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Iterative asymptotic inversion in the acoustic 
approximation 

Gilles Lambar&*, Jean Virieuxz, Raul Madariaga”, and Side Jin* 

ABSTRACT 

We propose an iterative method for the linearized 
prestack inversion of seismic profiles based on the 
asymptotic theory of wave propagation. For this pur- 
pose, we designed a very efficient technique for the 
downward continuation of an acoustic wavefield by 
ray methods. The different ray quantities required for 
the computation of the asymptotic inverse operator 
are estimated at each diffracting point where we want 
to recover the earth image. In the linearized inversion, 
we use the background velocity model obtained by 
velocity analysis. We determine the short wavelength 
components of the impedance distribution by linear- 
ized inversion of the seismograms observed at the 
surface of the model. Because the inverse operator is 
not exact, and because the source and station distri- 
bution is limited, the first iteration of our asymptotic 
inversion technique is not exact. We improve the 
images by an iterative procedure. Since the back- 

ground velocity does not change between iterations, 
there is no need to retrace rays, and the same ray 
quantities are used in the iterations. For this reason our 
method is very fast and efficient. The results of the 
inversion demonstrate that iterations improve the spatial 
resolution of the model images since they mainly con- 
tribute to the increase in the short wavelength contents 
of the final image. A synthetic example with one-dimen- 
sional (I-D) velocity background illustrates the main 
features of the inversion method. An example with 
two-dimensional (2-D) heterogeneous background dem- 
onstrates our ability to handle multiple arrivals and a 
nearly perfect reconstruction of a flat horizon once the 
perturbations above it are known. Finally, we consider a 
seismic section taken from the Oseberg oil field in the 
North Sea off Norway. We show that the iterative 
asymptotic inversion is a reasonable and accurate alter- 
native to methods based on finite differences. We also 
demonstrate that we are able to handle an important 
amount of data with presently available computers. 

INTRODUCTION the integral equation that relates the model to the observed 

The construction of images of the subsurface of the earth 
by the inversion of seismic reflection profiles has been 
investigated by many authors. In a pioneering work, Cohen 
and Bleistein (1977) obtained an approximate solution of the 
inverse problem for almost vertical incidence using asymp- 
totic methods. In a major contribution to inverse theory, 
Beylkin (1985) showed how to use asymptotic ray theory to 
construct an inverse operator for the case of a single source 
point and a continuous distribution of receivers on the 
surface of the model. Several improvements of Beylkin’s 
original method were proposed in the literature (e.g., Miller 
et al., 1987; Bleistein, 1987b: Beylkin and Burridge, 1990). A 
common feature of these techniques is that the inverse 
operator was constructed by mathematical manipulation of 

seismograms. These methods are very fast because they are 
based on asymptotic theory. The main drawback for the 
construction of the asymptotic inverse operators by Bey- 
Ikin’s method is the need to establish a one-to-one relation- 
ship between the observed seismograms and the earth model 
parameters. 

A very different approach to inversion, based on the 
theory of optimization, was proposed in a series of papers by 
Tarantola and coworkers (see, e.g., Tarantola, 1984; Pica et 
al., 1990: Crase et al., 1990). In the optimization approach, 
the hope of building an explicit inverse operator is aban- 
doned and instead, an iterative method is developed to find 
the model that best fits observations within a certain error 
criterion. The optimization approach leads to algorithms that 
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are much slower than those of Beylkin, but are much more 
robust and can handle incomplete and redundant data sets 
without problems. 

Jin et al. (1992) proposed an asymptotic inversion method 
where the main advantages of both approaches to inversion 
were exploited to construct a fast and robust inversion 
method. In this approach, the inverse problem was formu- 
lated using classical optimization theory [see Tarantola 
(1987) for a recent review] but the gradient was computed 
using the methods of asymptotic ray theory. In their final 
result, Jin et al. (1992) found an iterative algorithm based on 
Newton’s optimization method. This algorithm allows for 
the use of redundant and incomplete data sets, as well as for 
the limited frequency band of the sources used in exploration 
geophysics. 

The inverse problem requires a very efficient algorithm for 
the solution of the forward problem. Most authors have 
adopted finite difference methods for forward modeling (see, 
e.g., Kolb et al., 1984; Mora, 1986; Pica et al., 1990, etc), but 
the computer time required by finite difference is simply too 
long. An alternative to finite difference is to use ray theory 
that is probably just as accurate as the full numerical solution 
in the frequency band used in vertical seismic profiling. It 
should be pointed out, however, that ray theory is more 
economical than finite differences only if ray tracing is done 
very efficiently. In this article, we propose an efficient 
downward ray-tracing strategy to compute the different 
parameters-traveltime, slowness vector, and geometrical 
spreading-required at each diffracting point by the asymp- 
totic inverse method. We discuss the iterative asymptotic 
inversion described by Jin et al. (1992) in the acoustic 
approximation for a single parameter. It turns out that, 
because in linearized inversion the reference velocity model 
does not change, ray tracing can be done once for all the 
iterations. The iterations are thus run at a minimum compu- 
tational cost. 

In the following, we present first a synthetic example with 
one-dimensional (1-D) velocity background that is used to 
demonstrate the practical importance of iterations. A two- 
dimensional (2-D) background is adopted for the second 
synthetic example to demonstrate the use of our method in 
the presence of a more realistic velocity background. Fi- 
nally, the acoustic algorithm will be applied to a seismic 
profile recorded on the North Sea, off-shore from Norway. 
With this example we intend to demonstrate the efficiency of 
our two-dimensional ray-tracing method and the importance 
of iterations for improving the image in a practical example. 

DEPTH CONTINUATION OF ACOUSTIC FIELDS BY RAY 
THEORY 

The high-frequency approximation of the acoustic field is 
required for both the forward and inverse problem. Two time
scales are involved: the time of propagation and the time of 
the source wavelet. Using ray theory, we are able to 
distinguish the separate effects of these two time scales in 
the forward and inverse problems. 

When a source has been fired at the point r, with the 
temporal signature S(t), the pressure P recorded at the point 
r outside the source area satisfies the Helmholtz equation in 
the frequency domain: 

w* 
- P(r, rJ, 0) + V*P(r, r,Y, w) = 0, 
c2(r) 

(1) 

where c is the velocity and V2 denotes the laplacian. In a 2-D 
medium, the high-frequency approximation to the solution of 
this equation is: 

P(r, rJ. w) = S(o)As(r, r,5)e’we”~“’ 
&- 

(2) 

where 8 satisfies the eikonal equation (On)2 = r-* and A0 
the transport equation (Cerveny et al., 1977). The typical tail 
associated with 2-D propagation arises from the term 
l/v-i”. The slowness vector p = Vt3, the gradient of 0, is 
perpendicular to the phase fronts 8 = constant. The rays, 
which are the orthogonal trajectories to the phase fronts, are 
consequently tangent to the slowness vector. Selecting a 
sampling parameter for phase fronts, as well as for rays, will 
precisely define the eikonal. We choose the sampling param- 
eter 7, related to the traveltime by dn = u2d7, where u* is 
the square of slowness (cerveny, 1987; Virieux et al., 1988; 
Farra et al., 1989). We always perform kinematic and 
dynamic or paraxial ray tracing simultaneously to be able to 
compute the geometrical spreading, as well as control the 
ray sampling inside the medium. 

Starting from one point at the free surface, we sample the 
medium down to a specified horizon. If caustics are de- 
tected, the different ray branches (cerveny et al., 1977; 
Hanyga, 1988) are located on this horizon and an interpola- 
tion is constructed inside each branch. After this first step, 
ray tracing is continued to the next horizon for each branch. 
With the help of interpolation, the ray may leave the horizon 
from any position suitable for a good discretization of the 
following horizon. We avoid the redundant procedure of 
computing branches on this new horizon starting again from 
the initial point. In this way, we guarantee a uniform 
sampling of the whole medium and avoid oversampling 
around the initial point and undersampling far away from the 
starting point. On every horizon,, small ray branches may be 
suppressed if they are poorly sampled. A minimum of five 
rays are required for example to accept a ray branch. This 
procedure is found to be stable as long as we do not increase 
the number of horizons too much. A reasonable number is 
between two and five. Between horizons, any ray quantities 
needed at a sampling point are interpolated between the two 
rays enclosing the point for each branch. 

We assume that the medium varies smoothly, a good 
approximation for our imaging purpose. Interfaces are not 
taken into account: rays between two points are always 
direct rays. The procedure of continuation is greatly simpli- 
fied by considering only one kind of ray. 

Figure 1 shows an example of ray tracing down to a 
horizon located at 30 km depth: no branches are observed 
and the horizon is uniformly sampled by the rays. In the next 
step, rays leave this horizon to reach the horizon down to 
90 km where three branches are created. The sampling is 
uniform at this final horizon and it is the same as for the first 
horizon: consequently, the density of rays leaving this 
horizon is rather dense. The procedure can be repeated again 
for another horizon. When a branch is undersampled at a 
given horizon, we delete it and create an associated artificial 
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shadow zone coming from the downward continuation. We 
found that this restriction was not too severe in our practical 
applications. 

The depth continuation by rays seems to be a very efficient 
technique to propagate the acoustic field downwards in a 
laterally heterogeneous media. Incorporating multiples will 
require more complex ray trajectories and was not attempted 
here. 

ITERATIVE ASYMPTOTIC INVERSION 

The iterative asymptotic inversion method that we use 
was discussed in a companion article (Jin et al., 1992) and is 
presented here in the simpler case of the acoustic approxi- 
mation. A more extensive description and its extension to 
elastodynamics can be found in LambarC (1991). 

Born’s approximation 

Let us consider a 2-D medium with a velocity field 
described by 

c(x) = c.“(x) + AC(X), (3) 

where c”(x) is a given selected velocity field and AC(X) is the 
perturbation of the velocity field. Although the final inverse 
formula will be in the time domain, discussion is easier when 
we proceed in the frequency domain. In this domain, the 
Born approximation gives a perturbation of the pressure 6P 

.J?OO 
OFFSEl-o INBoKo\ 

20.00 . 80.00 

FIG. I. Ray tracing by downward continuation between two 
horizons. Let us remark that the spacing between the points 
of arrival of the rays is the same for the two horizons. Due to 
defocusing, the rays in the second layer are denser than 
those in the second one. The initial conditions for ray 
shooting from the first horizon are obtained by interpolation 
of the rays that arrive to this interface. 

at the receiver r for a source located at r, for the velocity 
perturbation AC(X). We can write the pressure perturbation 

s -2Ac(x) 
= dx’ G(r, x, CO) ~ 2 

co(x)3 
G(x, rS, o)w , (4) 

L) 

where the integration domain D is over the diffracting points 
and G(r. r’, o) is the Green’s function for an impulsive 
source at r’ recorded at the receiver r. This equation can be 
identified with equation (8) of Miller et al. (1987) by writing 
the perturbation 

-2Ac(x) 
m(x) = ~ 

(.()(X)3 ’ 
(5) 

as the function f(x) of Miller et al. From many ways to 
construct Green’s functions, we choose ray theory that 
simplifies the forward problem, as well as the inverse for- 
mulation. The Green’s function is defined for an impulsive 
source, i.e., S(w) = I in equation (2). Thus for a 2-D medium 
we can write 

SP(r, rs, w) = 
s 

dx’iw m(x)A(r, x, r,,)eiwT’r-x*r~ ‘, (6) 
u 

where A(r, x, r,,) is the product of the amplitudes of the two 
rays connecting the source to the diffracting point and the 
diffracting point to the receiver. In the same way, the 
function T is the sum of the two traveltimes. In the acoustic 
approximation with a single parameter, the summation over 
scattering modes given by expression (17) of Jin et al. (1992) 
is suppressed. We rewrite the forward problem in the 
compact operator expression 

6P=Gm, (7) 

where m(x) belongs to the model space M and SP(r, rS, co) 
to the data space D. G is the line,arized projection operator 
from M into D. 

The cost functional 

Following Jin et al. (1992), we define the cost function 

S(m) = l/2(6P”h” - GmlSP”bS - GwI)~, , (8 

which is defined over all the data space by the inner produc 

8- 

) 

:t 

S(m) = l/2C 
J 

dw(GPoh” - Gtn)Q(8P”b” - Cm), (9) 
r.r,, bl 

with a weighting coefficient Q. The choice of this coefficient 
is based on previous works on the asymptotic approach 
(Beylkin, 1985; Beylkin and Burridge, 1990). This weighting 
kernel must correct for geometrical spreading, obliquities of 
rays, as well as spectral content of the asymptotic Green’s 
function. It must also correct for the discretization of the 
data acquisition system whatever it is. Following Jin et al. 
(1992), we define the coefficient Q differently at each dif- 
fracting point xc,, which is a rather unusual procedure for 
inverse problems, but is often done in migration where data 
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are always preconditioned before migration. The expression 
for Q is 

Q(r, rs, XO, 01 = 
Ip(r, rs, x0)12 

(2n)‘oA2(r, XO, r,) 
J(*. 5; r, r5, x01, 

(10) 

where, vector p = VT(r, rs, x0) is the gradient of the 
two-way traveltime 7. The geometry is described by two 
angles. The angle IJJ is the orientation of the slowness vector 
p with respect to the vertical, while the angle 5 is the 
aperture between the slowness vector of the source and the 
receiver at x0 (Figure 2). The Jacobian J($, 5; r, rs, x0) 

relates the source and station positions at the free surface to 
these two angles $ and 5 at x0. 

Asymptotic inversion 

Inversion is obtained by minimizing the cost function (8) 
among all linearized models m. We get 

whose solution is 

6S 
-_=O 
6m 

(11) 

H(m) = Gi8Poh”. (12) 

The Hessian H = Gt G where G’ is the adjoint operator to 
G. The right-hand side of equation (12) is recognized as the 
gradient y of the cost functional with respect to the current 

SOURCE RECENER 

FIG. 2. Geometry of the rays connecting the source and 
receiver to the point x0 where we are currently inverting the 
impedance model. Vector p is the sum of the local slowness 
vectors of these two rays. The two angles 5 and + define the 
local geometry of the two rays. 

model m. Following Jin et al. (1992), using asymptotic ray 
theory the gradient can be written in the very simple form: 

y(x, x0) = G+8P”h” 

X H[SP”b”(r, r$, t = T(r., r,,, x)] (13) 

where H(GPohJ) denotes the Hilbert transform of fiPobJ. 
The gradient (13) is exact, but the inverse of the Hessian 
H = Gt G cannot be calculated exactly because its dimen- 
sions are too large. For this reason, we solve expression (12) 
by a quasi-Newton approach. Let H, be an approximation 
to the Hessian H. Thus, the nth iteration of the model m is 
deduced from the previously obtained model by 

(m,,) = (m,, ,) + G-g[SP”h’ - G(m, ,)I, (14) 

where G my is the approximate generalized inverse H,’ Gt 
An excellent approximation H, to H can be computed 

using the recent work in Beylkin (1985) and Jin et al. (1991): 

1 
H,(x, xo) = c - 

r,ls (27r)? 

2 A’(r. x, r,) 

A2(r, XO, r.,) 

x J(*. 5; r, r,, x0)e -iw[Tir.r, .x) ?b.T( .?.())I (15) 

which, to first-order in Ax = x - ~0, gives 

1 
H,(x. xg) = c - 

)‘,)‘,, (27F) z 

X c do wp’.J(*, 5; r, r,, xo)~iwp’Ax. (16) 

We then assume that the distribution of sources and receiv- 
ers is such that 5 and + are more pr less uniformly sampled 
around the diffracting point x0. In this case, the integral in 
equation (16) is the approximate Fourier transform of a delta 
function. Uniform sampling of 5 and + is never obtained in 
practice so that the following expression is only an approx- 
imation to the Hessian. 

H,(x, x01 = c L 6(x - x,,) = $ s(x - x0), 
I 2Ar 

(17) 
5 

where N is the number of sources and Ar is the station 
sampling step. For a one-parameter inversion, the effect of 
the aperture angle reduces to the sum over sources. Further 
details are given in Jin et al. (1992). Taking the initial model 
(ma) as zero, the first iteration of equation (14) is 

J($, 5; r, r,, xo) 

X X[6Pobs(r, rJ, t = T(r, r,,, x0))]. (18) 

Higher order iterations of the model can be obtained from 
equation (14). This is done by simply replacing 8Pobs in 
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equation (18) by the residual 6P”‘” - G(m,,_ ,). We observe 
that the iterative method does not require any further ray 
tracing because the background velocity model does not 
change between iterations. Thus, the traveltimes T. ampli- 
tudes A, Jacobian J, and slowness p are the same as in the 
first iteration. 

For the strict application of equation (18). we would need 
impulse-response seismograms, so that we must somehow 
deconvolve the recorded seismogram from the source wavelet. 
In practice, we used a very simple deconvolution method: the 
spectrum of the seismogram was divided by the spectrum of 
the source in the frequency range defined by the source. We 
did not try to do any sophisticated adaptative deconvolution, 
although the final image would have certainly benefited from 
any improvement in the low-frequency contents of the data. 

The inverse expression (18) represents a stack of mi- 
grated, phase-shifted, and dynamically corrected seismo- 
grams summed over sources Y, and receivers r. The sums in 
the stack can be reorganized in many ways, giving different 
weights to different seismograms. An interesting way of 
processing the data is to first consider each source r, 
independently. Thus we obtain several inverted vertical 
profiles at the same horizontal position. The set of all these 
vertical profiles is usually called an Iso-X section. Iso-X 
sections may be used very eh’ectively to test the quality of 
the inversion. If the inverted profiles in an Iso-X section are 
similar. this is proof that the background velocity model is 

correct. and that the inversion has actually found an imped- 
ance profile that is coherent among several sources and 
receivers. Later we will show an Iso-X section for the 
Oseberg field data set. From the Iso-X section, we have 
many ways to construct an impedance model; for instance, 
we can choose the most energetic profile which is usually the 
one located right under the source. Following Jin et al. 
(1992). in our work we adopted the stack (18) which is a 
weighted sum of the different migrated profiles. The weight- 
ing, controlled by p’J, tends to eliminate the influence of 
wide angle reflections (large 5) and to average the small 
reflection-angle profiles to obtain the final vertical profile 
(m, ) under every source and receiver position. 

The inverse algorithm presented above is linear because 
we do not change the background velocity model between 
iterations. Of course. we might add the result of the inver- 
sion (m, ) to the reference model to generate a new back- 
ground velocity model. We could then trace rays in the new 
reference medium and again apply the inversion algorithm 
(18). This nonlinear iteration has not yet been attempted 
because the model inverted from equation (18) and the long 
wavelength model used as a background are not defined over 
the same spatial-frequency band. How to smooth the per- 
turbed model before adding it to the previous reference 
model is still an open question that we intend to discuss in a 
future paper. 

Velocity in ms-l 

0 2000 
Distance in km 

.5 1 1.5 

FIG. 3. Definition of a I-D medium. In (a), we show the complete velocity model used to generate the synthetic seismograms 
used in the asymptotic inversion. The crosses indicate the grid points used to specify the finite-difference grid. In (b), we present 
the smooth profile that will be used as the background velocity for the iterative asymptotic inversion. Panel (c) shows 
seismograms computed by a finite-difference method with a mute applied to the direct wave, as well as to critical arrivals. Please 
note the weak artificial reflections coming from the numerical grid edges. 
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SYNTHETIC EXAMPLES TO TEST THE INVERSION 
PROCEDURE 

Laterally uniform velocity background 

To test the validity of our inversion procedure. we created 
a synthetic set of seismograms by the finite-difference 
method (Virieux, 1984) modified for the acoustic problem in 
Gauthier et al. (1986). We considered a I-D medium sug- 
gested by the work of Pica (1988) and Pica et al. ( 1990). We 
discretized this velocity profile on a vertical grid of 481 
points and we filtered out wavelengths shorter than IO times 
the grid step. We obtained the velocity profile of Figure 3a. 
From this vertical profile. a low-frequency background was 
estimated that is also shown in Figure 3b. We used the same 
vertical velocity structure under each of 481 horizontal 
points. The spatial step of 6.67 m gives a total horizontal and 
vertical extension of 3200 m. The time step of 0.8 ms over 
2500 steps gives a time window of 2 s. We computed 
synthetic seismograms for 56 receivers with a step of 33 m 

Distance in km 

FIG. 4. Residuals of the seismograms after five iterations of 
the asymptotic inversion of the synthetic seismograms gen- 
erated for the I-D velocity model of Figure 3. 

between receivers and a maximal offset of 1800 m (Figure 
3~). The source signal was the second-order derivative of a 
Gaussian function exp ( - t ’ it;’ ) with a characteristic time f ( 
of 25 ms. We have also applied a mute to get rid of the direct 
wave and critical arrivals. 

Let us consider the low-frequency background as our 
initial velocity model. We performed ray tracing by the 
depth continuation technique with three horizons for a single 
source, because the reference medium is only I-D. By means 

Velocity in ms’1 

2000 

\ 

FIG. 5. Final result of the asymptotic inversion of the I-D 
velocity profiles of Figure 3. The Figure shows the results of 
the fifth iteration. We added the background velocity before 
plotting the new velocity profile. 
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of the iterative inversion technique described above, we 
could improve the initial 2-D image by iterating until practi- 
cally no signal was left on the residues (Figure 4), except for 
parasite reflections coming from the edges of the numerical 
grid and influences of the applied mute. A quantitative 
analysis is given in Figure 5, where the convergence towards 
a final solution is obtained in around five iterations. The 
“true” velocity profile is matched nearly perfectly both in 
positions and in amplitudes of the perturbation. We obtain 
the complete velocity profile by adding the background 
velocity to the recovered perturbation. This example is very 
well suited for iterative asymptotic inversion because of the 
high spatial-frequency band we chose to recover. Of course, 
as it is well understood [see Snieder et al. (1989), for 

example], any bias in the background velocity would have 
degraded the final image. 

2-D velocity background 

We now go one step further by taking into account lateral 
variations of the velocity both in the “true” model and the 
background model. We define a medium of velocity 2000 m/s 
on which we superpose a disk-like perturbation of 500 m/s 
located at the position (x, z) = (1000 m, 1000 m) with a 
radius of 150 m above a flat interface at a depth of 1400 m 
(Figure 6a). What is the image of the flat interface with the 
influence of the disk? 

Let us assume that we have already obtained a smooth 
background velocity for the disk. The disk is taken into 
account for ray tracing, but we assume that it produces no 
reflections. For each source, we perform ray tracing with six 
reference horizons. In Figure 7, we show the rays for two 
sources where the influence of the disk is important and can 
create caustics. The precision of the inverted image in- 
creases with the number of sources. In Figure 6b, the 
circular shape of the disk is very well recovered, and the 
interface below the disk is almost horizontal; smiles have 
practically disappeared. In other words, time shifts associ- 
ated with the disk have been correctly taken into account. 

Split spread array 
8ource 

X= receiver a receiver 

Dhacvinkm 

P 
0 
6 

e” 

FIG. 6. (a) Geometry of the 2-D model used to test the 
asymptotic inversion method. The model contains a disk and 
a flat interface. (b) 2-D images obtained (10 shots) by 
asymptotic inversion of seismograms recorded at the surface 
of the model for a split spread array described on the top 
panel. Because we used an appropriate background model, 
the flat interface is recovered with very little deformation. 

The iterative asymptotic inversion produces a very accu- 
rate high-frequency image of the subsurface. We show that 
the depth continuation of acoustic waves by rays is well 
adapted to seismic inversion and permits us to consider 
heterogeneous background velocities. By iteration, we were 
able to estimate the high frequency component of the ampli- 
tude perturbation. The deconvolution of the source wavelet 
is the main limiting factor to inversion. Any recovered low 
frequency will increase the quality of the image. The re- 
ceiver distribution has a less dramatic effect and might be 
partially counter-balanced by the redundancy of the data. 

2.5-D approximation 

Before considering real data, which will be our next step, 
we must consider the approximation for a 3-D medium with 
an invariance along the y-direction. This approximation is 
called the “2.5-D” approximation (Bleistein, 1987a); this 
approach retains the ease of ray tracing in a 2-D medium, but 
includes the geometrical spreading of a 3-D medium, as well 
as a correcting factor around the diffraction point. 

The geometrical spreading for this 2.5-D geometry is 
deduced from paraxial ray tracing. As previously shown in 
Bleistein (1987a), we have the relation 

7 - TO 
.f2.5-D(7) = J2-D(7) - 

co(x) ’ 
(19) 

which is related to the amplitude variation by the usual 
condition for energy conservation along ray tubes; 
ALUM is kept constant along rays. 

The second effect of the invariance along the y-coordinate 
appears in the estimation of the scattered pressure that is 
given in a 3-D medium by the integral 
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SP(r, r,w) = o2 dx dy dz m(x)A(r, x, r,,)erwT(r,x.rA) 

(20) 

over the 3-D domain D of diffracting points. Sources and 
receivers are in the y = 0 plane. In this geometry, the main 
contribution to integral (20) comes from the vicinity of the 
y = 0 plane. We can use a stationary phase approximation 
for the integral along y. We find 

A(r, x, r,) 
X dx dz m(x) I’WT(r.X,r,s) 

(th’ld?y), =” e 
(21) 

for the 2.5-D Born approximation which leads to the same 
inverse procedure than for the 2-D geometry except that real 
seismograms are processed by a different transformation X 
than the Hilbert transformation X of equation (18). Follow- 
ing Bleistein (1987a), the second partial derivative of the 
function T with respect to the coordinate y is readily obtained 
from ray tracing and is equal to 

The Oseberg Field is a large oil and gas accumulation 
located on the Bergen High in the transition zone between 
the Viking Trough to the West and the Horda Platform to the 
East. A general structural interpretation was given by Bad- 
ley et al. (1984). A more specific description can be found in 
Nipen (1987) who gives a precise interpretation of the Brent 
Group, the reservoir for the Oseberg Field. 

a72 

ii 

1 1 

a ‘y 
=p+ 

r(r,, xl dr, xl ’ 
(22) 

?‘=o 

We preprocessed the data set to eliminate multiples com- 
ing from the sea water with a thickness of 110 m in the area. 
Then we deconvolved the source time signal by the follow- 
ing, rather simple technique. To build the deconvolution 
filter, we inverted the spectrum of the source in the fre- 
quency band where source spectral amplitude was large, and 
band-pass filtered the rest of the spectrum. The time domain 
deconvolution filter was finally computed by an inverse 
Fourier transform. We assumed that the source signal is 
known and is the same for the different shots. 

where T is the sampling parameter we are using during ray Starting from an initial background velocity (Figure 8) 
tracing. We are back to an expression similar to equation (6), obtained by standard velocity analysis and given to us with 
to which we apply the asymptotic inversion method pro- the data set, we inverted the whole profile taking only every 
posed in Jin et al. (1992). eight sources and using the 2.5-D approximation for the 

INVERSION OF THE OSEBERG PROFILE NHtW269 

Up to now, we have considered only synthetic data. With 
a 2-D seismic profile over the Oseberg Field in the North Sea 
off Norway, we are concerned with more than 800 shots with 
a total cable length of 2500 m for 96 groups of geophones. 
The recording time window is 6 s with a sampling step of 
4 ms giving us more than 3200 millions of bits of raw data. 
This data set belongs to an experimental 3-D marine line. 

(text continued on p. 1148) 

Distance in km 

FIG. 7. Typical example of ray tracing in the heterogeneous background model of Figure 6. The shot point is 
the left-most point of the source array in Figure 6a. Note the formation of a caustic associated to the 
tangential illumination of the disk. 
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asymptotic inversion. We traced rays for all the selected 
sources and the 96 associated receivers, and we kept the 
results for the inversion procedure. Figure 9 gives us the 
migrated image in terms of velocity perturbation with re- 
spect to the depth. This image is similar to the one obtained 
by 3-D finite-difference migration and shows us the tilted 
block toward the Viking graben, as well as bright interfaces. 
Water multiples are still present and, somehow, complicate 
the interpretation of the migrated section. Obvious destruc- 
tive interference between the source 240 and the source 360 
would require another background velocity. We did not try 
to modify the reference medium, and we stopped at this first 
iteration for the whole profile. Other iterations would have 
introduced a higher frequency content in the image as we 
obtained for the well-defined target we will analyze now. 

For stratigraphic interpretation-especially on how the 
Brent Group ends below the Cretaceous layer-an area drew 
our attention. We decided to test the performance of the 
iterative method for this subset of the data where 250 shots 
were involved. The first iteration, which is a small section of 
the complete profile of Figure 9, is presented on the top 
panel of Figure 10, while the second and third iterations are 
on the two other panels. The high-frequency content of the 
migrated image increases with the order of iteration, while 
the residues for the first two iterations decrease significantly. 
The second and the third sections are quite similar, leading 
us to assume that convergence was reached. 

Stratigraphic interpretation is still difficult, especially for 
the top of the Brent Group between sources 330 and 380, but 
we find that the prolongation of the reflector related to the 
top of the Brent Group is unambiguously defined below the 
Cretaceous interface (Figure 10). 

To estimate the quality of the inverted images, we calcu- 
lated the variance (or energy) of the data (Edauto = Ild~tal(~) 
and of the residues. We then calculated the residual energy 
reduction (RER) by the following expression RER = 
lOO(1 - Errsid,,JEdaru). The value of RER decreased from 
80 percent at the outcome of the first iteration down to about 
70 percent at the end of the third iteration. From residues for 
a given shot as shown in Figure 11, it is easy to see that the 
RER does not steadily decrease with iterations because of 
unexplained local energy. The iterative asymptotic inversion 
has successfully explained most of the reflections by velocity 
perturbations in spite of the restrictions associated with the 
Born approximation. Let us recall, however, that we as- 
sumed acoustic propagation; therefore any converted phases 
between compressional and shear waves will be interpreted 
as P - P reflections. One has to be aware of this limitation 
when looking at the subsurface image. 

A better test of the inversion results is provided by well 
number 36/10 drilled down to 2500 m near shot 350, right in 
our target area. As shown in Figure 12, we convolved the 
profiles of velocity and impedance along the borehole with a 
wavelet to bring these profiles to the same spatial resolution 
of the seismic source. We compared the filtered profiles with 
those obtained from our inversion method at the shot points 
350 to 356 located very close to the borehole. As shown in 
Figure 12, the agreement between the inverted and filtered 
profiles is excellent, both for velocity and impedance. Two 
main reflectors are clearly identified in the inverted image. 

This final test makes us confident that our algorithm pro- 
duced valid images of the earth subsurface. 

Another test of the quality of the inversion and the 
suitability of the background velocity model are the Iso-X 
profiles defined previously. The Iso-X profile in Figure 13 
was calculated under the shot point number 401. Lateral 
continuation of the inverted impedance profiles is an excel- 
lent indication of the quality of the background velocity and 
also of the stability and quality of the wave propagation 
method. 

Concerning computational efficiency, we found that trac- 
ing a single ray takes between 15 and 30 s of CPU time of a 
CRAY-XMP, depending on the number of horizons used in 
the ray-field continuation method. Constructing the image of 
a single point takes less than 1 s per iteration, so that the 
most expensive part of our program is ray tracing. Any 
further efforts to reduce the CPU time required for ray 
tracing is therefore most welcome. 

CONCLUSIONS AND DISCUSSION 

We demonstrated that a linearized inversion procedure 
based on the classical theory of optimization as proposed in 
Tarantola (1987) and coworkers, and using several important 
results from the asymptotic inversion theory proposed in 
Beylkin (1985) leads to a fast and efficient algorithm for 
linearized inversion. Our method-entirely based on the 
consistent use of ray theory for the calculation of seismo- 
grams, gradients, and Hessians-is an efficient alternative to 
inversion based on finite-difference modeling of the wave 
equation. 

For a long, complex seismic profile from the Oseberg field 
in the North Sea, we showed that we could handle realisti- 
cally sized seismic profiles with presently assailable comput- 
ers. We also showed with several tests that we could 
correctly explain most of the signal in a profile using ray 
theory. The main difficulty with the application of ray theory 
is the sheer number of rays that would be required if we tried 
to trace rays from every point in the medium to each source 
and receiver. To accelerate seismic field computations we 
developed an original method for the depth continuation of a 
wavefield by rays. 

The results of linearized inversion were successfully com- 
pared with well logs available from the area of the seismic 
profile. The coherency of the image and the validity of the 
reference model that we determined by classical velocity 
analysis were verified by a set of lso-X sections. A total 
reduction of about 30 percent of the variance of the data was 
obtained at the end of three iterations in the inversion of a 
subset of the Oseberg data. This reduction in variance may 
not be very significant, though, because most of the energy 
of the residuals is concentrated near the borders of the 
profile and near the muted arrivals. 

Our experience shows, that as long as the background 
model does not differ much in its spatial low-frequency 
components from the expected final model, the accuracy of 
the recovered image improves significantly when iterations 
are performed. Of course, when one has a final image, it is 
always possible to smooth it and start the whole procedure 
again with a new background. We have not performed this 

(text continued on p. 1153) 
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FIG. 10. Velocity perturbations inverted in the smaller target zone of the Oseberg profile; the succesive iterations are shown in the 
different panels. 










