
is the difficulty in solving the intersection problem between
rays and surfaces in a rather efficient way for 3-D models.
The problem is much simpler for a two-dimensional medium,
as we shall show.

Because the terminology is not widespread in the geophys-
ical community, we shall define a few notations in order to
avoid any misinterpretation. The often made distinction
between Bézier and B-spline interpolations is rather artifi-
cial, because both of them come from Bernstein interpolat-
ing polynomials (Foley and Van Dam, 1982). For simplicity,
we will also discuss this distinction, although the reader
might have heard about a more general definition of Bézier
interpolations which includes the two definitions in this
paper. An implicit parameterization of an interface,

x=fulu, v),y=fy(u,v) and z=f(u,v), a7

introduces two new parameters 4 and v. We shall consider
cubic interpolation in # and v in order to compute second-
order derivatives and we select the associated B-spline of
order 4. For example, the x coordinate is given by the
relation
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4 4

4
E W "k XX P, MU, DM, k),

i=1j=1

I|MA

(18)

where P (i, j) is the x coordinate of the control point P(i, j)
and the parameters u, v belong to the square [0, 1] x [0, 1].
The whole interface is described by changing the sixteen
control points. The matrix

-1 3 =31
3 -6 30

M=1/6 30 3 0 (19)
1 4 1 0

is the matrix, denoted also by M,, of weighting factors
specific to the B-spline interpolation. An equivalent matrix is
available for Bézier interpolation which is denoted by M,,.
The total surface is composed by patches of sixteen control
points with second order continuity between patches. How-
ever, specifying twice one control point will induce a jump in
the curvature, while repeating three times the same point
will restrict the definition of the tangent plane. This proce-
dure can be used to define complicated surfaces such as
faults, pinch outs, and salt domes.

The B-spline interpolation has many advantages in com-
mon with Bézier interpolation. Additional advantages of
B-spline interpolation is the C? continuity needed in our ray
tracing. This argument in itself is sufficient to justify our
selection. It is still interesting to give the other slight
differences between these two interpolations. An advantage
is the local support of the blending functions of B-splines,
but the order four of B-spline interpolation used in this paper
is too low to exhibit this advantage—when we move one of
the sixteen points, the local shape of the surface described
by the sixteen control points is entirely modified. Finally, the
Bézier interpolation forces the surface to go through the four
corner points of the local patch. These points are preferential
points in the description of the surface. On the contrary, the
B-spline interpolation will give an identical importance to
any control points. In any case, one might switch from one
representation to the other one by simple matrix multiplica-
tions (see appendix).

Two important properties of Bézier and B-spline represen-
tations will play a key role in efficient ray tracing. The first
property is the convex hull property which says that the
surface lies inside the convex volume defined by the control
points. Figure 1 shows a B-spline curve inserted in the
convex polygon of the four control points. The same prop-
erty holds in three dimensions: it is only more difficult to
plot. The second property is the subdivision or splitting
widely used in computer graphic design to draw a curve or a
surface with a given accuracy (Lane and Carpenter, 1979;
Cohen et al., 1980; Lyche and Morken, 1986). In the
appendix, we give the transformations as well as the geo-
metrical interpretation of the subdivision technique. Figure 2
shows how we deduce more and more control points for a
given curve. From four initial control points which are
outside the plotting area, we deduce five control points given
by circles. Repeating the procedure twice, we deduce more
and more control points for the same curve. These control

Control point

onvex polygon

Fic. 1. An illustration of the convex hull property for

B-spline interpolation. The four control points are circles

delimiting a polygon inside which is the interpolated curve.
For surfaces, the property is also true.

/
Vs

FI1G. 2. An example of subdivision technique. From four
initial control points outside the figure, five control points
are deduced for the same interpolated curve. The next
subdivisions will give 7 and 11 control points which are more
and more located near the interpolated curve.
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points are located closer and closer to the curve, which
means that the convex surface including the curve is smaller
and smaller: a key advantage for solving the intersection
with rays. Of course, the procedure is identical for surfaces.

Computing the intersection between a ray and an interface
is very complicated, because any evaluation with respect to
an interface requires the knowledge of the two implicit
parameters (¥, v) which are not given directly by the ray
tracing. Moreover, a dramatic difference exists between the
2-D and 3-D cases. Let us assume that we want to test the
intersection of a straight segment between points A and B of
a ray and an interface (Figure 3 or Figure 4). In a two-
dimensional medium, we rotate the coordinates in such a
way that the segment AB is vertical. Any point of the
segment has now the same horizontal coordinate X. Because
the representation (17) is independent of the coordinate
system, we are able to solve the cubic equation X = f,(u).
From the three possible solutions of the parameter u, we
select the solution which corresponds to the nearest point to
the starting point A. Unfortunately, this procedure does not
work in a three-dimensional medium, because, after the
rotation, we have to solve two coupled polynomial equa-
tions, X = f,(u, v) and Y = f,(u, v): we need to obtain all
available solutions in order to select the nearest intersection
point to the starting point.

s

|
B

F16. 3. The subdivision technique is applied to the intersec-
tion of a B-spline curve and a straight segment (AB).
Rectangles including the polygon of four successive control
points are drawn during subdivisions. The three intersec-
tions are detected and accurately obtained.

Using the convex hull property and the subdivision tech-
nique, we succeed in solving the intersection problem. Let
us first illustrate this in the two-dimensional case. We use the
rectangle containing the convex surface defined by the
control points. It is a simple matter to check whether the
segment AB goes through the rectangle delimited by the
current four control points. If it does, we perform the
subdivision and check the intersection between the ray and
the deduced smaller rectangles. We might iterate until the
selected rectangle is small enough that we might consider it
as a point. Figure 3 shows this cascade of rectangles down to
three intersections between the segment AB and the B-spline
curve: three points are obtained and we are sure that we
have obtained all of them. The procedure is slower than any
minimization procedure, but it will find all the solutions.
Figure 4 shows the three intersections of the segment AB
with a B-spline surface. Only the base rectangle of paralle-
lipeds is shown. The implicit parameters (u, v) are also
evaluated during the subdivision procedure at its associated
level of precision.

Locally, it is wise to switch to a method which has a faster
convergence to the intersection point. Denoting positions of
point A by (xq, ¥¢, 2¢) and point B by (x;, y;, z1), one
must solve the problem,

xo T t(xy — x9) = fi(u, v)
yo +t(y1 —yo) = fy(u, v) (20)

z0 + t(z1 —z9) =f(u, v),

with a given initial solution (i, v, #). This procedure has to
be used when a unique solution is expected starting from the
current solution of the subdivision procedure.

FiG. 4. Same as Figure 3 for a curved surface in a 3-D
medium plotted using a perspective view. Only the base
rectangle of each paralleliped is drawn during subdivisions.
Three intersections are also detected and obtained.
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Rotations, which are used in the 2-D approach, are no
longer required. But we can apply them and reduce the final
problem to the finding of the two implicit parameters (u, v).
Performing rotations also has the advantage of giving a very
simple criterion for possible multivalued solutions, because
the ray is vertical. When slopes of the 24 segments connect-
ing the 16 control points have the same sign, we switch to the
search of the a priori single local solution.

We have found in our numerical investigation that the
following strategy presents a good compromise between
stable, but inefficient, subdivision methods and an unstable,
but fast, local search for a solution. For the first four levels
of subdivision, we perform the subdivision procedure in the
general Cartesian coordinate system. During the integration
process along the ray, most of the time we found that the ray
is too far away from the interface so we stop the subdivision
procedure. But, if the intersection between the ray and the
interface is still a plausible hypothesis because boxes are
crossed by the ray, we perform rotations and we continue
the subdivision with a check for single-valued functions.
Once we are sure that only one solution is possible in the
local subdivision (we assume it at the tenth level of subdivi-
sion in any case), we perform the local search for this single
solution. This strategy gives a good compromise between a
quick rejection when the ray does not really cross the
interface and an accurate determination of every intersec-
tion.

We have solved the local problem of intersecting a straight
line and a surface defined with an explicit or an implicit
representation based on B-spline interpolation. All intersec-
tions are obtained and we select the nearest one to be the
correct impact of the ray on the interface. This very power-
ful procedure is too slow to be done at every integration step
along the ray so we must insert it in a global strategy we shall
now discuss.

Strategy based on a box hierarchy

Instead of testing at every integration step the intersection
of the ray with the interface, we might test the intersection
with more simple surfaces which define a volume containing
the interface. By iteration, we could replace the interface by
a hierarchy of boxes which includes parts of it. The ideal
number of boxes depends on the problem at hand, but we
find that three levels cover most of the applications. The
interface must be included in a general parallelepipedic box,
while the elementary parallelepiped deduced from the six-
teen control points is the final stage before the precise search
for the intersection. An intermediate series of boxes takes
into account the local complexity of the interface, as shown
in Figure S.

Testing the crossing of a straight line (a portion of the ray)
with a parallelepiped box is very fast and is performed at
every integration step along the ray. Once we have located
an elementary paralleliped crossed by the straight line, we
must look for the intersection with the B-spline surface,
following the mixed strategy previously described.

Paraxial transformation at the interface

Paraxial transformations II and T across interfaces require
the computation of the normal vector and the curvature

matrix C at the intersection point (see Farra et al., 1989). For
the explicit representation which can be written under the
standard form S(x, y, z) = 0, the corresponding expres-
sions have been given by Cerveny (1985) and are not
repeated here. For the implicit representation, we define the
normal vector as the cross product of the two independent
tangent vectors (3x/du, dy/du, dz/du) and (dx/dv, dy/dv,
dz/0v). Moreover, we define an additional parameter w
which samples the normal direction. The unitary vector
(6x/dw, dy/dw, 9z/dw) is parallel to the vector (3.5/dx,
dS/dy, d5/3z). Moreover, we must solve the linear system,

R EERY EERY

ou’ B B

) ) —=05
dv? ow?

(21
R EER) EX)

= 0, = 0,
oudv ouow dvdw

for the six unknowns (32S/3x2, 62S/ay?, 82S/az2, 828/
oxdy, 9%S/axdz, 9%2S/0yaz) of the curvature matrix. The
first equation of linear system (21) will give explicitly:

0x

ou

ax dy 0z c dy 38 9%x a8 9ty 4S 0%z
quouou) ~\ du | ox our oy ou* oz ou’
4z
ou
(22)
where C is the curvature matrix containing the second order
partial derivatives of the function §. We solve numerically

the system (21) at the hitting point in order to apply trans-
formations II and T to the paraxial canonical vectors.

SAMPLING STRATEGY AT THE FREE SURFACE

Tracing rays with known initial conditions is much faster
and easier than with boundary conditions, although the
second problem is the one we must face in practice. In order
to find rays connecting the source and the stations, we
proceed in three separate steps: shooting, branch investiga-
tion, and two point ray tracing. This strategy is performed
for a specified type of rays defined by its signature.

First level : global box
.......... Second level : local box

............... Third level : elementary box

.
sy

FiG. 5. The three levels of boxes surrounding the interface
which seems necessary to speed up the 3-D ray tracing.
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We must get information about the medium, and the best
way to obtain it is to trace rays inside the medium. Different
procedures can be investigated. We may require a uniform
sampling at the free surface for emerging points of the
shooting rays (a very difficult task), or a uniform sampling of
initial shooting angles. The first procedure will simplify the
two-point ray tracing, while the second approach is a quite
natural procedure. We choose an intermediate strategy in
which one of the shooting angles is kept constant while we
investigate branches by varying the second one. This inves-
tigation is easy because it depends on one parameter.
Keeping the azimuthal angle or the take-off angle constant
will depend on the problem at hand. One technique might
succeed better than the other one depending mainly on the
geometry of interfaces. For plane interfaces, the selected
take-off angle sampling is better adapted than an azimuthal
sampling to obtain a good spatial repartition of rays (Figure
6). In the text, we shall mention only the azimuthal sampling,
but what we are writing will also apply to the take-off angle
sampling.

Along the line traced on the free surface for a given initial
azimuthal angle, branch extremities are located at caustics,
shadow zones, or boundaries of the medium. Caustics are

Take—off angle sampling

10 km

2.0 km

Azimuthal angle sampling

'"!rlll////”;””’ 10 km

3/ 77
’{ 7,
h.

}Z.O km

Fic. 6. Examples of the two options for sampling the 3-D
medium: the take-off angle sampling on the top panel and the
azimuthal sampling on the bottom panel. A horizontal inter-
face is used for illustration.

deduced from the paraxial information, while shadow zones
are obtained when the jump in distance between two con-
secutive rays is too important for a small increase in the
take-off angle. Figure 7 presents a perspective view of rays
as well as the free surface trace for a given initial azimuthal
angle. Although the interface has a simple valley shape, the
free surface trace presents already a complicated pattern.
The paraxial information allows an estimate of the next
angular step in order to guarantee a roughly homogeneous
spacing between emerging points of rays at the free surface.

Once we have finished this a priori sampling of the
medium, broken lines, connecting the end points of the rays
that leave the source in the same azimuthal plane, are drawn
at the free surface. We assume the sampling to be dense
enough to have coherence between two nearby lines with
branch ends located nearly in the same area (Figure 8). If a
station lies inside the quadrilateral defined by four points of
two neighboring azimuthal sections of a given branch, we
deduce that a ray of this branch arrives at the station. At the
end of this second step, we have collected potential rays of
different branches arriving at the different stations.

In a third and final step, we perform shooting and obtain
the different rays arriving at the stations. As already men-
tioned, the two-point ray tracing is performed using paraxial
rays. Three methods are usually considered for this difficult
problem: the shooting method, the bending method (Julian
and Gubbins, 1977; Pereyra et al., 1980) and the continuation
method (Keller and Perozzi, 1983). As stressed by Virieux et
al. (1988), the paraxial procedure might be considered equiv-
alently from these three points of view. The final result is a
paraxial ray connecting the source and the station. This
paraxial ray can be considered as a ‘‘true’’ ray with an
accuracy related to its vicinity with the reference ray.

We must underline that the whole procedure depends on
the a priori azimuthal sampling we have chosen: too small a
sampling will be very time-consuming while rough sampling
can result in branch incoherence. For very complex struc-

10 km

J stm

Fic. 7. Trace of the hitting points of rays at the free surface
for a given azimuth when an interface has a valley shape.
Note the already complex pattern of this trace with the
presence of two caustics. For points of the rays in the
vicinity of the source (shown by a star), the plotting has been
inhibited in order to see the trace continuously.
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tures, interaction with a hierarchical nested control screen as
proposed by Pereyra (1988) would be very helpful for
specific targets inside the medium.

If one station is not illuminated by a given branch while a
neighboring station is, we try to reach the station by per-
turbing the initial conditions of the ray illuminating the
reached station. The procedure often fails because our initial
sampling of the medium by rays has been precise enough to
guarantee that the boundary of the current branch goes
between the two stations. When it succeeds, it will recover
from minor local under-sampling of branches.

Because locating branches is rather time-consuming, we
prefer to use any available initial angles. For example, we
can use angles computed in a previous step of an iterative
inversion. When moving from one source to an adjacent one,
we can exploit the knowledge already obtained and use the
initial angles obtained at the first source as starting values for
shooting from the new one. Of course, we must locate
branches from time to time to check the appearance of new
rays arriving at the stations.

SYNTHETIC EXAMPLES

Two simple synthetic examples will illustrate the different
techniques we have implemented for tracing rays in a 3-D
medium with complex interfaces. We shall restrict ourself to
one interface for visualization. More mterfaces will not
change the philosophy of the ray tracing.

The valley example

We consider a valley which has a translation invariance in
the y direction. We assume a constant velocity in the upper
medium, although we trace inside it using a Runge-Kutta
solver. A first investigation will give the Figure 9, where one
can see the triplication created by the valley. Using branch
coherence at the free surface, we shoot at the different
stations and we obtain expected multiple rays when the
station is in the triplication area (Figure 10). For this
example, the take-off angle sampling gives better results than
the azimuthal angle sampling where some of the stations

End point

Station

End point

Coherent zone

FiG. 8. Schematic strategy for describing rays arriving at the
free surface: branch ends are detected by the variation of
index KMAH and a coherence of branch ends (drawn as
ellipses) is assumed for two nearby azimuthal samplings. If
the station lies inside the quadrilateral defined by the end
points of four nearby rays, a ray for this branch must arrive
to the station.

inside the triplication are not connected to the source by
three rays as they should be. Local iterations from neigh-
boring stations will recover in any case from these sampling
errors.

The salt dome example

A salt dome interface can be represented only with im-
plicit interpolations (Figure 11). We still assume constant
velocity in the upper medium. Figure 11 shows the rays
leaving the source in a same azimuthal plane. When the
source illuminates one wall of the salt dome, one can see the
important spatial variation of the rays in the small pencil
corresponding to the vertical wall. The coherence of
branches is difficult to obtain in this narrow pencil and seems
to require locally dense sampling strategies. Figure 12 gives
an example of rays illuminating the overhanging part of the
salt dome and arriving at a short range network of stations.

10 km

Triplication zone

10 km

Fic. 9. The initial sampling of the medium for an interface
with a valley shape. The take-off angle option has been used
and the triplication is apparent from this systematic shoot-
ing.

10 km Two—point ray tracing

10 km

Fic. 10. Shooting at a network of stations. The initial rays
are given in Figure 9. A line of stations is located inside the
triplication and three rays arrive at these stations. Note the
different pencils leaving the source.
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This example illustrates the flexibility of implicit represen-
tations of interfaces.

CONCLUSIONS

We have analyzed the different difficulties encountered
when tracing rays in complex three-dimensional media with
interfaces. For rays and paraxial rays, we have implemented
a second-order Runge-Kutta solver based on a cardinal
B-spline interpolation of order four of the square of slow-
ness. However, recent perturbation analytical strategies will
be an efficient and accurate alternative in the future. For the
same grid, the ratio of CPU times between numerical and
perturbed analytical strategies is between two and ten,
depending on the order of the polynomial expansion of the
perturbation term. Interfaces are defined with an explicit or
an implicit representation based on the B-spline interpola-
tion of order four. We use techniques of computer graphics
to overcome the problem of intersecting the ray with an

2 km

implicit interface. Without using a box strategy for the
interfaces, the intersection computation is ten times faster
for an explicit representation compared to an implicit repre-
sentation of the same surface. The box strategy will reduce
this ratio by a factor which depends on the surface complex-
ity and the number of rays to trace. Finally, we suggest a
strategy for finding the different rays arriving at a station. A
preliminary sampling of the medium is necessary for this and
a careful selection of parameters controlling this sampling is
still required for the success of this search. The different rays
arriving at a station can be used to synthesize seismograms
or to make a traveltime tomographic image.
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Fic. 12. An example of rays arriving at a narrow network of
stations. The overhanging part of the dome is illuminated in
this particular case.
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APPENDIX
SUBDIVISION OF BEZIER AND B-SPLINE SURFACES

Let us consider one-dimensional interpolating functions in
order to illustrate the geometrical properties of B-splines.
The coordinate x can be interpolated from the x-coordinates
of four control points using the relation:

X1
X2
X3 ’

x(u) = UMP, = [1 u u? u?]M; (A-1)

X4

where the matrix U are powers of the implicit parameter u
ranging from 0 to 1. The expression holds also for Bézier
interpolation where the matrix M, (equation 19) has to be
replaced by M,. The inversion of the relation M,P, =
M, Q, in order to obtain the control points Q for Bézier
inter~polation shows the equivalence between B-splines and
Bézier interpolations.

The subdivision for Bézier interpolation is related to the
geometrical construction of Figure A-1 and gives seven new
control points from the four initial ones. The matrix associ-
ated to the geometrical construction is simply given by the
relation:

e Old control points
m New control points

~ _ d
Bezier

FiG. A-1. A geometric interpretation of the subdivision
technique of Bézier curves.

X, 1 0 0 07

X, 2 12 0 0

X, Vs 12 us o ||
Q.=| X4 [=| U8 38 38 U8 |2 (A-2)
1 xs 0 u4 12 u4 ||

X 0 0 12 12 |

L X ] L0 0 0 1|

where Q are the new seven deduced control points corre-
sponding to two new patches with one common point. From
the equivalence between Bézier interpolations and B-
splines, we deduce explicitly the subdivision matrix for
B-splines,

X, 2 12 0 0
X, 18 3/4 18 0 ||

Pi=| X3 |=| 0 12 12 0 f , (A-3)
X, 0 1/8 3/4 18 3
X 0 0 12 12 LM

used in our numerical implementation. Only five points are
deduced for B-splines (Figure A-2) corresponding to two
new patches with three common points; here a notable
difference appears in geometric properties of Bézier and
B-spline curves. Identical properties hold for surface de-
scription, because we use tensorial products, but the closed-
form equation (A-3) of B-spline subdivisions given here is
essential for efficiency.

e Old control points

m New control points

/‘\

B—spline

Fic. A-2. A geometric interpretation of the subdivision
technique of B-splines.
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