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Iterative asymptotic inversion in the acoustic

approximation
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ABSTRACT

We propose an iterative method for the linearized
prestack inversion of seismic profiles based on the
asymptotic theory of wave propagation. For this pur-
pose, we designed a very efficient technique for the
downward continuation of an acoustic wavefield by
ray methods. The different ray quantities required for
the computation of the asymptotic inverse operator
are estimated at each diffracting point where we want
to recover the earth image. In the linearized inversion,
we use the background velocity model obtained by
velocity analysis. We determine the short wavelength
components of the impedance distribution by linear-
ized inversion of the seismograms observed at the
surface of the model. Because the inverse operator is
not exact, and because the source and station distri-
bution is limited, the first iteration of our asymptotic
inversion technique is not exact. We improve the
images by an iterative procedure. Since the back-

ground velocity does not change between iterations,
there is no need to retrace rays, and the same ray
quantities are used in the iterations. For this reason our
method is very fast and efficient. The results of the
inversion demonstrate that iterations improve the spatial
resolution of the model images since they mainly con-
tribute to the increase in the short wavelength contents
of the final image. A synthetic example with one-dimen-
sional (1-D) velocity background illustrates the main
features of the inversion method. An example with
two-dimensional (2-D) heterogeneous background dem-
onstrates our ability to handle multiple arrivals and a
nearly perfect reconstruction of a flat horizon once the
perturbations above it are known. Finally, we consider a
seismic section taken from the Oseberg oil field in the
North Sea off Norway. We show that the iterative
asymptotic inversion is a reasonable and accurate alter-
native to methods based on finite differences. We also
demonstrate that we are able to handle an important
amount of data with presently available computers.

INTRODUCTION

The construction of images of the subsurface of the earth
by the inversion of seismic reflection profiles has been
investigated by many authors. In a pioneering work, Cohen
and Bleistein (1977) obtained an approximate solution of the
inverse problem for almost vertical incidence using asymp-
totic methods. In a major contribution to inverse theory,
Beylkin (1985) showed how to use asymptotic ray theory to
construct an inverse operator for the case of a single source
point and a continuous distribution of receivers on the
surface of the model. Several improvements of Beylkin’s
original method were proposed in the literature (e.g., Miller
et al., 1987; Bleistein, 1987b; Beylkin and Burridge, 1990). A
common feature of these techniques is that the inverse
operator was constructed by mathematical manipulation of

the integral equation that relates the model to the observed
seismograms. These methods are very fast because they are
based on asymptotic theory. The main drawback for the
construction of the asymptotic inverse operators by Bey-
lkin’s method is the need to establish a one-to-one relation-
ship between the observed seismograms and the earth model
parameters.

A very different approach to inversion, based on the
theory of optimization, was proposed in a series of papers by
Tarantola and coworkers (see, e.g., Tarantola, 1984; Pica et
al., 1990; Crase et al., 1990). In the optimization approach,
the hope of building an explicit inverse operator is aban-
doned and instead, an iterative method is developed to find
the model that best fits observations within a certain error
criterion. The optimization approach leads to algorithms that
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are much slower than those of Beylkin, but are much more
robust and can handle incomplete and redundant data sets
without problems.

Jin et al. (1992) proposed an asymptotic inversion method
where the main advantages of both approaches to inversion
were exploited to construct a fast and robust inversion
method. In this approach, the inverse problem was formu-
lated using classical optimization theory [see Tarantola
(1987) for a recent review] but the gradient was computed
using the methods of asymptotic ray theory. In their final
result, Jin et al. (1992) found an iterative algorithm based on
Newton’s optimization method. This algorithm allows for
the use of redundant and incomplete data sets, as well as for
the limited frequency band of the sources used in exploration
geophysics.

The inverse problem requires a very efficient algorithm for
the solution of the forward problem. Most authors have
adopted finite difference methods for forward modeling (see,
e.g., Kolbetal., 1984; Mora, 1986; Pica et al., 1990, etc), but
the computer time required by finite difference is simply too
long. An alternative to finite difference is to use ray theory
that is probably just as accurate as the full numerical solution
in the frequency band used in vertical seismic profiling. It
should be pointed out, however, that ray theory is more
economical than finite differences only if ray tracing is done
very efficiently. In this article, we propose an efficient
downward ray-tracing strategy to compute the different
parameters—traveltime, slowness vector, and geometrical
spreading—required at each diffracting point by the asymp-
totic inverse method. We discuss the iterative asymptotic
inversion described by Jin et al. (1992) in the acoustic
approximation for a single parameter. It turns out that,
because in linearized inversion the reference velocity model
does not change, ray tracing can be done once for all the
iterations. The iterations are thus run at a minimum compu-
tational cost.

In the following, we present first a synthetic example with
one-dimensional (1-D) velocity background that is used to
demonstrate the practical importance of iterations. A two-
dimensional (2-D) background is adopted for the second
synthetic example to demonstrate the use of our method in
the presence of a more realistic velocity background. Fi-
nally, the acoustic algorithm will be applied to a seismic
profile recorded on the North Sea, off-shore from Norway.
With this example we intend to demonstrate the efficiency of
our two-dimensional ray-tracing method and the importance
of iterations for improving the image in a practical example.

DEPTH CONTINUATION OF ACOUSTIC FIELDS BY RAY
THEORY

The high-frequency approximation of the acoustic field is
required for both the forward and inverse problem. Two time
scales are involved: the time of propagation and the time of
the source wavelet. Using ray theory, we are able to
distinguish the separate effects of these two time scales in
the forward and inverse problems.

When a source has been fired at the point ry with the
temporal signature S(7), the pressure P recorded at the point
r outside the source area satisfies the Helmholtz equation in
the frequency domain:

2
[O)]

c¥(r)

where c is the velocity and V? denotes the laplacian. In a 2-D
medium, the high-frequency approximation to the solution of
this equation is:

P(r, r,, w) + V2P(r, r,, w) = 0, (1

1
P(r, ry, w) = S(w)Ag(r, ry)e? ") ——x (2)

—iw
where 9 satisfies the eikonal equation (V6)? = ¢ 72 and A,
the transport equation (Cerveny et al., 1977). The typical tail
associated with 2-D propagation arises from the term
1/V ~iw. The slowness vector p = V0, the gradient of 6, is
perpendicular to the phase fronts 6 = constant. The rays,
which are the orthogonal trajectories to the phase fronts, are
consequently tangent to the slowness vector. Selecting a
sampling parameter for phase fronts, as well as for rays, will
precisely define the eikonal. We choose the sampling param-
eter 7, related to the traveltime by d6 = u?dr, where u” is
the square of slowness (Cerveny, 1987; Virieux et al., 1988;
Farra et al., 1989). We always perform kinematic and
dynamic or paraxial ray tracing simultaneously to be able to
compute the geometrical spreading, as well as control the
ray sampling inside the medium.

Starting from one point at the free surface, we sample the
medium down to a specified horizon. If caustics are de-
tected, the different ray branches (Cerveny et al., 1977;
Hanyga, 1988) are located on this horizon and an interpola-
tion is constructed inside each branch. After this first step,
ray tracing is continued to the next horizon for each branch.
With the help of interpolation, the ray may leave the horizon
from any position suitable for a good discretization of the
following horizon. We avoid the redundant procedure of
computing branches on this new horizon starting again from
the initial point. In this way, we guarantee a uniform
sampling of the whole medium and avoid oversampling
around the initial point and undersampling far away from the
starting point. On every horizon, small ray branches may be
suppressed if they are poorly sampled. A minimum of five
rays are required for example to accept a ray branch. This
procedure is found to be stable as long as we do not increase
the number of horizons too much. A reasonable number is
between two and five. Between horizons, any ray quantities
needed at a sampling point are interpolated between the two
rays enclosing the point for each branch.

We assume that the medium varies smoothly, a good
approximation for our imaging purpose. Interfaces are not
taken into account: rays between two points are always
direct rays. The procedure of continuation is greatly simpli-
fied by considering only one kind of ray.

Figure 1 shows an example of ray tracing down to a
horizon located at 30 km depth: no branches are observed
and the horizon is uniformly sampled by the rays. In the next
step, rays leave this horizon to reach the horizon down to
90 km where three branches are created. The sampling is
uniform at this final horizon and it is the same as for the first
horizon: consequently, the density of rays leaving this
horizon is rather dense. The procedure can be repeated again
for another horizon. When a branch is undersampled at a
given horizon, we delete it and create an associated artificial
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shadow zone coming from the downward continuation. We
found that this restriction was not too severe in our practical
applications.

The depth continuation by rays seems to be a very efficient
technique to propagate the acoustic field downwards in a
laterally heterogeneous media. Incorporating multiples will
require more complex ray trajectories and was not attempted
here.

ITERATIVE ASYMPTOTIC INVERSION

The iterative asymptotic inversion method that we use
was discussed in a companion article (Jin et al., 1992) and is
presented here in the simpler case of the acoustic approxi-
mation. A more extensive description and its extension to
elastodynamics can be found in Lambaré (1991).

Born’s approximation

Let us consider a 2-D medium with a velocity field
described by

c(x) = co(x) + Ac(x), 3)

where c(x) is a given selected velocity field and Ac(x) is the
perturbation of the velocity field. Although the final inverse
formula will be in the time domain, discussion is easier when
we proceed in the frequency domain. In this domain, the
Born approximation gives a perturbation of the pressure 8P
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Fic. 1. Ray tracing by downward continuation between two
horizons. Let us remark that the spacing between the points
of arrival of the rays is the same for the two horizons. Due to
defocusing, the rays in the second layer are denser than
those in the second one. The initial conditions for ray
shooting from the first horizon are obtained by interpolation
of the rays that arrive to this interface.

at the receiver r for a source located at r, for the velocity
perturbation Ac(x). We can write the pressure perturbation

3P(r, ry, w)

i ~28¢(x)
= f dx* G(r, x, o) ——— G(x, ry, w)w?, 4)
D CO(X)>

where the integration domain D is over the diffracting points
and G(r, r', w) is the Green’s function for an impulsive
source at r’ recorded at the receiver r. This equation can be
identified with equation (8) of Miller et al. (1987) by writing
the perturbation

—2Ac(x) )

mix) =
) co(x)?
as the function f(x) of Miller et al. From many ways to
construct Green’s functions, we choose ray theory that
simplifies the forward problem, as well as the inverse for-
mulation. The Green’s function is defined for an impulsive
source, i.e., S(w) = 1in equation (2). Thus for a 2-D medium
we can write

8P(r,rs,w)=f dx?io m(X)A(r,x, r,)e/oTxrs) (6)
D

where A(r, x, r,) is the product of the amplitudes of the two
rays connecting the source to the diffracting point and the
diffracting point to the receiver. In the same way, the
function 7 is the sum of the two traveltimes. In the acoustic
approximation with a single parameter, the summation over
scattering modes given by expression (17) of Jin et al. (1992)
is suppressed. We rewrite the forward problem in the
compact operator expression

o8P =Gm, (N

where m(x) belongs to the model space M and 3P(r, r,, v)
to the data space D. G is the linearized projection operator
from M into D.

The cost functional

Following Jin et al. (1992), we define the cost function
S(m) = 1/2(8P%% — Gm|sP°% — Gm)p, (8)

which is defined over all the data space by the inner product

Stm) =123 | dw(3P*™ = Gm)QBP" - Gm),  (9)

rrg Q

with a weighting coefficient Q. The choice of this coefficient
is based on previous works on the asymptotic approach
(Beylkin, 1985; Beylkin and Burridge, 1990). This weighting
kernel must correct for geometrical spreading, obliquities of
rays, as well as spectral content of the asymptotic Green’s
function. It must also correct for the discretization of the
data acquisition system whatever it is. Following Jin et al.
(1992), we define the coefficient Q differently at each dif-
fracting point x,, which is a rather unusual procedure for
inverse problems, but is often done in migration where data
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are always preconditioned before migration. The expression
for Q is

Ip(r, ry, x0)|*
(zw)zmAZ(r# X, rS)

Q(r’ sy, Xg, (J.)): J(‘b* g7 r, rsax())a

(10)

where, vector p = Va(r, r,, %) is the gradient of the
two-way traveltime 1. The geometry is described by two
angles. The angle  is the orientation of the slowness vector
p with respect to the vertical, while the angle ¢ is the
aperture between the slowness vector of the source and the
receiver at X, (Figure 2). The Jacobian J(§, &; r, r,, Xg)
relates the source and station positions at the free surface to
these two angles  and £ at x,.

Asymptotic inversion

Inversion is obtained by minimizing the cost function (8)
among all linearized models m. We get

o3 0 (11)
sm

whose solution is
H{m) = G'oP"s, (12)

The Hessian H = G' G where G' is the adjoint operator to
G. The right-hand side of equation (12) is recognized as the
gradient y of the cost functional with respect to the current

SOURCE RECEIVER

Fic. 2. Geometry of the rays connecting the source and
receiver to the point x, where we are currently inverting the
impedance model. Vector p is the sum of the local slowness
vectors of these two rays. The two angles £ and  define the
local geometry of the two rays.

model m. Following Jin et al. (1992), using asymptotic ray
theory the gradient can be written in the very simple form:

v(x, xg) = G PO

1 A(r, x, 1) 5
=— —— p| JW. & 1, oy,
b r?; Alr. xg. 10) pl (W, &1, 1y, x0)
s
X H[3P"(r, ry, t = 2(r, r,, x)] (13)

where H(3P°"*) denotes the Hilbert transform of 3P°%°.
The gradient (13) is exact, but the inverse of the Hessian
H = G’ G cannot be calculated exactly because its dimen-
sions are too large. For this reason, we solve expression (12)
by a quasi-Newton approach. Let H, be an approximation
to the Hessizn H. Thus, the nth iteration of the model m is
deduced from the previously obtained model by

(m,)=(m,_ )+ G P — G(m, )], (14)

where G "¢ is the approximate generalized inverse H,; 'G".
An excellent approximation H, to H can be computed
using the recent work in Beylkin (1985) and Jin et al. (1991):

( s 1 , A¥r, x, ry)
H,(x, xy) = dwwp'—
v ) J A%r X0, 1)

X I, &5 1, ory, xg)e Tl mrirrgxoll () 5)

which, to first-order in Ax = x — x,, gives

1

(2m)?

H,(x, xo) = 2

I'.I'A

><fdu)mpzl(\h,§;)‘,rs,x0)ei“’p'A". (16)
Q

We then assume that the distribution of sources and receiv-
ers is such that £ and ¢ are more or less uniformly sampled
around the diffracting point x,. In this case, the integral in
equation (16) is the approximate Fourier transform of a delta
function. Uniform sampling of ¢ and § is never obtained in
practice so that the following expression is only an approx-
imation to the Hessian.

1 N
H,(x, xg) = > Sa; ¥ x) = Sar dx —x¢),  (17)

where N is the number of sources and Ar is the station
sampling step. For a one-parameter inversion, the effect of
the aperture angle reduces to the sum over sources. Further
details are given in Jin et al. (1992). Taking the initial model
(my) as zero, the first iteration of equation (14) is

P

11 -
{m)(xy) = Yy rg m J(b, &1, rg, x0)
X %[BPObS(r. re, t= 7(r, rs, X()))]. (18)

Higher order iterations of the model can be obtained from
equation (14). This is done by simply replacing 5P°% in
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equation (18) by the residual 3P " —~ G(m,_,). We observe
that the iterative method does not require any further ray
tracing because the background velocity model does not
change between iterations. Thus, the traveltimes T, ampli-
tudes A, Jacobian J, and slowness p are the same as in the
first iteration.

For the strict application of equation (18), we would need
impulse-response seismograms, so that we must somehow
deconvolve the recorded seismogram from the source wavelet.
In practice, we used a very simple deconvolution method: the
spectrum of the seismogram was divided by the spectrum of
the source in the frequency range defined by the source. We
did not try to do any sophisticated adaptative deconvolution,
although the final image would have certainly benefited from
any improvement in the low-frequency contents of the data.

The inverse expression (18) represents a stack of mi-
grated, phase-shifted, and dynamically corrected seismo-
grams summed over sources r, and receivers r. The sums in
the stack can be reorganized in many ways, giving different
weights to different seismograms. An interesting way of
processing the data is to first consider each source r,
independently. Thus we obtain several inverted vertical
profiles at the same horizontal position. The set of all these
vertical profiles is usually called an Iso-X section. Iso-X
sections may be used very effectively to test the quality of
the inversion. If the inverted profiles in an Iso-X section are
similar, this is proof that the background velocity model is

Velocity in ms~t

Velocity in ms™?

20‘00
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correct. and that the inversion has actually found an imped-
ance profile that is coherent among several sources and
receivers. Later we will show an Iso-X section for the
Oseberg field data set. From the Iso-X section, we have
many ways to construct an impedance model; for instance,
we can choose the most energetic profile which is usually the
one located right under the source. Following Jin et al.
(1992), in our work we adopted the stack (18) which is a
weighted sum of the different migrated profiles. The weight-
ing, controlled by p>J. tends to eliminate the influence of
wide angle reflections (large & and to average the small
reflection-angle profiles to obtain the final vertical profile
{m) under every source and receiver position.

The inverse algorithm presented above is linear because
we do not change the background velocity model between
iterations. Of course, we might add the result of the inver-
sion (m;) to the reference model to generate a new back-
ground velocity model. We could then trace rays in the new
reference medium and again apply the inversion algorithm
(18). This nonlinear iteration has not yet been attempted
because the model inverted from equation (18) and the long
wavelength model used as a background are not defined over
the same spatial-frequency band. How to smooth the per-
turbed model before adding it to the previous reference
model is still an open question that we intend to discuss in a
future paper.
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Fig. 3. Definition of a I-D medium. In (a), we show the complete velocity model used to generate the synthetic seismograms
used in the asymptotic inversion. The crosses indicate the grid points used to specify the finite-difference grid. In (b), we present
the smooth profile that will be used as the background velocity for the iterative asymptotic inversion. Panel (c) shows
seismograms computed by a finite-difference method with a mute applied to the direct wave, as well as to critical arrivals. Please
note the weak artificial reflections coming from the numerical grid edges.
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SYNTHETIC EXAMPLES TO TEST THE INVERSION
PROCEDURE

Laterally uniform velocity background

To test the validity of our inversion procedure. we created
a synthetic set of seismograms by the finite-difference
method (Virieux, 1984) modified for the acoustic problem in
Gauthier et al. (1986). We considered a 1-D medium sug-
gested by the work of Pica (1988) and Pica et al. (1990). We
discretized this velocity profile on a vertical grid of 481
points and we filtered out wavelengths shorter than 10 times
the grid step. We obtained the velocity profile of Figure 3a.
From this vertical profile. a low-frequency background was
estimated that is also shown in Figure 3b. We used the same
vertical velocity structure under each of 481 horizontal
points. The spatial step of 6.67 m gives a total horizontal and
vertical extension of 3200 m. The time step of 0.8 ms over
2500 steps gives a time window of 2 s. We computed
synthetic seismograms for 56 receivers with a step of 33 m
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FiG. 4. Residuals of the seismograms after five iterations of
the asymptotic inversion of the synthetic seismograms gen-
erated for the 1-D velocity model of Figure 3.

between receivers and a maximal offset of 1800 m (Figure
3c¢). The source signal was the second-order derivative of a
Gaussian function exp (—12/r2) with a characteristic time t,
of 25 ms. We have also applied a mute to get rid of the direct
wave and critical arrivals.

Let us consider the low-frequency background as our
initial velocity model. We performed ray tracing by the
depth continuation technique with three horizons for a single
source, because the reference medium is only 1-D. By means
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FiG. 5. Final result of the asymptotic inversion of the 1-D
velocity profiles of Figure 3. The Figure shows the results of
the fifth iteration. We added the background velocity before
plotting the new velocity profile.
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of the iterative inversion technique described above, we
could improve the initial 2-D image by iterating until practi-
cally no signal was left on the residues (Figure 4), except for
parasite reflections coming from the edges of the numerical
grid and influences of the applied mute. A quantitative
analysis is given in Figure 5, where the convergence towards
a final solution is obtained in around five iterations. The
‘‘true’” velocity profile is matched nearly perfectly both in
positions and in amplitudes of the perturbation. We obtain
the complete velocity profile by adding the background
velocity to the recovered perturbation. This example is very
well suited for iterative asymptotic inversion because of the
high spatial-frequency band we chose to recover. Of course,
as it is well understood [see Snieder et al. (1989), for
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Fi6. 6. (a) Geometry of the 2-D model used to test the
asymptotic inversion method. The model contains a disk and
a flat interface. (b) 2-D images obtained (10 shots) by
asymptotic inversion of seismograms recorded at the surface
of the model for a split spread array described on the top
panel. Because we used an appropriate background model,
the flat interface is recovered with very little deformation.

example], any bias in the background velocity would have
degraded the final image.

2-D velocity background

We now go one step further by taking into account lateral
variations of the velocity both in the ‘‘true’’ model and the
background model. We define a medium of velocity 2000 m/s
on which we superpose a disk-like perturbation of 500 m/s
located at the position (x, z) = (1000 m, 1000 m) with a
radius of 150 m above a flat interface at a depth of 1400 m
(Figure 6a). What is the image of the flat interface with the
influence of the disk?

Let us assume that we have already obtained a smooth
background velocity for the disk. The disk is taken into
account for ray tracing, but we assume that it produces no
reflections. For each source, we perform ray tracing with six
reference horizons. In Figure 7, we show the rays for two
sources where the influence of the disk is important and can
create caustics. The precision of the inverted image in-
creases with the number of sources. In Figure 6b, the
circular shape of the disk is very well recovered, and the
interface below the disk is almost horizontal; smiles have
practically disappeared. In other words, time shifts associ-
ated with the disk have been correctly taken into account.

The iterative asymptotic inversion produces a very accu-
rate high-frequency image of the subsurface. We show that
the depth continuation of acoustic waves by rays is well
adapted to seismic inversion and permits us to consider
heterogeneous background velocities. By iteration, we were
able to estimate the high frequency component of the ampli-
tude perturbation. The deconvolution of the source wavelet
is the main limiting factor to inversion. Any recovered low
frequency will increase the quality of the image. The re-
ceiver distribution has a less dramatic effect and might be
partially counter-balanced by the redundancy of the data.

2.5-D approximation

Before considering real data, which will be our next step,
we must consider the approximation for a 3-D medium with
an invariance along the y-direction. This approximation is
called the *‘2.5-D*’ approximation (Bleistein, 1987a); this
approach retains the ease of ray tracing in a 2-D medium, but
includes the geometrical spreading of a 3-D medium, as well
as a correcting factor around the diffraction point.

The geometrical spreading for this 2.5-D geometry is
deduced from paraxial ray tracing. As previously shown in
Bleistein (1987a), we have the relation

T—To (19)
co(x)

Jasp(1) = Jop(7)

which is related to the amplitude variation by the usual
condition for energy conservation along ray tubes;
A(%(T)M(T)J(T) is kept constant along rays.

The second effect of the invariance along the y-coordinate
appears in the estimation of the scattered pressure that is
given in a 3-D medium by the integral
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3P(r, r;o) = wzf dx dy dz m(x)A(r, x, r,)e' @™ Xrs)
D

(20)

over the 3-D domain D of diffracting points. Sources and
receivers are in the y = 0 plane. In this geometry, the main
contribution to integral (20) comes from the vicinity of the
y = 0 plane. We can use a stationary phase approximation
for the integral along y. We find

SP(r, ryo) =0 Vi2e

A(r, x, rg)
X dx dz m(x) —s—5——— ' Xrs) (21
A (87°/0°y)y =0

for the 2.5-D Born approximation which leads to the same
inverse procedure than for the 2-D geometry except that real
seismograms are processed by a different transformation
than the Hilbert transformation # of equation (18). Follow-
ing Bleistein (1987a), the second partial derivative of the
function 1 with respect to the coordinate y is readily obtained
from ray tracing and is equal to

372 1 1 )
- =+ s
a2y v o T(ry, x)  7(r, x) (

where 7 is the sampling parameter we are using during ray
tracing. We are back to an expression similar to equation (6),
to which we apply the asymptotic inversion method pro-
posed in Jin et al. (1992).

INVERSION OF THE OSEBERG PROFILE NH82-269

Up to now, we have considered only synthetic data. With
a 2-D seismic profile over the Oseberg Field in the North Sea
off Norway, we are concerned with more than 800 shots with
a total cable length of 2500 m for 96 groups of geophones.
The recording time window is 6 s with a sampling step of
4 ms giving us more than 3200 millions of bits of raw data.
This data set belongs to an experimental 3-D marine line.

The Oseberg Field is a large oil and gas accumulation
located on the Bergen High in the transition zone between
the Viking Trough to the West and the Horda Platform to the
East. A general structural interpretation was given by Bad-
ley et al. (1984). A more specific description can be found in
Nipen (1987) who gives a precise interpretation of the Brent
Group, the reservoir for the Oseberg Field.

We preprocessed the data set to eliminate multiples com-
ing from the sea water with a thickness of 110 m in the area.
Then we deconvolved the source time signal by the follow-
ing, rather simple technique. To build the deconvolution
filter, we inverted the spectrum of the source in the fre-
quency band where source spectral amplitude was large, and
band-pass filtered the rest of the spectrum. The time domain
deconvolution filter was finally computed by an inverse
Fourier transform. We assumed that the source signal is
known and is the same for the different shots.

Starting from an initial background velocity (Figure 8)
obtained by standard velocity analysis and given to us with
the data set, we inverted the whole profile taking only every
eight sources and using the 2.5-D approximation for the

(text continued on p. 1148)
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asymptotic inversion. We traced rays for all the selected
sources and the 96 associated receivers, and we kept the
results for the inversion procedure. Figure 9 gives us the
migrated image in terms of velocity perturbation with re-
spect to the depth. This image is similar to the one obtained
by 3-D finite-difference migration and shows us the tilted
block toward the Viking graben, as well as bright interfaces.
Water multiples are still present and, somehow. complicate
the interpretation of the migrated section. Obvious destruc-
tive interference between the source 240 and the source 360
would require another background velocity. We did not try
to modify the reference medium, and we stopped at this first
iteration for the whole profile. Other iterations would have
introduced a higher frequency content in the image as we
obtained for the well-defined target we will analyze now.

For stratigraphic interpretation—especially on how the
Brent Group ends below the Cretaceous layer—an area drew
our attention. We decided to test the performance of the
iterative method for this subset of the data where 250 shots
were involved. The first iteration, which is a small section of
the complete profile of Figure 9, is presented on the top
panel of Figure 10, while the second and third iterations are
on the two other panels. The high-frequency content of the
migrated image increases with the order of iteration, while
the residues for the first two iterations decrease significantly.
The second and the third sections are quite similar, leading
us to assume that convergence was reached.

Stratigraphic interpretation is still difficult, especially for
the top of the Brent Group between sources 330 and 380, but
we find that the prolongation of the reflector related to the
top of the Brent Group is unambiguously defined below the
Cretaceous interface (Figure 10).

To estimate the quality of the inverted images, we calcu-
lated the variance (or energy) of the data (£, = ||datall?)
and of the residues. We then calculated the residual energy
reduction (RER) by the following expression RER =
100(1 — E, g4ue/Egaa)- The value of RER decreased from
80 percent at the outcome of the first iteration down to about
70 percent at the end of the third iteration. From residues for
a given shot as shown in Figure 11, it is easy to see that the
RER does not steadily decrease with iterations because of
unexplained local energy. The iterative asymptotic inversion
has successfully explained most of the reflections by velocity
perturbations in spite of the restrictions associated with the
Born approximation. Let us recall, however, that we as-
sumed acoustic propagation; therefore any converted phases
between compressional and shear waves will be interpreted
as P — P reflections. One has to be aware of this limitation
when looking at the subsurface image.

A better test of the inversion results is provided by well
number 36/10 drilled down to 2500 m near shot 350, right in
our target area. As shown in Figure 12, we convolved the
profiles of velocity and impedance along the borehole with a
wavelet to bring these profiles to the same spatial resolution
of the seismic source. We compared the filtered profiles with
those obtained from our inversion method at the shot points
350 to 356 located very close to the borehole. As shown in
Figure 12, the agreement between the inverted and filtered
profiles is excellent, both for velocity and impedance. Two
main reflectors are clearly identified in the inverted image.

This final test makes us confident that our algorithm pro-
duced valid images of the earth subsurface.

Another test of the quality of the inversion and the
suitability of the background velocity model are the Iso-X
profiles defined previously. The Iso-X profile in Figure 13
was calculated under the shot point number 401. Lateral
continuation of the inverted impedance profiles is an excel-
lent indication of the quality of the background velocity and
also of the stability and quality of the wave propagation
method.

Concerning computational efficiency, we found that trac-
ing a single ray takes between 15 and 30 s of CPU time of a
CRAY-XMP, depending on the number of horizons used in
the ray-field continuation method. Constructing the image of
a single point takes less than 1 s per iteration, so that the
most expensive part of our program is ray tracing. Any
further efforts to reduce the CPU time required for ray
tracing is therefore most welcome.

CONCLUSIONS AND DISCUSSION

We demonstrated that a linearized inversion procedure
based on the classical theory of optimization as proposed in
Tarantola (1987) and coworkers, and using several important
results from the asymptotic inversion theory proposed in
Beylkin (1985) leads to a fast and efficient algorithm for
linearized inversion. Qur method—entirely based on the
consistent use of ray theory for the calculation of seismo-
grams, gradients, and Hessians—is an efficient alternative to
inversion based on finite-difference modeling of the wave
equation.

For a long, complex seismic profile from the Oseberg field
in the North Sea, we showed that we could handle realisti-
cally sized seismic profiles with presently available comput-
ers. We also showed with several tests that we could
correctly explain most of the signal in a profile using ray
theory. The main difficulty with the application of ray theory
is the sheer number of rays that would be required if we tried
to trace rays from every point in the medium to each source
and receiver. To accelerate seismic field computations we
developed an original method for the depth continuation of a
wavefield by rays.

The results of linearized inversion were successfully com-
pared with well logs available from the area of the seismic
profile. The coherency of the image and the validity of the
reference model that we determined by classical velocity
analysis were verified by a set of Iso-X sections. A total
reduction of about 30 percent of the variance of the data was
obtained at the end of three iterations in the inversion of a
subset of the Oseberg data. This reduction in variance may
not be very significant, though, because most of the energy
of the residuals is concentrated near the borders of the
profile and near the muted arrivals.

Our experience shows, that as long as the background
model does not differ much in its spatial low-frequency
components from the expected final model, the accuracy of
the recovered image improves significantly when iterations
are performed. Of course, when one has a final image, it is
always possible to smooth it and start the whole procedure
again with a new background. We have not performed this

(text continued on p. 1153)
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For the correct background velocity,

reflectors must appear as horizontal arrivals in an Iso-X section. This is clearly the case in this Figure; this
is an important argument in favor of the quality of the background model and linearized inversion.

nonlinear iteration because the retrieval of low spatial fre-
quencies from linearized inversion is not particularly good.
As is well known, reflectivity is controlled by the frequency
contents of the source signal, while the traveltimes are
controlied by the long wavelength part of the background
velocity. It is therefore difficult to estimate a velocity model
in the intermediate spatial frequency band between these
two extremes.

From a practical point of view, the iterative asymptotic
inversion could be focused on a particular area of the seismic
profile where a very accurate image may be required for
seismic interpretation. We hope that this technique will
enable the construction of correct images beneath well-
deformed 2-D structures.

In conclusion, we demonstrated that our algorithm could
handle large amounts of field data. We also showed from the
Oseberg data that the iterative asymptotic inversion can help
in the detailed analysis of seismic sections.
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