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Abstract A workshop entitled BTracking and understanding
volcanic emissions through cross-disciplinary integration: a tex-
tural working group^ was held at the Université Blaise Pascal
(Clermont-Ferrand, France) on the 6–7 November 2012. This
workshop was supported by the European Science Foundation
(ESF). The main objective of the workshop was to establish an
initial advisory group to begin to define measurements,
methods, formats and standards to be applied in the integration
of geophysical, physical and textural data collected during vol-
canic eruptions. This would homogenize procedures to be ap-
plied and integrated during both past and ongoing events. The

workshop comprised a total of 35 scientists from six countries
(France, Italy, Great Britain, Germany, Switzerland and Iceland).
The four main aims were to discuss and define: standards, pre-
cision and measurement protocols for textural analysis; identifi-
cation of textural, field deposit, chemistry and geophysical pa-
rameters that can best be measured and combined; the best de-
livery formats so that data can be shared between and easily used
by different groups; and multi-disciplinary sampling and mea-
surement routines currently used and measurement standards
applied, by each community. The group agreed that communi-
ty-wide, cross-disciplinary integration, centred on defining those
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measurements and formats that can be best combined, is an
attainable and key global focus. Consequently, we prepared this
paper to present our initial conclusions and recommendations,
along with a review of the current state of the art in this field that
supported our discussions.

Keywords MeMoVolc . European Science Foundation .

Small explosive magmatic eruptions . Texture

Introduction

A major goal of modern volcanology is to relate conditions of
magma ascent to the resulting eruption style using information
preserved in volcanic deposits. Because it is impossible to di-
rectly observe magma ascent, vesiculation and fragmentation,
one way to obtain quantitative information on magma ascent
dynamics is through textural quantification of the sampled par-
ticles. Textural quantification involves full description of the
vesicle and crystal properties of the erupted products (e.g.
Sparks 1978; Sparks and Brazier 1982; Whitham and Sparks
1986; Houghton and Wilson 1989; Marsh 1988, 1998;
Cashman and Marsh 1988, Toramaru 1989, 1990; Cashman
and Mangan 1994; Higgins 2000; 2006; Blower et al. 2002;
Burgisser and Gardner 2005; Shea et al. 2010a; Rust and
Cashman 2011; Baker et al. 2012 and references therein).
Magma viscosity, ascent rate, vesiculation processes, fragmen-
tation style and explosion dynamics all imprint characteristic
and measurable properties on the textures of volcanic particles,
as shown by theoretical and experimental studies (e.g. Rust and
Cashman 2011; Gonnermann and Houghton 2012; Degruyter
et al. 2012; Nguyen et al. 2013 and references therein). The
main assumption is that most of the pyroclast properties are
acquired during ascent in the conduit, with few changes occur-
ring after fragmentation or in the atmosphere, if the pyroclasts
are lapilli size or smaller (e.g. Houghton and Wilson 1989;
Nguyen et al. 2013). Specifically, the textural parameters of
the pyroclastic components can yield insights into the dynamics
of explosive eruptions, as reviewed in Table 1.

However, the physical characteristics of individual
pyroclasts must not to be considered in isolation from detailed
studies of (i) the deposits from which they were collected, (ii)
their chemical properties, (iii) geophysical signatures of the
related explosive event or (iv) petrological and/or analogue
experiments. Indeed, attempts to understand eruption dynam-
ics have been increasingly coupled to traditional fieldwork
and geophysical measurements made synchronously with
sample collection. In 2004, a special issue of the Journal of
Volcanology and Geothermal Research (Volume 137) focused
on multidisciplinary approaches, proposing Bsimultaneous
collection of multiple geophysical data sets, such as seismic,
infrasonic, thermal and deformation data, as well as sampling
of ejecta and detailed mapping^. The argument was that

Bcomplete constraint of a volcanic system is not possible using
one data set, so that an integrated multiparametric approach
involving simultaneous collection of multiple geophysical and
petrological data sets will increase our ability to reach tightly
constrained and confident conclusions regarding the mechanics
and dynamics of volcanic systems and eruptions^ (Harris et al.
2004). Since 2004, numerous studies have borne these predic-
tions out, combining textural data with the following:

1. Field deposits (e.g. Polacci et al. 2006a; Rust andCashman
2007; 2011; Mattsson 2010)

2. Petrological data (e.g. Larsen 2008; Shea et al. 2009,
2010b; Burgisser et al. 2010; Bai et al. 2011)

3. Chemical analyses (e.g. Piochi et al. 2005, 2008; Shimano
and Nakada 2006; Noguchi et al. 2006; Costantini et al.
2010; Schipper et al. 2010a, b, c, 2011, 2012, 2013;
Balcone-Boissard et al. 2010, 2011, 2012; Shea et al.
2012, 2014)

4. Geophysical measurements (e.g. Burton et al. 2007;
Gurioli et al. 2008, 2013, 2014; Polacci et al. 2009b;
Andronico et al. 2008, 2009a, b, 2013a, b; Miwa et al.
2009; Miwa and Toramaru 2013; Colò et al. 2010; Landi
et al. 2011; Pistolesi et al. 2011; Leduc et al. 2015)

Together, these studies have delivered complete pictures of
explosive eruptions and their dynamics (Fig. 1).

Despite this progress, we remain far from establishing the
best protocols for sampling pyroclasts and for correlating and
comparing the many parameters that can be measured using
individual clasts and field deposits. Only a few papers address
some of these issues (e.g. Bonadonna et al. 2013; Engwell et al.
2013; Klawonn et al. 2014). In addition, no study has yet
attempted to correlate all derivable textural parameters with
the full range of multidisciplinary data available. To partially
resolve these issues, a working group funded by the European
Science Foundation, through the MeMoVolc program (http://
www.memovolc.fr/), was set up. The group was composed of
experts actively working on integration of textural, deposit and
geophysical data, equally balanced between four theme areas:
(i) particle texture studies, (ii) deposit analysis, (iii) chemistry
and (iv) geophysics. The priorities of the meeting were discus-
sion and definition of the following:

& Improved standards, precision and measurement protocols
needed by the particle texture studies

& Best practices for particle texture studies in order to have
comparable data sets from different types of eruptions

& Parameters obtained from particle texture, deposit, geo-
chemical and geophysical data that need to be measured
and the best delivery format if each discipline’s output is to
be of use to all workers

& Multi-disciplinary sampling and measurement routines, as
well as measurement standards

49 Page 2 of 33 Bull Volcanol (2015) 77: 49

http://www.memovolc.fr/
http://www.memovolc.fr/


Table 1 Quantification of explosive dynamics from textural parameters of the pyroclast components

Textural parameters Quantification References

Clast shape, morphology and size Discriminate between different fragmentation
mechanisms

Wohletz (1983, 1986, 1987)
Heiken and Wohletz (1985)
Sheridan and Marshall (1983, 1987)
Barberi et al. (1989)
Cioni et al. (1992)
Dellino and La Volpe (1996a, b)
Palladino and Taddeucci (1998)
Büttner et al. (1999, 2002)
Kueppers et al. (2006)
Dellino et al. (2001, 2012)
Zimanowski et al. (2003)
Németh (2010)
Pardo et al. (2014a)

Conduit stratigraphy and processes Taddeucci et al. (2002)
D’Oriano et al. (2005)
Cioni et al. (2011)
Perugini et al. (2002, 2007, 2011)
Andronico et al. (2009b, 2013a)
Lautze et al. (2012, 2013)

State of the magma at the fragmentation Carey et al. (2000)
Dellino and Liotino (2002)
Maria and Carey (2002, 2007)
D’Oriano et al. (2011)
Ruth and Calder (2014)

Link between vesicularity and particle morphology,
and particle morphology with cloud dispersal and
sedimentation

Wilson and Huang (1979)
Dellino et al. (2005)
Mattsson (2010)
Alfano et al. (2011)
Mele et al. (2011)

Clast density and vesicularity Lateral variability of magma within the conduit Houghton and Wilson (1989)
Kennedy et al. (2005)
Kueppers et al. (2005)
Mueller et al. (2011)
Barker et al. (2012)

Dense juvenile Presence of outgassed magma Sable et al. (2006)
Lautze and Houghton (2005, 2007, 2008)
Polacci et al. (2008, 2009a, b, 2012)
Gurioli et al. (2005, 2014)
Shea et al. (2011, 2012, 2014)
Cimarelli et al. (2010)

Presence of a plug Hoblitt and Harmon (1993)
D’Oriano et al. (2005)
Sable et al. (2009)
Adams et al. (2006a, 2006b)
Giachetti et al. (2010)
Barker et al. (2012)
Lavallée et al. (2012)

Clast permeability and connectivity Degassing history experienced by the magma Eichelberger et al. (1986)
Klug and Cashman (1996)
Saar and Manga (1999)
Jouniaux et al. (2000)
Blower (2001a, b)
Klug et al. (2002)
Melnik and Sparks (2002)
Rust and Cashman (2004, 2011)
Mueller et al. (2005, 2008)
Wright et al. (2006, 2007, 2009)
Platz et al. (2007)
Bernard et al. (2007)
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Table 1 (continued)

Textural parameters Quantification References

Takeuchi et al. (2008)
Nakamura et al. (2008)
Bouvet de Maisonneuve et al. (2009)
Yokoyama and Takeuchi (2009)
Bai et al. (2010, 2011)
Degruyter et al. (2010a, 2010b, 2012)
Vinkler et al. (2012)
Polacci et al. (2012, 2014)
Nguyen et al. (2014)
Pioli et al. (2008)
Formenti and Druitt (2003)
Giachetti et al. (2010)
Shea et al. (2011, 2012)

Clast conductivity Input parameters for numerical percolation
simulations

Le Pennec et al. (2001)
Bernard et al. (2007)
Wright et al. (2009)
Wright and Cashman (2014)

Vesicle shape and size Bubble coalescence, ripening or collapse signatures Klug and Cashman (1996)
Mangan and Cashman (1996)
Gurioli et al. (2005)
Shin et al. (2005)
Sable et al. (2006)
Polacci et al. (2008)
Castro et al. (2012)

Shear conditions in the conduit
Convection in the conduit

Marti et al. (1999)
Polacci et al. (2001, 2003)
Rust et al. (2003)
Okumura et al. (2006, 2008)
Bouvet de Maisonneuve et al. (2009)
Wright and Weinberg (2009)
Laumonier et al. (2011)
Shea et al. (2011, 2012)
Carey et al. (2013)

Eruptive style Moitra et al. (2013)

Vesicle size distributions (VSDs) Vesicle nucleation processes and growth in magmas Klug and Cashman (1994)
Shea et al. (2010a)
LaRue et al. (2013) and references therein

Total number of nucleation, coalescence or ripening
events

Gaonac’h et al. (1996a, b, 2003, 2005)
Klug and Cashman (1996)
Herd and Pinkerton (1997)
Blower et al. (2001, 2002)
Lovejoy et al. (2004)
Yamada et al. (2008)
Bai et al. (2008)
Costantini et al. (2010)

Post-fragmentation evolution as indicator of the
following:

1. Fountaining mechanisms
2. Transportation and dispersal of the pyroclasts in
submarine environment

Polacci et al. (2006a)
Gurioli et al. (2008)
Stovall et al. (2011, 2012)
Schipper et al. (2010a, b, c, 2011, 2012)
Rotella et al. (2013, 2014)

Vesicle number density (Nv) Link with magma mass eruption rate (MER), link
with column height

Polacci et al. (2006b)
Toramaru (2006)
Gurioli et al. (2008)
Carey et al. (2009)
Houghton et al. (2010)
Rust and Cashman (2011)
Alfano et al. (2012)

Magma decompression rate Mangan and Sisson (2000)
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The core communal issues to be explored were agreed on
the following:

1. What are the best sampling and measurement strategies
for the quantification of pyroclast textural features, and
what are their precision and uncertainty?

2. What are the best sampling and measurement strategies
for pyroclastic deposits to allow textural characterization
of their particles?

3. How can we link chemistry and particle texture properties?
4. How can we link geophysical data and the particle texture

quantification?

Table 1 (continued)

Textural parameters Quantification References

Suzuki and Nakada (2001, 2002)
Toramaru (2006)
Cluzel et al. (2008)
Shea et al. (2010b, 2011, 2012)
Wright et al. (2012)

Phreatomagmatic fragmentation Tsukui and Suzuki (1995)
Suzuki and Nakada (2001, 2002)
Shimano and Nakada (2006)
Mattsson (2010)
Murtagh et al. (2011)
Murtagh and White (2013)

Link vesicularity with external trigger mechanisms
(crystallinity, pressure changes)

Belien et al. (2010)
Carey et al. (2012)
Gurioli et al. (2014)

Crystal size distribution (CSD) Crystal size (mean, modal and maximum crystal
size), crystallization kinetics (nucleation and
growth rates), annealing, crystal accumulation
and fractionation

Cashman and Marsh (1988)
Marsh (1988, 1998, 2007)
Cashman (1993)
Armienti et al. (1994)
Higgins (2000, 2002a, b, 2006, 2011)
Wilhelm and Worner (1996)
Bindeman (2003)
Gualda (2006)
Gualda and Rivers (2006)
Mock et al. (2003)
Simakin and Bindeman (2008)
Spillar and Dolejs (2013)

Magma ascent rate Cashman (1992)
Rutherford and Hill (1993)
Rutherford and Devine (2003)
Noguchi et al. (2008)
D’Oriano et al. (2011)

Pre-eruptive decompression paths Hammer et al. (1999)
Szramek et al. (2006)
Clarke et al. (2007)
Innocenti et al. (2013)

Magma storage conditions prior to eruption and
residence times

Mangan (1990)
O’Driscoll et al. (2007)
Cigolini et al. (2008)
Simakin and Bindeman (2008)
Magee et al. (2010)
Shea et al. (2009)

Water exsolution rate meter Toramaru et al. (2008)

Magma mixing Morgan et al. (2007)
Jerram et al. (2003)

Crystal + vesicle size and percentage Three phases magma rheology, fluid mechanical
behaviour of magma

Gurioli et al. (2014)
Noguchi et al. (2006)
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5. What is the best multi-disciplinary strategy for combining
output from each field in a meaningful way?

The paper reviews these topics in the light of a work-
shop consensus. Because of the time constraints and the
complexity of the arguments, the paper focuses only on
the study of explosive subaerial magmatic eruptions that

generate sustained columns or fountains and the associated
fallout deposits (Fig. 1). Further workshop or working
groups should be organized to synthesize and integrate
all work in progress and already completed, in the areas
of phreatic, phreatomagmatic and submarine explosions, as
well as pyroclastic density current and lava flow deposits
(Table 1).

Fig. 1 Diagrammatic illustration showing a volcanic Strombolian
conduit (modified from Harris and Ripepe 2007) and the list of a few
parameters that can be measured through the deposit (D), the texture of

the pyroclasts (T), the geochemistry (G) and the geophysics (G) methods
for small, magmatic explosions
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The final objective of this paper is to ensure that data col-
lected in the field and laboratory can be shared effectively and
ingested in a multi-disciplinary sense into experiments,
modelling and monitoring. In the longer term, the objective
is to publish and update standards, as well as to propose,
support and organize field meetings to test integrated collec-
tion methodologies. The ultimate aim is to increase the num-
ber of open-access databases of standard and community-
accepted quality, thereby increasing resources available for
cross-disciplinary correlations.

Sampling of pyroclasts and quantification
of their textural features

Representative samples

Pyroclasts reflect degassing of the parent magma, from the
conduit to the plume. Part of the textural signature is assumed
to reflect the fragmentation (or explosion) zone. Consequently,
texture can be used as an indicator of magma properties
(composition, porosity, connectivity, permeability, vesicle
and crystal content, size, shape and distribution) at that
time (Table 1). This assumption has two requirements:

1. The textural signature that was quenched immediately at
the fragmentation level has to be distinguished from the
textural effects of post-fragmentation processes, including
microlite formation and bubble nucleation, expansion,
collapse, coalescence and Ostwald ripening that will
change clast vesicularity or vesicle size and shapes once
the pyroclast has been formed (e.g. Thomas et al. 1994;
Cashman et al. 1994; Herd and Pinkerton 1997; Larsen
and Gardner 2000; Gurioli et al. 2008; Costantini et al.
2010; Stovall et al. 2011, 2012). The time window for
post-fragmentation changes depends on magma composi-
tion, viscosity and fragmentation depth.

2. Because clast density is also a function of clast size
(Houghton and Wilson 1989), only clasts of similar sizes
must be used in order to avoid non-uniform grain size
effects on textural parameters.

We thus recommend choosing samples that are representa-
tive of the studied explosion, or unit, in terms of the following:

1. Timing: this requires sampling of narrow stratigraphic
intervals (Houghton and Wilson 1989) in which juvenile
clasts of similar dimensions can be assumed to represent
those parts of the magma fragmented at a particular time
(n.b. conduit processes can change over short timescales).

2. Distribution: this requires selection of more than one out-
crop for each event.

3. Degree of fragmentation: this requires selection of a sam-
pling methods that is appropriate for the full range of grain
sizes in the deposit.

4. Componentry: if the juvenile fraction is heterogeneous,
then sampling should be done based on preliminary
componentry analysis of the clasts analyzed (e.g. Wright
et al. 2011, Eychenne et al. 2015).

In previous studies, only clast sizes of 16–32 mm, i.e. coarse
lapilli (White and Houghton 2006), have been considered for
textural purposes. Such clasts were considered to be large
enough to be easily sampled and studied, while being fully
representative of the density variation of the majority of erupted
pyroclasts and unaffected by significant post-fragmentation phe-
nomena (Houghton and Wilson 1989). These requirements are
not always met. In basaltic magma, post-fragmentation effects
can be a complication even for these sizes (e.g. Cashman et al.
1994; Szramek et al. 2006; Costantini et al. 2010; Gurioli et al.
2008; Pioli et al. 2014; Pistolesi et al. 2008, 2011; Stovall et al.
2011, 2012). In these cases, the challenge is to identify, quantify
and remove post-fragmentation effects in order to isolate tex-
tures preserved across the fragmentation zone. For example, the
original shapes of vesicles may be reconstructed by de-
coalescencing large vesicles using the presence of broken, or
partially retracted, glassy septa.

However, if we study an ash-dominated or a bomb-
dominated event, particle texture analyses must be performed
on the fine or coarse juvenile fragments, respectively. Ash size
particles (<2 mm) have been investigated recently in terms of
vesicle and crystal size distributions (Taddeucci et al. 2002,
2004; Cioni et al. 2008; D’Oriano et al. 2011a, b; Miwa et al.
2009, 2013;Miwa and Toramaru 2013; Proussevitch et al. 2011;
Genareau et al. 2012, 2013; Colucci et al. 2013; Schipper et al.
2013), and an extensive work has been done in the last 40 years
in characterizing ash morphology and deposit componentry
(Table 1). For the ash fraction, post-fragmentation expansion
can be excluded (e.g. Proussevitch et al. 2011; Genareau et al.
2012, 2013; Colucci et al. 2013). Consequently, analyses allow
comparison between morphological and textural features of
clasts sampled in proximal and distal areas. Ash particles can
record most of the information related to magma ascent dynam-
ics (e.g. decompression-driven microlite crystallization) and
fragmentation (Cioni et al. 2008; D’Oriano et al. 2005;
D’Oriano et al. 2011a, b; Proussevitch et al. 2011; Genareau
et al. 2012, 2013; Colucci et al. 2013). Advantages of studying
ash are that it can also be statistically more representative of the
variability of the magma properties and is less affected by
density-driven settling within the plume. However, ash frag-
ments record only small-scale vesicularity. The integration of
observations made on the external shapes of clasts may give
information about the presence and importance of a coarser ve-
sicularity which drives magma fragmentation (e.g. Proussevitch
et al. 2011; Genareau et al. 2012, 2013; Colucci et al. 2013).
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However, they cannot provide complete information about the
abundance and size of the full vesicle population, if the magma
included bubbles larger than the ash particles. Furthermore, ash
particles are not suitable for permeability studies, as they are
often smaller than the bubbles forming the permeability network.
However, the presence of coalesced vesicles in a preferred direc-
tion and an abundance of ash clasts with an elongate shape have
been interpreted as an indication of the development of a perme-
able bubble network (D’Oriano et al. 2011a).

Bombs may provide a plethora of information regarding
pre-eruptive degassing and ascent rate (e.g. Hoblitt and
Harmon 1993; Wright et al. 2007); timing and degree of ther-
mal interaction of magma with wall-rock material prior to
ejection (Rosseel et al. 2006; Sottili et al. 2009, 2010); post-
fragmentation changes due to bubble growth, coalescence or
shape changes (e.g. Herd and Pinkerton 1997; Shin et al.
2005); and mingling between stagnant and fresh magma
(Gurioli et al. 2014; Leduc et al. 2015).

Bulk measurements of particle characteristics

The fastest and most straightforward textural measurement of
individual pyroclasts is density (vesicularity), which provides
basic information on processes related to gas exsolution and
escape (Houghton and Wilson 1989). The densities of lapilli
and small bombs can be determined by comparing their weights
in water and air following the Archimedes principle. Clasts can
be made impermeable with silicone waterproofing spray, by
immersion in cellulose acetate or by using Parafilm™ wax.
This technique is fairly rapid and yields large arrays of data with
a reproducibility within 10–30 kg m−3 and accuracy within
30 kg m−3 (Barker et al. 2012). Quicker, more timely and pre-
cise, density measurements can now be performed using a com-
mercial envelope density measurement device (http://www.
micromeritics.com/Product-Showcase/GeoPyc-1360-Envelope-
Density-Analyzer.aspx). Following the same principles, a
battery-powered device has been used to vacuum-seal pumice
or scoria in plastic bags in the field (Kueppers et al. 2005).

For pyroclasts characterized by fine vesiculation (with larg-
est vesicles smaller than 2–3 mm), the density can be mea-
sured with the glass bead method (Nakamura et al. 2008) that
allows the calculation of the density as well as the volume of
an object of irregular size. For large bombs (from 15 to 40 cm
in diameter), a Bnatural waterproofing^ effect was exploited
(Gurioli et al. 2013). Extensive tests showed that decimetric
size bombs collected at Stromboli acquired a natural water-
proofing from their quenched margins and thus could be
weighed in water without waterproofing. This represents an
easy, precise and fast strategy for large bombs. The density of
selected coarse ash fractions can be estimated using heavy-
liquid techniques (e.g. Barberi et al. 1989) or measured with a
water pycnometer (e.g. Eychenne and Le Pennec 2012). The
empirical sigmoidal dependence of particle density versus

grain size, as inferred from Tungurahua’s scoria fall layer by
Eychenne and Le Pennec (2012), offers a promising way to
obtain the whole ash density distribution using a few density
measurements in different grain size fractions.

The derived density distributions, within a narrow grain
size interval, coupled with external morphology variation,
can be used as filters to select a few clasts, representative of
the low, modal and high density values, from each subpopu-
lation observed (e.g. Shea et al. 2010a). Selected clasts are
then used for textural quantification.

Other bulk particle texturemeasurements include vesicle con-
nectivity, permeability (Klug and Cashman 1996; Klug et al.
2002; Formenti and Druitt 2003; Rust and Cashman 2004; and
references in Table 1) and electrical conductivity (Le Pennec
et al. 2001; Bernard et al. 2007; Wright et al. 2009; Wright and
Cashman 2014). The connectivity measurements are mostly per-
formed using gas displacement helium pycnometers, and they
deliver first-order information on the outgassing capacity (i.e.
potential for gas loss) of the magma near fragmentation (Klug
et al. 2002; Formenti andDruitt 2003; Giachetti et al. 2010; Shea
et al. 2011, 2012). Permeability controls the rate at whichmagma
outgases during decompression. Several methods exist for per-
meability measurements in volcanology. Rust and Cashman
(2004) used a commercial permeameter to perform systematic
steady-state gas flow experiments using porous samples, and the
relationship between flow rate and pressure gradient was deter-
mined. They also introduced the Forchheimer equation into vol-
canology, which is a modified form of Darcy’s law that includes
the inertial effect of gas flow, and specified the importance of this
effect in volcanic degassing processes.Mueller et al. (2005) used
gas pressure decay with time after sudden decompression in a
fragmentation bomb for the permeability measurements, without
measuring gas flow rate. A falling head permeameter developed
byBurbié and Zinszner (1985) has also been used tomeasure the
permeability of volcanic porous materials (Jouniaux et al. 2000;
Bernard et al. 2007). Recently, a low-cost gas permeameter was
developed (Takeuchi and Nakashima, 2005) and improved
(Takeuchi et al., 2008), to measure permeability of natural sam-
ples and experimental products. Finally, electrical conductivity
measures how well a material transports electric charge. Rocks,
in general, are poor conductors, whereas ionic fluids are good
conductors. Therefore, a measurement of conduction through
fluid-saturated rocks provides information about the connected
pore pathway through the sample. Although the influence of
pathway tortuosity and pore shape on permeability is useful for
numerical simulations on gas percolation, it has been the object
of only a few studies (Table 1).

Comparison between 2-D and 3-D particle texture
measurements

Two different methods are currently available for extracting
vesicle and crystal sizes, shapes and distributions in pyroclasts.

49 Page 8 of 33 Bull Volcanol (2015) 77: 49

http://www.micromeritics.com/Product-Showcase/GeoPyc-1360-Envelope-Density-Analyzer.aspx
http://www.micromeritics.com/Product-Showcase/GeoPyc-1360-Envelope-Density-Analyzer.aspx
http://www.micromeritics.com/Product-Showcase/GeoPyc-1360-Envelope-Density-Analyzer.aspx


The first is by conversion of 2-D data from a planar surface
(such as a thin section or photograph) to 3-D data through
stereology. The second method derives 3-D data directly from
X-ray tomographic reconstructions and visualization of clast
textures without the need of stereological conversions (Song
et al. 2001; Shin et al. 2005; Polacci et al. 2006b, 2008,
2009a, b, 2010; Degruyter et al. 2010b; Gualda et al. 2010a,
b; Giachetti et al. 2011; Baker et al. 2012), using computer
software especially developed for geo-textural purposes (e.g.
Ketcham and Carlson 2001; Ketcham 2005; Friese et al.
2013). Other 3-D methods include serial sectioning (e.g.
Bryon et al. 1995), serial focusing with optical microscope
(Manga 1998), serial grinding (e.g. Marschallinger 1998a, b,
c; Mock and Jerram 2005) and constructing digital elevation
models of individual ash grains to calculate vesicle volume
(Proussevitch et al. 2011). Two-D and 3-D observations have
different limitations and potential, and the two methods are
becoming complementary, not competitive (e.g. Giachetti
et al. 2011; Baker et al. 2011).

2-D method

Standard procedures for the 2-D method have been recently
published for vesicles (Shea et al. 2010a) and crystals
(Higgins 2000, 2006). Two-D techniques can yield high-
quality data and account for both vesicle and crystal sizes in
the sample and can be applied to particles ranging in size from
bombs (e.g. Gurioli et al. 2014; Leduc et al. 2015) to ash
(Miwa et al. 2009, 2013; Miwa and Toramaru 2013). These
measurements are best used when there is a broad size distri-
bution to be measured. The main limitation of the method is
that is based on the assumption of spherical shape of the tex-
tural objects, following Sahagian and Proussevitch (1998).
When this conversion is simply obtained by dividing the num-
ber of vesicles per unit area by the median value of diameter of
each size class (Cheng and Lemlich 1983), no shape assump-
tion is made. However, the 3-D conversion is more precise
when a shape is defined. Empirical corrections are commonly
used for crystal analyses (Higgins 2000 and 2006), but for
vesicles, whose shapes are less uniform, they risk introducing
systematic, uncontrolled errors in the data (Sahagian and
Proussevitch 1998; Proussevitch et al. 2007a, b).

3-D method

X-ray computed microtomography is the only available high-
resolution, non-invasive 3-D technique that allows reconstruc-
tion, visualization and processing of samples. Data acquisition
is generally relatively straightforward, and several scales
can be examined and combined, ranging from centimetres
to <1 μm, depending on the resolution (Giachetti et al. 2011).
In addition, the so-called Blocal area^ tomography technique
(e.g. Lak et al. 2008) enables high resolutions to be attained,

even with samples larger than the field of view of the camera.
However, 3-D quantification of textures can also be labour
intensive, depending on the size of the volume that needs to
be analyzed and on the textural parameters required. The re-
sults show the internal structures of samples, highlighting how
objects and apertures are linked together. This information
provides an excellent suite of data for studies of vesicle size,
shape and distribution, collapse, deformation, coalescence,
permeability and tortuosity, as well as for determining crystal
volume, size and distribution and visualizing crystal aggre-
gates in 3-D (Polacci et al. 2009a, b, 2012; Bai et al. 2010,
2011; Degruyter et al. 2010a, b; Zandomeneghi et al. 2010;
Gualda 2010a, b; Baker et al. 2012; Castro et al. 2012;
Okumura et al. 2013). Vesicles with complex shapes are easily
identified, while in a 2-D section, they might be interpreted as
two or more vesicles, thus biasing vesicle size distribution
(VSD) and vesicle number density (Nv) (e.g. Giachetti et al.
2011). The 3-D method is particularly effective for determin-
ing Nv if the study is focused on a specific size range; vesicle
number densities over a wide range of sizes are achieved with
nested studies in which a series of scans are done at different
sizes and resolutions (e.g. Giachetti et al. 2011; Pardo et al.
2014b). However, the resolution of the reconstruction is still
critical. Klug et al. (2002) showed that vesicle walls may be as
thin as 0.1 μm. To achieve this sort of spatial resolution using
tomography requires very small samples. When the attained
resolution is 5–15 μm, thin vesicle walls are not resolved.

There is currently no unique protocol for 3-D measure-
ments of different types of pyroclastic (or lava) samples; how-
ever, the SYRMEP group of the Elettra Synchrotron Light
Source (Trieste, Italy), together with researchers at McGill
University of Montreal and INGV Pisa (M. Polacci), is devel-
oping protocols for volcanic samples of different vesicularities
and crystallinities.

Crystal size distribution

Crystal size distribution (CSD) is a well-established tool for
interpreting the physical processes and environmental vari-
ables that drive differentiation and crystallization in magma
chambers and conduits (e.g. Marsh 1988; Cashman and
Marsh 1988; Cashman 1992; Hammer et al. 1999; Cashman
and McConnell 2005; Armienti 2008; also see references in
Table 1). CSD, coupled with vesicle distribution data, yields
deeper insights into the physical processes operating in the
conduit (e.g. Gurioli et al. 2005; D’Oriano et al. 2005;
Piochi et al. 2005, 2008; Noguchi et al. 2006; Giachetti et al.
2010; D’Oriano et al. 2011a; Vinkler et al. 2012). The CSD
method has been well tested and widely applied (Table 1), so
that it is now quite straightforward to quantify CSD (Higgins
2000, 2006; and references in Table 1).

However, we must keep in mind that crystals are common-
ly anisotropic, and therefore, shape cannot be ignored. Most
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studies use the Higgins technique to account for shape.
However, the Higgins method assumes that all crystals are
the same shape. This is clearly not true, as small crystals are
often more anisotropic than large crystals. Treating all crystals
in the same way can introduce artefacts (see Castro et al.
2003). In addition, there are still resolution issues for
microlites, as well as problems in both backscattered electron
(BSE) and cathode ray tube (CRT) analyses when the crystals
have a density (Z number) near that of the glass. Several
methods can be used to facilitate the extraction and quantifi-
cation of crystals. CSDs of larger crystals (phenocrysts,
antecrysts, etc.) can be measured from transmitted light mi-
croscopy images of thin sections and analyzed with digital
image analysis to automate and hence speed up the quantifi-
cation process (e.g. Armienti et al. 1994; Launeau et al. 1994;
Lumbreras and Serrat 1996; Goodchild and Fueten 1998;
Launeau and Cruden 1998; De Keyser 1999; Heilbronner
2000; Armienti and Tarquini 2002; Boorman et al. 2004).
Tarquini and Favalli (2010) used a slide scanner to acquire
input imagery in transmitted light from thin sections and
GIS software to analyze the data.

Crystals can also be identified using a scanner and a polar-
izing filter placed at different angles (Pioli et al. 2014). Three
pictures are then combined, and their correlation allows the
individual grains to be classified by their characteristic orien-
tation. To measure smaller crystals (microphenocrysts and
microlites), a scanning electron microscope is commonly used
in backscattered electron (BSE) mode (Cashman 1992;
Hammer et al. 1999; Cashman and McConnell 2005;
Nakamura 2006; Ishibashi and Sato 2007; Salisbury et al.
2008; Blundy and Cashman 2008; Wright et al. 2012).
Development of rapid X-ray mapping techniques now allows
CSD analysis of X-ray element maps, which provide informa-
tion on crystal compositions, textures (crystal size, orientation,
shape) and modes of minerals (e.g. Muir et al. 2012; Leduc
et al. 2015). Another new technique uses an electron backscat-
ter diffraction detector (EBSD) attached to the SEM to obtain
crystal orientations, which can provide insights into shearing,
accumulation and degassing processes (Prior 1999; Prior et al.
1999; Hammer et al. 2010). Chemical mapping is now rou-
tinely and widely used (e.g. Leduc et al. 2015). In contrast,
EBSD is more difficult to use and interpreting the data is
harder than the chemical maps. As described in the references
cited, it produces a wealth of information on various minerals,
although the monocline structure of the feldspar can be
problematic.

CSD can also be obtained directly in 3-D via X-ray com-
puted microtomography. Using this approach, it is possible to
obtain the total crystal volume, as well as the crystal volume
of each mineral phase present: crystallinity, crystal size and
crystal shape (e.g. Zandomeneghi et al. 2010; Voltolini et al.
2011). Again, resolution can be a problem. First, crystals
may span a large size range, which requires imaging at

several different resolutions (e.g. Pamukcu and Gualda
2010; Pamukcu et al. 2012). Additionally, as in BSE analy-
sis, the compositional similarity between some crystal
phases, such as alkali feldspars, and silicic matrix glass
can make automated analysis challenging (e.g. Baker et al.
2012). However, excellent results can be obtained by work-
ing in phase contrast tomographic mode (Polacci et al. 2010)
and applying a procedure known as phase retrieval to the
reconstructed sample volumes (Arzilli et al. 2013).

Errors in particle texture analyses

Uncertainties in textural analysis are due to several factors.
Any textural parameter, such as porosity or crystal size, has
intrinsic measurement errors. These are linked to the apparatus
used and are generally easy to quantify using standards. A
good practice, when a new method is introduced, is to assess
its intrinsic error with synthetic samples of well-known parti-
cles, having textural components (e.g. crystals, vesicles/voids)
with known size and distribution (e.g. see review of Rust and
Cashman 2004 for permeability and Baker et al. 2011 for 3-D
data from X-ray microtomography). Another type of uncer-
tainty is linked to natural variability, which is generally
approached by using the concept of representative elementary
volume (REV, Bear 1972). Parameters measured in small,
neighbouring, regions within a sample have a large variability.
As the analyzed regions become larger, this variability de-
creases until a steady value is reached at the REV size. One
complication is that the REV should be significantly smaller
than the sample (not guaranteed for ash or even lapilli parti-
cles) and that some parameters have a REV at the deposit
scale, which means that many clasts have to be analyzed. If
the sample location is such that eruptive parameters were
steady during deposition, application of REV at the deposit
scale allows analysis of magma at the point of fragmentation
in the conduit. Taking porosity as an example, one 2-D SEM
image will yield one porosity measurement with a typically
small (~1 %) intrinsic error due to thresholding of the
greyscale values that represent vesicles. Several 2-D images
of the same sample taken at different locations and/or different
resolutions (larger than the REV) typically yield larger
(~10 %) uncertainties that are caused by small-scale spatial
heterogeneity. Finally, if we assume that—or if we have
a—very well-sorted deposit, then the density distribution
of all clasts at that location indicates the variability of
porosity at the conduit scale, which can be quite large
(e.g. Houghton and Wilson 1989). The situation is more
complex with poorly sorted deposits in which particles
range from bombs through lapilli to ash.

Raw data in terms of size (area, long axis, short axis, pe-
rimeter) and orientation of crystals and vesicles yield negligi-
ble intrinsic errors, because they are computed with programs
on 2-D binary images with high resolution (>106 pixels). In
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this phase, the uncertainty is due to the image clean-up pro-
cess, which is generally unquantified (because it takes too
long to have four people complete the task independently
and then take the average for every image).

The greatest source of intrinsic error here is thresholding,
which is set by the operator (Baker et al. 2011). When
converting 2-D data to a 3-D projection, however, the error
depends on the stereological model used (i.e. particle shapes
have to be assumed, Cashman 1988) and is thus harder to
estimate.

Most 2-D textural parameters have well-established tech-
niques and protocols to quantify intrinsic errors, including the
following:

& VSD (Toramaru 1990; Mangan et al. 1993; Klug and
Cashman 1994, 1996; Klug et al. 2002; Adams et al.
2006b; Shea et al. 2010a)

& CSD (Higgins 2006), fabric indicators (Launeau et al.
1990)

& Vesicle shape (Moitra et al. 2013)
& Clast shape (Marshall 1987; Capaccioni and Sarocchi

1996; Dellino and Liotino 2002; Riley et al. 2003; Ersoy
et al. 2006)

However, conversion from 2-D to 3-D distributions intro-
duces errors linked to stereological assumptions. The Cheng
and Lemlich (1983) method does not involve assumptions of
object shape, but it does not take into account a truncation
effect (e.g. Pickering et al. 1995). Truncation is related to the
sensitivity of the measurement process; smaller objects are
increasingly difficult to detect. On the other hand, large-
scale truncation occurs under several circumstances related
to sample size (volume and area) limitations. The Sahagian
and Proussevitch (1998) conversion assumes spherical shapes
and corrects for the cut effect (this being the effect induced by
rarely cutting a spherical object through its exact centre).
Giachetti et al. (2011) found that Nv obtained by 2-D and 3-
D methods for the same lapilli agreed within 15 % and that
VSD were also very similar. They recommended the Cheng
and Lemlich (1983) method for 2-D vesicle analysis, as the
Sahagian and Proussevitch (1998) method may generate neg-
ative values for some size classes.

In terms of parameters that we can derive from textural
analyses, decompression rate is probably one of the most im-
portant to quantify due to its implications for eruption dynam-
ics. To achieve this, microlite shape, Nv and size distribution
have been used in combination with experimental data for low
mass flux and effusive eruptions (Couch et al. 2003; Cashman
and McConnell 2005; Szramek et al. 2006; Clarke et al. 2007;
Martel 2012; Wright et al. 2012). Martel et al. (2006) consider
this approach to be highly reliable, because different genera-
tions of microlites (nucleated pre-eruptively in the reservoir or
syneruptively in the conduit) can be distinguished on the basis

of chemical composition. Decompression rates deduced from
Nv (e.g. Toramaru 2006), however, tend to be maximum esti-
mates, because there could be more nucleation events during
ascent that add to the signature left by decompression.
Maximum decompression rates associated with the final,
rapid stages of ascent could be calculated directly from
the smallest bubbles formed during the final fragmentation
event (Giachetti et al. 2010; Shea et al. 2011, 2012).
Another developing method is to use chemical gradients
of volatiles in melt inclusions in crystal embayments to
infer rise rates (Ferguson et al. 2013).

However, the relationships between bubble shape, nucle-
ation, coalescence, deformation and/or fragmentation are not
well established yet.

Quantification and sampling of pyroclastic deposits
for the textural characterization of their components

Preliminary field studies and sampling strategy

Field-based studies of pyroclastic deposits aim to relate both
the whole-deposit characteristics (thickness and grain size)
and the physical properties of the constituent particles to the
eruption conditions. Particle texture studies are time-consum-
ing, especially when they provide complete size distributions
of the vesicle and crystal population. For these measurements,
the choice of a limited number of Brepresentative^ clasts se-
lected for the analysis is critical, particularly when using these
data to model eruption processes and their variability in time
and space. Obtaining such clasts requires a cautious sampling
strategy with well-defined scientific goals during field work.
These studies are best performed only on well-documented
deposits, supported by a robust stratigraphic reconstruction
and correlation, as well as an accurate compositional strati-
graphic framework. When not familiar with the deposit, a
preliminary survey at different locations is useful to evaluate
the significance of the outcrops used for detailed analysis.
Well-defined sublayers (or units) should be identified in the
deposit on the basis of clear, unequivocal lithologic and sed-
imentologic features and cross-correlated over the whole dis-
persal area of the deposit. Stratigraphic data are critical for
placing each studied layer within an appropriate temporal
framework within the stratigraphic sequence.

Pyroclasts can be collected after the eruption, from fall
deposits of old (unobserved) or recent (observed) eruptions,
for which sampling is done preferably within hours to days of
the event (e.g. Gurioli et al. 2008, 2013). Sampling may also
take place during eruptive activity, with samples collected
using sampling device placed inside the fallout field.
Three simple collection methods that can be applied to
active fallout, as currently used, are as follows: (1) the hand
collection method involves collecting (and quenching) bombs
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or lapilli as they fall out of the plume by people standing in the
active fallout field (e.g. Lautze and Houghton, 2007, 2008;
Gurioli et al. 2014); (2) the Bclean surface^ strategy, whereby
plastic sheets are laid out close to the vent, or a pre-existing
surface is cleaned before the eruption. In both cases, the
pyroclasts falling in a known area are collected (e.g. Rose
et al. 2008; Andronico et al. 2009a, b, 2013a and Eychenne
et al. 2012; Houghton et al. 2013, Harris et al. 2013b, Schipper
et al. 2013); and (3) the bucket strategy, in which a large
number of buckets are distributed across a discrete area of
fallout for a certain period of time (e.g. Yoshimoto et al.
2005; Swanson et al. 2009; Bustillos and Mothes 2010).
When possible, the aims are to collect a sufficient number of
samples to estimate the magnitude of the event through the
mass load per unit area and to obtain a sufficient number of
clasts for chemical and textural characterization. Other prom-
ising methods are just coming on-line, such as automatic ash
sampling collectors (e.g. Bernard 2013; Shimano et al. 2013,
Marchetti et al. 2013).

Definition of essential, basic physical properties
of the deposit to the study

Most particle and deposit texture studies aim at characterizing
magma heterogeneity and ascent dynamics and at understand-
ing the fragmentation process, beginning with the size, mor-
phology and componentry of the particles (Table 1). Clasts
selected for particle texture analysis are usually sampled in a
deposit at a single location (reference section). Lateral vari-
ability across the deposit is filtered by transport and sedimen-
tation processes, which primarily depend on eruption intensi-
ty, along with related plume dynamics and other dynamic
effects such as wind direction and velocity and rainfall.
Therefore, clast properties can differ both in time (from the
base to the top of a vertical sequence) and in space (from the
main axis of dispersal to lateral outcrops at the edge of the
fallout zone across the cloud and from proximal to distal sites).
Volcanic plumes (and clouds) are thus complex systems, the
properties of which do not vary linearly with the main erup-
tion parameters. They are also affected by external variables,
such as wind direction and velocity. The external variables
add additional complexity to the clast-type distribution. For
this reason, the deposit should be preliminarily characterized
at least in terms of stratigraphy, dispersal, thickness variation
and volume before more detailed study is initiated (e.g. Fisher
and Schmincke 1984; Cas andWright 1987; Thordarson et al.
2009; Cioni et al. 2011). Estimation of plume height, eruption
duration, volume and magma eruption rate can then also be
derived for past eruptions from such analyses (e.g. Carey and
Sparks 1986; Pyle 1989; Fierstein and Nathenson 1992;
Sparks et al. 1997; Bonadonna et al. 1998; Freundt and Rosi
1998; Bonadonna and Costa 2012; Fagents et al. 2013).

Selecting the outcrop

There are three basic criteria for sample outcrop selection.
First, minimize the effect of wind dispersal. Outcrops located
along the main dispersal axis are preferred to lateral expo-
sures; unless, the effect of wind is the target of the study. If
wind direction or eruption intensity changes during different
phases of the same eruption, it is more appropriate to sample
each tephra layer at different Bequivalent^ locations rather
than to collect all samples at a single type outcrop. If sampling
is restricted to a single location, the inferred dispersal pattern
and distance from the main dispersal axis of each layer
should be noted and taken into account when analyzing
clast variability among different layers.

A second criterion for selecting the outcrop is that clear
textural variations among the juvenile clasts, in terms of col-
our, general morphology, vesicularity, vesicle shape and crys-
tallinity should be evaluated in the preliminary field survey, so
that any lateral and vertical variability within the deposit is
already defined following field reconnaissance. This ensures
that, when clast types are chosen in the laboratory, the main
textural types are easily identified and separated.

The third criterion for outcrop selection, if one of the goals
of the study is quantification of the proportion of distinct tex-
tural clast types, is to remember that sedimentation from the
volcanic plume is affected by clast density, shape and size
(Bonadonna et al. 1998; Pfeiffer et al. 2005; Barsotti et al.
2008; Eychenne et al. 2013 and references therein). This is
especially relevant when a single explosion produces a juve-
nile population with a wide range of textural and other phys-
ical features: their relative proportions within the deposit can
vary laterally in the deposit as well as with distance from the
vent. Thus, at any single site, the sample is not necessarily
representative of the abundance within the eruption mixture.
This is especially true in the case of small plumes and mid-
intensity eruptions (e.g. Rose et al. 2008; Cioni et al. 2008,
2011; D’Oriano et al. 2011a; Andronico et al. 2013a and ref-
erences therein). While the textural features of the different
clast types can be studied at a single outcrop, the relative
proportions between clast types need to be determined across
the whole deposit by integrating componentry data on samples
collected at outcrops at differing azimuths and distances from
the source.

Sampling

After identification of the outcrops where the deposit shows
the best and most complete exposure, a suitable approach is
random collection of a statistically relevant number of clasts
from a single layer. Several techniques can be used, ranging
from sieving in the field to find the dominant clast size (for
coarse clasts) or sampling the bulk deposit for later clast se-
lection in the laboratory (for small clasts). In the case of fine-
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grained deposits, it can be useful to apply sampling techniques
that preserve structural and textural characteristics of the
whole deposit. Samples can be retrieved using tubes or boxes
manually pressed into the deposits or carefully carved out and
surround wrapped deposit blocks. In situ and/or laboratory
impregnation techniques of deposits exist for a broad range
of grain sizes and compositions (Bouma 1969), some of which
are applicable to fragile or loose volcanic deposits (e.g. Fiske
et al. 2009). The applicability of such techniques to fine- to
medium-grained volcanic deposits should be tested, since they
would allow both 2-D (e.g. X-ray radiography and thin section
analysis) and 3-D analysis (X-ray tomography and anisotropy
of magnetic susceptibility) to be applied to deposits, rather
than single pyroclasts; these techniques are frequently used
for hard rocks (e.g. Lanza and Meloni 2006).

The number of samples should be defined depending on
the purpose of the study. Fixing the number of samples per
stratigraphic layer based on the layer characteristics (e.g. ex-
tent of zoning/fluctuations in grain size, componentry, etc.) for
characterizing eruption dynamics and focusing on the layer
thickness for conduit dynamic characterizations are two ex-
amples of such pre-selection decisions. Before selecting
clasts, basic grain size studies (when the bulk deposit is col-
lected) on each sampled layer (median and sorting of grain
size distribution) and componentry analysis should be carried
out to ensure effective subsampling for textural studies.
FollowingWhite and Houghton (2006) componentry analysis
is the subdivision of the sample into three broad components:
juvenile, non-juvenile particles and composite clasts. The juve-
nile components are vesicular or dense fragments, as well as
crystals, that represent the primary magma involved in the
eruption; non-juvenilematerial includes accessory and acciden-
tal fragments, as well as crystals, that predate the eruption from
which they are deposited. Finally, the composite clasts are me-
chanical mixtures of juvenile and non-juvenile (and/or recycled
juvenile) clasts. More detailed componentry can subdivide the
juvenile and non-juvenile materials into subpopulations that
have important dynamic meanings (e.g. Eychenne et al. 2015).

Finally, after choosing the size intervals of the clasts for
physical and textural measurements (i.e. bulk and solid densi-
ty, vesicularity, microtextures, permeability), it is useful to
compare the grain size distribution of each interval with the
total grain size distribution of the sampled layers, especially
when the grain size distribution is highly variable within the
sampled stratigraphy. This strategy allows checking of sample
representativeness. For example, sampling may be from (i)
bimodal or complex multi-modal distributions or (ii) anoma-
lous, poorly sorted deposits. In the second case, sampling
should avoid features that can be indicative of contamination
from other sources, such as ballistic components, elutriated
ash from pyroclastic density currents or from reworking (e.g.
Fierstein et al. 1997; Eychenne et al. 2012). It is useful, when-
ever possible, to show variance, or invariance, of the textural

features by comparing data collected in the selected size class
with textural data for different size classes. This should, at
least, be carried out for a few selected samples.

How to link petrological, geochemistry and textural
quantifications

Initial parameters and conduit processes

Geochemical and petrological analysis of pyroclastic products
can constrain the initial conditions in the shallow crustal hold-
ing chamber through to the surface via the conduit system
(Fig. 1). In transit through this system, the textural features
are imprinted on the pyroclasts quenched upon eruption. The
geochemical and petrologic analysis can help the following:

& Define pre-eruptive P-T storage conditions from mineral-
melt equilibria or disequilibria (e.g. Rutherford et al. 1985;
Scaillet and Evans 1999; Pichavant et al. 2002; Blundy
and Cashman 2008; Schipper et al. 2010b)

& Assess initial viscosity, temperature, melt composition
and volatile budget, including input of gases from deeper
sources (e.g. Wallace 2001; Blundy and Cashman 2008;
Métrich et al. 2010)

& Define the evolution of volatile contents (specifically CI,
F, S, H2O, CO2) using electron probe, ion probe (SIMS),
Raman and FTIR in melt inclusions and host minerals,
while combining results with vesiculation studies and
gas release measurements (e.g. Wallace 2005; Métrich
and Wallace 2008; Schipper et al. 2010c). In such a way,
we can determine whether the magma was saturated, over-
saturated or under-saturated at a certain depth and how
these conditions affect vesiculation in the conduit (e.g.
Anderson 1991; Hurwitz and Navon 1994; Dixon 1997;
Roggensack et al. 1997; Schipper et al. 2012)

& Measure residual volatiles in glasses and bulk-rock sam-
ples to reveal how degassed the magma is (Newman et al.
1988; Villemant and Boudon 1998; Shea et al. 2014)

& Provide variable diffusion of stable elements (6Li, 7Li,
H/D, 10B, 11B) or radiogenic isotopes (210Pb-226Ra),
which are used as tracers for melt degassing and interac-
tion with hydrothermal fluids (e.g. Berlo et al. 2004; Kent
et al. 2007; Humphreys et al. 2008b; Schiavi et al. 2010;
Berlo and Turner 2010; Vlastélic et al. 2011);

& Measure mineral diffusion profiles and derive pre-eruptive
residence times, ascent rates and cooling rates (e.g. Kahl
et al. 2011)

& Provide crystal shapes, zoning schemes and dissolution
stages, while determining which magmatic process and
physical parameters control crystal shape/zoning (e.g.
Hammer and Rutherford 2002; Rutherford and Devine
2003; Blundy et al. 2006; Costa et al. 2008; Streck 2008)
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In addition, laboratory petrological investigations can pro-
vide the following:

– Experimental observations on phase equilibria (mineral-
melt-vapour), crystallization paths and liquid line of de-
scent (e.g. Hammer and Rutherford 2002; Couch et al.
2003; Blundy et al. 2006; Hammer 2008).

– Calibration of decompression rates. While this has been
carried out for rhyolitic systems (e.g. Mourtada-Bonnefoi
and Laporte 2002, 2004; Mangan and Sisson 2005;
Gardner 2007; Cichy et al. 2011; Cluzel et al. 2008) and
phonolitic systems (e.g. Larsen 2008; Shea et al. 2010b),
there are ongoing studies on basaltic systems (Bai et al.
2008; Lesne et al. 2011; Pichavant et al. 2013).

– Diffusion coefficients of relevant chemical elements, in-
cluding volatiles, to improve kinetic modelling (Dohmen
et al. 2007; Chakraborty 2008).

– Relationships between crystal morphologies, cooling
rates and degree of undercooling (e.g. growth of crystals
with hopper and swallow tail shapes experiencing rapid
late-stage crystallization; Faure et al. 2003, 2007).

– Surface flux of volatiles (i.e. what leaves the system; see
reviews by Fischer 2008; Pyle and Mather 2009) com-
pared with melt inclusion data (i.e. what is in the system
initially; e.g. Le Voyer et al. 2010; Rose-Koga et al. 2012;
Schiavi et al. 2012).

Where geochemistry can help textural study

Measurements of volatile contents in quenched, phenocryst-
hosted melt inclusions provide estimates of initial (shallow
crustal) values (e.g. Kent 2008). These are minimum esti-
mates, because H2O can leak from melt inclusions during
ascent by intracrystalline diffusion as the far-field environ-
ment of the crystal evolves (Chen et al. 2011, 2013). Melt
inclusion volatile contents can be inverted to equivalent satu-
ration pressures using multi-species (e.g. H2O-CO2; H2O-Cl)
solubility laws (using, for example, VolatileCalc, Newman
and Lowenstern 2002; MELTS, Ghiorso and Sack 1995;
Asimow and Ghiorso 1998). These, in turn, can be used to
calculate total pressures (and hence depth) by assuming
volatile saturation or minimum pressures if the sample is
under-saturated in volatiles. Progressive closure of melt
inclusion networks in growing phenocrysts can result in
zone-dependent melt inclusion volatile contents that record
the evolution of pressure conditions as magmas migrate
from depth (Blundy and Cashman 2008 and references
therein). Combining major element and volatile compositions
of the melt with phenocryst contents allows calculation of ini-
tial magma physical properties (viscosity, density, surface ten-
sion and others). Derivations of such parameters are necessary

for modelling magma ascent, vesiculation and groundmass
crystallization.

Pre-ascent storage conditions can also be inferred from
phase-equilibria studies of natural compositions. Comparison
of natural and experimental phase abundances and composi-
tions, combined with constraints of volatile content (from melt
inclusions) and temperature (from e.g. Fe-Ti oxides), allows
estimation of total pressure if the degree of volatile satura-
tion is established through use of mixed-volatile experi-
ments (Pichavant et al. 2007; Cadoux et al. 2014).

Residual volatile content (e.g. H2O, CO2, SO2, Cl, F) mea-
sured in the glass or directly from gases emitted at the vent can
be correlated with textures (e.g. Piochi et al. 2005, 2008;
Schipper et al. 2010a; Balcone-Boissard et al. 2011, 2012;
Shea et al. 2012, 2014; Burton et al. 2007; Polacci et al.
2009b; Miwa and Toramaru 2013). The residual volatile con-
tents can also be compared with pre-eruptive volatile contents
obtained from melt inclusion to evaluate both the extent and
efficiency of syneruptive degassing (e.g. Shimano and
Nakada 2006; Noguchi et al. 2006; Métrich et al. 2001,
2010). Residual water content or Cl content (when Cl parti-
tions into a H2O vapour phase, so that it can thus be used as an
indicator of degassing processes; Balcone-Boissard et al.
2010) is typically plotted against Vg/Vl, where Vg is the vol-
ume of vesicles corrected for phenocrysts and Vl is the volume
of melt and microlites (Villemant and Boudon 1998; Balcone-
Boissard et al. 2011, 2012). An important issue is to assess the
extent of post-eruption hydration. Recently, thermal gravimet-
ric studies have proved to be quite effective in allowing this
correction based on oxygen or hydrogen isotopic composi-
tions (e.g. Giachetti and Gonnermann 2013; Shea et al.
2014). Studies of hydrogen isotopes, correlated with SEM
glass textures, permit distinction of magmatic water from me-
teoric water generated by re-hydratation (Kyser and O’Neil
1984). Hydration can also be assessed from the ratio of water
species (molecular H2O vs. OH) in residual glass, as deter-
mined by FTIR data or Raman analyses (Hammer et al. 1999;
Le Losq et al. 2012).

Ascent and decompression in the conduit can result in
chemical changes that can be quantified by a range of micro-
beam analytical techniques (e.g. EPMA, LA-ICPMS, FTIR,
μ-Raman). As the pressure drops, H2O will migrate out of
melt inclusions and crystals (Le Voyer et al. 2010; Hamada
et al. 2010), and light elements (Li, B) will try to re-establish
equilibrium between crystals, host melt and any vapour or
brine phase present (Berlo et al. 2004). At the same time,
H2O and CO2 migrating out of melt inclusions will become
apparent as re-entrant tubes at the edges of crystals (Liu et al.
2007; Humphreys et al. 2008a). Each of these processes will
establish diffusive gradients frozen into the pyroclast that can
be measured and modelled using experimentally determined
kinetic laws to infer decompression rates during ascent (e.g.
Gonnermann and Manga 2013). These decompression rates
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can then be compared with values derived from other ap-
proaches, including those based on analyses of microlite sizes
and shapes, vesicle number densities and hornblende break-
down reactions (e.g. Martel 2012; Cluzel et al. 2008; Giachetti
et al. 2010; Shea et al. 2011).

Contentious points

Care needs to be taken when converting decompression rate to
magma ascent rate and especially when comparing decom-
pression rates obtained using different methods. Pressure gra-
dients in conduits are highly non-linear due to the strong effect
of dissolved H2O onmagma viscosity, particularly at lowH2O
contents (Gonnermann andManga 2013). Moreover, different
processes will likely record different decompression rates, ac-
cording to the time available for the process to take place. For
example, microlite growth is relatively slow, so that microlite
size and shape distributions are likely to record an average
decompression rate during ascent (Martel 2012). Bubble nu-
cleation and growth, on the other hand, can occur very rapidly,
so that Nv may record just the peak decompression rate imme-
diately beneath the fragmentation zone (Cluzel et al. 2008;
Giachetti et al. 2010). Comparison of rate calculations from
different methods therefore requires caution. However, in-
tegration of decompression rates as obtained from different
textural and chemical characterizations, when combined
with mass eruption rate estimation from deposit analysis
or direct observations, can provide quantitative insights
into the processes involved in magma ascent from the
deep source to the surface.

Another outstanding issue is the role of dense clasts. That
is, did they originate (i) from magma quenched at depth prior
vesiculation, (ii) by vesicle collapse in an originally vesicular
clast and (iii) from volatile-poor magma or from recycling? It
is important to provide a correct interpretation, because the
three conclusions relate to very different mechanisms. In sev-
eral eruptions, it has been found that the densest clasts were
depleted in water through syneruptive bubble collapse and
coalescence (Rust and Cashman 2007; Piochi et al. 2008;
Shea et al. 2014). In Plinian eruptions at Vesuvius (Pompeii
and Avellino), the densest clasts have been interpreted as mag-
ma that lost water during transition from closed- to open-
system degassing (Balcone-Boissard et al. 2011, 2012).
Water depletion can also result from syneruptive processes,
such as clast recycling at magmatic temperature (Gurioli
et al. 2014) and intrinsic magmatic redox conditions, as shown
by the experiments of D’Oriano et al. (2012). No study has yet
have demonstrated that dense clasts retain all of their original
gas and were quenched at great pressure.

Another key question is whether the measured composi-
tions (including volatile content) of bulk rock, glass or min-
erals represent equilibrium or disequilibrium processes and if
equilibrium or disequilibrium conditions pertain to local

subsystems or to the whole magmatic body under investiga-
tion (see, for example, Pichavant et al. 2007). Chemical spe-
cies with different diffusivities, for example, record equilibri-
um or non-equilibrium conditions in the same sample (e.g. De
Campos et al. 2008; Schipper et al. 2012). Equilibrium kinet-
ics is also composition-dependent, because it is dictated in part
by melt viscosity which is itself related to viscosity. This issue
will generally affect silicic to intermediate magmas more than
basaltic magmas. However, we note that even for basaltic
systems, crystal-fluid-bubble magma mixtures can achieve
apparent viscosities that range over six orders of magnitude,
up to 106 Pa s (e.g. Gurioli et al. 2014), depending on the
degree of cooling, degassing and crystallization. Such rheo-
logical variation even within a single composition, and its
effect on eruption mechanisms, deserves increased attention.

How to link the geophysical data with pyroclast
textural quantification

A wide array of remote sensing and geophysical approaches
can be used to parameterize an explosive event, both within
and outside the conduit (Fig. 1). Geophysical signals are gen-
erated by fluid and gas flow in the magma-filled part of the
conduit and during fragmentation. Magma-gas ascent dynam-
ics and conduit conditions extracted from geophysical data for
this part of the system are particularly difficult to validate
because the system cannot be directly observed. They are thus
effectively Binvisible^ to direct observation. Measurements
outside the conduit can be made of the emitted mixture of
gas and particles as it (i) exits the vent, (ii) ascends above
the vent as a plume and then (iii) drifts away from the vent
as a cloud. Models and dynamic parameters extracted for geo-
physical and remote sensing data outside the conduit are a
little easier to validate because they can be directly observed.

The invisible part of the system is the realm of studies using
seismic, pressure (infrasonic) and deformation data. All three
data sets have long been shown capable of detecting the geo-
physical signature of explosive events spanning weakly ex-
plosive Hawaiian to Strombolian through Plinian events.
Seismic data sets are available, for example, for gas-
pistoning events, puffing, fountains and Strombolian erup-
tions at mafic systems (e.g. Goldstein and Chouet 1994;
Ripepe et al. 1996; Sciotto et al. 2011; Ripepe and Braun
1994), as well as for events that generate somewhat larger
plumes during silicic eruptions, as at Santiaguito, Soufriere
Hills and Redoubt. Associated pressure impulses (typically
recorded by infrasound and barometers) have long been re-
corded for such energetic events, famous examples including
the pressure response to the 1883 eruption of Krakatoa and the
1967 caldera-forming eruption of Fernandina (Simkin and
Howard 1970). Magma-gas ascent has also been shown to
generate rapid, but recordable, deformation signals detected
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by tiltmeters (Aoyama and Oshima 2008; Genco and Ripepe
2010; Iguchi et al. 2008; Zobin et al. 2007).

Velocities, masses and size distributions of particles leaving
the vent have typically been measured by visible and thermal
video (e.g. Chouet et al. 1974; Ripepe et al. 1993; Harris et al.
2012; Delle Donne and Ripepe 2012; Taddeucci et al. 2012;
Bombrun et al. 2014; Gaudin et al., 2014a, b) and Doppler
radar (e.g. Dubosclard et al. 1999; Hort and Seyfried 1998;
Vöge et al. 2005; Gouhier and Donnadieu 2008, 2011; Gerst
et al. 2013). Infrasonic array methods are also available to
locate the emission in x,y space (Ripepe and Marchetti
2002). Plume front velocities, density and entrainment rates
have also been successfully tracked using visible and thermal
cameras, as well as radiometers, for a few stronger, ash-rich,
buoyant plumes at Stromboli, Santiaguito and Eyjafjallajökull
(Patrick 2007; Sahetapy-Engel and Harris 2009; Bjornsson
et al. 2013; Valade et al. 2014) (see Chapter 9 of Harris 2013
for review).

Satellite remote sensing has long been used to track and
measure properties of the eruption cloud as it drifts and dis-
perses. These data are available for all cloud sizes, from those
associated with small Strombolian and fountaining events
(e.g. Heiken and Pitts 1975; Dehn et al. 2000, 2002) to sub-
Plinian and Plinian events (e.g. Holasek and Self 1995;
Koyaguchi and Tokuno 1993; Holasek et al. 1996). Cloud
dispersion dynamics are especially well revealed by geosta-
tionary satellite data with nominal imaging of one image every
15 min and higher. Basic cloud properties that can be mea-
sured by satellite data include cloud dimensions, drift velocity
and height (e.g. Robock and Matson 1982; Denniss et al.
1998; Aloisi et al. 2002; Zakšek et al. 2013). Prata (1989)
and Wen and Rose (1994) introduced a method to potentially
extract particle size distribution and mass from Bsplit
window^ (10–12 μm) thermal data. While specially modified
ground-based thermal cameras were adapted to extract ash
particle size and plume mass (Prata and Bernardo 2009), new-
ly available technology such as LiDAR and PLUDIX were
shown of value in detecting, tracking and measuring fine par-
ticles in the Eyjafjallajökull cloud (e.g. Bonadonna et al.
2011). Disdrometers and ash collectors, however, currently
show greater potential for measuring particle size and terminal
velocity (Marchetti et al. 2013; Shimano et al. 2013) than
PLUDIX, which was designed more for meteorological appli-
cations (Caracciolo et al. 2006; Prodi et al. 2011).

For the gas content of the cloud, satellite-based sensors
such as TOMS, AIRS, OMI, MODIS, GOME and IASI have
been used to obtain the SO2 content in the far field, once the
gas cloud has decoupled from the ash cloud (e.g. Krueger et al.
1990; Carn et al. 2003, 2005; Watson et al. 2004; Yang et al.
2007; Thomas et al. 2011; Rix et al. 2012; Walker et al. 2012).
Ground-based sensors, such as COSPEC, FLYSPEC and
DOAS (e.g. Caltabiano et al. 1994; Horton et al. 2005;
Oppenheimer et al. 2011), have been used to measure SO2

fluxes relatively close to the source (see Williams-Jones
et al. (2008) for full review). These approaches have been
recently supplemented by SO2 camera systems, which allow
2-D images of SO2 concentrations to be collected at ~1-Hz
rates (Mori and Burton 2006). Such studies have, though,
tended to focus on passive degassing and gas puffing systems,
because the presence of ash interferes with UV-light transmis-
sion on which the technique relies, making measurements
problematic. Recently, SO2 cameras have been used to mea-
sure the gas masses and fluxes involved in discrete explosive
events (Mori and Burton 2009; Holland et al. 2011; Barnie
et al. 2014).

However, none of these remote sensing techniques directly
collects or makes contact with the magma or particles that they
measure. Thus, the need exists for quality ground-truth data to
validate particle velocities and sizes extracted from what is,
basically, an electronic response, as well as to test the assump-
tions and models used to convert received Bpower^ to a more
meaningful and useful parameter (such as mass). At the same
time, any single data set can be inverted to support a conduit or
plume dynamic model, but results need to fall within con-
straints provided by ground-truth data. In this case, ground
truth is provided by analyses of the magma and particles them-
selves to extract parameters such as magma temperature,
chemistry, density, crystallinity and vesicle content, as well
as vesicle shape and size and particle density, size, shape
and roughness.Magma ascent, explosion source and fragmen-
tation models based on geophysical data likewise need to be
consistent with independent measurements made for physical
volcanology for the same processes if they are to be valid.
We explore below these needs, mostly focusing on weakly
explosive, basaltic cases, the usual targets because they
provide a reliable and easy-to-measure source for testing
new technology, methods and algorithms for ground-based
geophysical enquiry.

The basic need: realistic assumptions and validation

The basic response of a remote sensing instrument is a voltage
which, through calibration, can be converted at higher level
physical value, such as spectral radiant intensity or power. The
conversion of this value to higher level and more
volcanologically useful parameters (such as particle size dis-
tribution, mass flux or plume density) requires an increasingly
complex system of assumption stacking. Thus, to adequately
reduce geophysical data, a number of input parameters are
required and many assumptions need to be made, all of which
can be provided by the physical volcanological community.
Data sets from this community, especially if provided simul-
taneously with geophysical data collection during an active
event, or provided as a library typical of that event, can also
be used to Bground truth^ or check the precision and reality of
the geophysically applied input or generated output.
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Seismic signals that accompany explosions are primarily
short-period (SP; high frequency >1 Hz) signals which are
typically termed Bexplosion quakes^. These usually have high
amplitudes and mostly include frequencies up to a few hertz,
with a possible higher frequency acoustic phase (McNutt
1986, Mori et al. 1989, Braun and Ripepe, 1993). Below these
frequencies, SP signals are often hidden by very-long-period
(VLP) components with much lower amplitudes (Neuberg
et al. 1994; Kaneshima et al. 1996). In spite of an enormous
amount of work, it remains unclear as to how we can explain
the VLP seismic component, which itself is only one part of
the seismic signal. It also remains unclear as to whether, and/
or how, SP and VLP components are related to the magnitude
and intensity of an explosion, although attempts have been
made using tremor (Brodsky et al. 1999; Nishimura and
McNutt 2008; Prejean and Brodsky 2011). Clearly, better cou-
pling with the physical volcanology community could help
narrow down much uncertainty and allow progress towards
better models to untangle the seismic signal associated with
discrete explosive events.

Delay times in the arrival of seismic, infrasonic and thermal
signals have been commonly used to assess the depth at which
various physical processes occur in explosive basaltic systems
(e.g. Ripepe and Braun 1994; Ripepe et al. 2001, 2002; Harris
and Ripepe 2007). However, the sound speed in the conduit
needs to be assumed if, for example, the thermal-infrasound
delay is to be used to obtain the fragmentation depth. This
will vary strongly with conditions in the empty portion of
the conduit, including mixture density, gas to particle ratio
and temperature of the mixture through which the sound
is propagating. Thus, we need to know these variables if
we are to provide a realistic sound speed value and hence
infer a plausible depth. We thus need to constrain two
fundamental parameters to strengthen geophysical model-
ling of the shallow explosion mechanism and depth. First,
the magma crystal and bubble content (as well as size,
shape and distribution), plus fluid chemistry and tempera-
ture, are needed to define magma rheology properties and
bubble ascent dynamics. Second, the exact proportions and
character of the mixture of gas and particles that ascends
the final section of the conduit to exit the vent and feed
the emission must be known.

Velocities, mass fluxes and particle size distributions
(PSDs) for lapilli through bomb-size particles have been de-
rived from high spatial and temporal resolution video data
obtained using both near-infrared and thermal cameras
(Chouet et al. 1974; Ripepe et al. 1993; Harris et al. 2012;
Delle Donne and Ripepe 2012; Bombrun et al. 2014).

Generally, these studies have focused on Stromboli. For
such camera data, the lower limit of a particle size that can
be extracted is limited by pixel size. This is typically about
1 cm in dimension, depending on the detector’s instantaneous
field of view and distance to the target (Harris 2013). A pixel

mixture model can be applied to obtain the size of a subpixel
particle, but it needs to assume a temperature for the particle
and then uses the pixel-integrated temperature to solve
for the pixel portion occupied by that particle (Harris
et al. 2013a). Symmetry then needs to be assumed to
convert from particle area to particle volume, and a
density needs to be assumed to derive particle mass
(Bombrun et al. 2014). For ash-rich plumes, methods
have been applied to extract total plume mass and air
entrainment properties from ascent dynamics of buoyant
thermals (Wilson and Self 1980; Patrick 2007; Valade
et al. 2014). However, all methods need particle shape,
particle density, plume density and/or size distribution
data to (i) determine whether the input assumptions are valid
and (ii) ground truth the remote sensing data-derived size and
mass data (Harris et al. 2013a, b). The advantage is, if a val-
idated method can be developed, particle size distribution,
mass and mass flux data for the plume leaving the vent can
potentially be provided multiple times per second using cam-
era data (e.g. Taddeucci et al. 2012; Bombrun et al. 2014).

Deducing the erupted mass from Doppler radar data re-
quires the assumption of a particle size distribution for the
eruption. Because this distribution is unknown, an average
particle size can be constrained from the Doppler radar mea-
surement, typically using the eruption velocities themselves
deduced from either terminal fall velocities (Hort et al. 2003)
or by discriminating between lapilli (larger than a few
millimetres or 1 cm, depending on the radar wavelength)
and fine ash particles (<1 mm) using their temporal velocity
evolution (Valade and Donnadieu 2011). Both methods can be
used to obtain an estimate for the erupted mass of ballistics.
We thus need to know whether the constrained average parti-
cle size can be used for mass calculation, whether the assump-
tion is a good approximation, and what the difference between
the derived value and true value is.

The radar is able to measure particles of all sizes, provided
that enough particles are available to return a signal.
The relationship between particle size and number of
particles required for a signal that exceeds the noise
level is not linear, however. It also depends on the radar
wavelength and the distance between the radar and tar-
get. The smaller the radar wavelength and/or the smaller
the distance between the radar and target, the smaller
the number of fine particles needed for a return signal.
For particles <1 mm, halving the particle size increases the
number of required particles by a factor of 64. Doubling the
size of particles to >1 cm means that only one fourth of the
number of particles is needed to return the same signal ampli-
tude. In addition, radar canmeasure at points (gates) across the
entire plume thickness. Currently, radar’s best role is to pro-
vide radial velocity measurements, with well-stated limits as
to the particle size to which these data relate, through the entire
plume thickness.
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Questions, points and issues

The main question from the geophysical community to the
textural community is as follows: BWhat does the magma look
like at the point of fragmentation?^Geophysical analysts need
to know everything possible about the fragments physically in
order to reduce and model the data correctly. To help with this,
we concluded that

– Measurements of basic geophysical parameters (such as
seismic energy, acoustic energy, energy partitioning,
spectral radiance and radar power) are the most straight-
forward to consider for correlations with parameters de-
rived from physical volcanology.

– Multi-disciplinary correlations lead to improved under-
standing of explosion dynamics, and only a complete
set of measurements can enable a complete and well-
constrained understanding of the system (e.g. Gurioli
et al. 2013, 2014; Leduc et al. 2015).

– A wealth of textural and geophysical data exist for
Strombolian events and some data for larger events.
They have been used to define the characteristic geophys-
ical and textural signatures that allow distinguishing each
event type (e.g. Patrick et al. 2007; Leduc et al. 2015).
Focus on such relatively low-energy events is appropri-
ate, because they are frequent and approachable (Harris
and Ripepe 2007).

– There is an unfortunate, but understandable, lack of multi-
disciplinary data for larger (Vulcanian-to-Plinian) events,
because they are rare. With multi-disciplinary approaches
becoming more routine, this situation is improving.

Thermal and SO2 sensor arrays are becoming increasingly
common components of permanent monitoring arrays at many
persistently active sites (Harris 2013). However, such tech-
nology will probably never be installed on every poten-
tially active volcano, all of which give seismic and pres-
sure signals detectable by distant stations. From a practical
point of view, it is more realistic to push forward with
operational correlations between seismic-infrasonic metrics
and deposit and particle textural deliverables to understand
the ongoing progression of global volcanic events. In doing
so, we must remember that many geophysical signals tend to
be time averages (e.g. tremor amplitude). We need to consider,
however, geophysical measurements that describe single, dis-
crete explosions if we are to reasonably compare the data with
textural variations between many individual emission events,
or emission phases, that characterize that the total eruption
total energy is one prime example (e.g. Marchetti et al. 2009).

We are at an exciting point in our ability to track and un-
derstand explosive volcanic emissions through true cross-
disciplinary integration of deposit, geochemical, textural and
geophysical data. Studies are increasingly bringing together

multiple approaches in the field (e.g. Rosi et al. 2006), in the
laboratory (Clarke et al. 2009), at large-scale experiments
(Sonder et al. 2013) and during field deployments (Harris
et al. 2013b). As a community, we appear to be converging
on the correct, multi-disciplinary approach. We are at the be-
ginning of a new age, one which links particle texture to seis-
mology (Miwa et al. 2009; Miwa and Toramaru 2013; Gurioli
et al. 2014; Leduc et al. 2015) and infrasound (Colò et al.
2010, Landi et al. 2011), as well as petrology to geophysics
(Saunders et al. 2012; Martí et al. 2013). Continuation of this
trajectory can be aided by further support for pan-disciplinary
workshops, meetings and working groups, the objectives of
which are to totally understand the system and to constrain
measurements with the least uncertainty.

Questions, needs and recommendations

Tables 2, 3 and 4 summarize the main results from the previ-
ous discussions. Table 2 is the summary of major conclusions
to date from cross-disciplinary approaches. Table 3 suggests
improvements to methods to facilitate cross-disciplinary ap-
proaches. Finally, Table 4 groups outstanding questions that
might be addressed if the recommended methods are used.

The list of key issues and questions defined allows us to
distil the following community-wide points and initiatives as
priorities:

1. We need to define, and adhere to, standard sampling, data
col lection, experimental and methodological procedures
to allow full integration of the four disciplines.

2. In doing this, we need to understand each other’s needs
and then follow each other’s well-recognized sampling
etiquette in order to work together as a truly integrated
team.

3. We should aim to collate all data and measurements
that can be provided by each discipline at some cen-
tral host site and evaluate whether we need more from
each field.

4. Quantification and statement of the precision of the mea-
surements must always be made, and a set of standards
must be produced to allow data quality control.

5. The community needs to explore and discuss the best
means to improve the quality of the measurements and
the amount of data available.

6. Guidelines should be agreed on regarding essential
key parameters that need to be extracted, versus those
that are less important. Common standards need to be
established that allow these key parameters to be shared
by all groups.

7. Central to this is creation of an open access data bank
to support essential geophysical, deposit, textural and
geochemical data integration and sharing. This means
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Table 2 Summary of major conclusions to date from cross-disciplinary
approaches

Textural studies should be performed onwell-constrained deposits (in terms
of stratigraphy, dispersal, thickness variation, volume)

Develop a sampling strategy based on the goal of the study. For example,
when the purpose of the study is the characterization of magma
properties during different eruption phases, it could be more
appropriate to sample each tephra layer at different locations rather
than selecting a single type outcrop

To minimize the effect of wind direction, outcrops located along the
dispersal axis should be preferred to lateral exposures (for detailed
textural studies), but it is necessary to analyze what to expect outside
this main axis and in distal locations

Check density juvenile variation with distance. If there is variation, then it
is recommended to weight the proportion of each clast type

After having selected the outcrop, it is necessary to get a statistically
relevant number of clasts collected at random from the deposit

For textural purposes, the sample has to be defined in terms of the following:
• Grain size
• Componentry
• Morphology

Sample the dominant grain size (bombs, lapilli, ashes) representative of
the explosion/eruption. If all the components are present, it is
recommended to perform textural analyses at different grain scale

Discriminate between the primary vesiculation quenched at the
fragmentation/explosion level from syneruptive expansion and coa-
lescence and post-expansion features

Gain knowledge of the global (total) variability of the juvenile population

Crystals and vesicles should always be studied together to understand the
relationships between them and them and matrix

Vesicle number density and total grain size distribution correlation should
be performed at eruptions with different distributions of vesicles

Standard methods and derived parameters should be made available through
a web-based database or repository of material attached to publish papers.

Combine textural and geochemical analyses on the same samples so as to
properly link texture and geochemistry

Correlate degassing (initial volatile budget versus surface gas measurements
+ residual content to make the total budget) with textures

Combine integrated textural and geochemical study with experimental
petrology to derive key parameters (e.g. partition coefficients,
decompression rates, etc.)

Contribute to understanding textures over differing timescales by using,
for example, diffusion profiles in zoning of mineral and melts

Because seismic and acoustic arrays are extensive and arrays of gas
spectrometers are now present on several volcanoes, we recommend,
as a global operational practicality, to concentrate on, and validate,
correlations between gas emissions and seismic and acoustic data.

In terms of seismicity, RMS integrates multiple pulses and is dominated
mostly by background tremor rather than specific explosions; it is thus
not a good metric to correlate, unless at specific volcanoes as Mt. Etna
(Alparone et al. 2003).

Assuming a constant size and shape in geophysical inversions, and not
incorporating existing textural data, is undesirable and potentially
misleading.

Sensitivity of model has to guide texture researchers to measure the key
andmost important parameters, thereby reducing the errors on themost
important inversion parameters.

Increase community-wide experiment at a key, case-type volcano or
(initially) using a synthetic, controlled explosion.

Table 3 Recommendations for improved methods to facilitate cross-
disciplinary approaches

Quantify error/variability of all the field data

Provide the field measurement techniques for a consistent comparison
with existing databases

Improve sample collection in active fallout field for bombs, lapilli and ash

Make machines capable of collecting pyroclasts from single explosions

Find a standard method to determine the total grain size distribution for
fallout deposits

Make analogue experiments long enough to reproduce bubble growth or
coalescence and evolving magma physical and rheological properties

Build an online catalog of results from analog and high-temperature
experiments

Set up a working group to define and solve outstanding problems for the
deposit community

Provide definition of the representative elementary volume:
1. At the deposit scale(inter clast);
2. At the sample (ash, lapilli, etc.);
3. At the microscale for image analyses (for VSD and CSD)

Provide a standard procedure for the 3-D tomography analyses

Increase links between texture and
1. Total grain size distribution of the related deposits
2. Clast morphology
3. Glass chemistry
4. Water, CO2, SO2, HCL, HF (depending on the composition) analyses
5. Geophysical parameters of the related explosion/eruption

Complete more detailed sampling and textural studies of selected eruptions
to increase the breadth and depth of the available textural database.

Increase the amount of textural data for the following:
1. Phreatic and/or phreatomagmatic explosions
2. Pyroclastic density current deposits
3. Lava flows

1. Define pumice types (e.g. tube vs normal, crystals vs no crystals)
2. Their abundance
3. Identify pumice end members and make a classifications of types

Produce more data of the following:
1. Permeability
2. Connectivity
3. Tortuosity

Provide a data set of raw and elaborated images, of primary and secondary
parameters

High-resolution chemical mapping in order to extract what you are
interest in as elements

Increase cross-correlation and comparison of textural parameters relating
to different processes and cross-correlation between same events (e.g.
explain the difference between gas jetting versus impulsive events)

Link what we see and measure at the surface of remote sensing
(geophysical) instruments through the unknown Bempty,^ but hot gas
and particle filled, conduit section to the magma conditions in the filled
(and/or fragmenting) part of the column

Check if the source condition and explosion mechanism models are valid
for all sets of measurements

Think how we are to build a statistically significant geophysical database
for the Vulcanian, sub-Plinian and Plinian events

For each event type, we need thousands of geophysical measurements
and coincident samples, for individual, well-defined explosions. This
will built a statistically robust data set

Define an integrated response method that allows simultaneous
geophysical measurement and a sample return, which (for crisis
response) can ideally run in near real time
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creation of a repository of data grouped by eruptive
style and/or geographic location into which members
can make deposits and withdrawals.

8. All of this should ideally be integrated into a GIS platform
to allow for easy cross-correlation and comparison of dif-
ferent types of parameters.

DynVolc: an integrated database

Inspired by this effort, a database—Dynamics of Volcanoes
(DynVolc)—is now operative at http://wwwobs.univ-
bpclermont.fr/SO/televolc/dynvolc/index.php. This database
is part of an observation system within the services provided
by Observatoire de Physique du Globe de Clermont-Ferrand
(OPGC). It is an attempt to provide an integrated and acces-
sible library for all multi-disciplinary data sets for explosive
eruptive events. This database is an integrated collection of
data from physical and geophysical observations of dynamic
volcanic processes.

DynVolc database spans the full range of explosive and
effusive activity. Its intent is to provide a library of standards
for eruptive styles, for each of which the database provides the
following:

& Field data (i.e. results of field mapping, outcrop and sam-
ple descriptions)

& Key deposit features (thickness, areal dispersion, sedimen-
tary structure, grain size)

& Clast characterization (componentry, morphology, density,
porosity, permeability)

& Clast texture (connectivity, vesicle and crystal size and
size distributions)

& Chemical analyses of samples (bulk and glass chemistry)
& Associated geophysical measurements (e.g. fragmentation

depth, ejection and ascent velocity, fragment and gas
mass, seismic and acoustic energies)

Integration of these data allows improved, better constrained,
insights into the dynamics driving each eruptive style. It also
allows improved definition of the rheological and degassing
conditions associated with each activity style. At the same time,
it provides a library of key physical parameters that need to be
assumed by geophysical data reduction methods, as well as
during model-based enquiry.

Central to this initiative will be the transformation of
this database into a communal databank, involving a web-
based GIS platform to allow huge amounts of cross-
correlation and comparison between parameters relating
to different processes and cross-correlation of different da-
ta sets obtained for the same eruption. It is intended as an
open database into which anyone can input, and withdraw,
citable cross-disciplinary information for scientific analysis.
At the same time, through this library, we can provide
cross-community time series, baseline and monitoring data
for the full-range volcanic activity.

Table 4 Outstanding questions that might be addressed if the
recommended methods are used

Is it possible to derive the total grain size distribution, and how?

How much information do we lose in sampling (for textural purpose)
along main axes of dispersal, rather than lateral?

How representative are different types of pumice (tubular, non-tubular,
dense)?

When we focus, for textural quantification, on some narrow grain size
interval, which information dowe lose from the bigger and the smallest
fragments?

What is the inter-relationship between bubbles and crystals?

Why do vesicle number densities (Nv) from single explosions show such
wide ranges?

How can we isolate the contribution to Nv due to decompression
processes from the contribution due to prior gas exsolution or post-
fragmentation vesicle expansion?

Because Nv can vary over orders of magnitude during single eruptions,
which Nv values do we consider representative of the event, and how
can we narrow down the variability?

Nv can correlate with magma decompression rate, but keeping in mind the
three previous points, which Nv has to be chosen if such correlations
are to succeed?

Is there a direct correlation between Nv and magma decompression rate
for mildly explosive activity?

How does rheology change? Which rate of change will affect eruption
intensity and transitions in the style of eruptive activity?

Is microlite content sensitive to the glass composition?

How to define microlite in a standard way?

How does microlite crystallization affect rheological evolution and the
composition of the melt and bubble nucleation + residual volatile
concentration? And vice versa

How to compare estimations of decompression rate obtained by different
techniques?

What controls the diffusion of Li in crystals, and what is the effect of a
brine phase?

Can we estimate pressure at the instant before fragmentation (to allow
better interpretation of velocity data)?

Can we estimate strain rate at the fragmentation time?

Can we extract anything about conduit shape, dimensions and geometry?

What is the most relevant geophysical parameter that can be correlated
with vesicle number density and other textural measures?

What measure of explosion Benergy^ can we extract from seismic data to
add to the integration? Integration of what?

How does the time-varying velocity and mass flux distribution relate to
the vesicle number density, vesicle size distribution and gas flux, and
are we able to really explain the link in a confident way?

Is the geophysical community ready for measuring a large Vulcanian,
sub-Plinian and Plinian eruption?

Is it possible for a geophysical group located far from an active volcano to
acquire the funds and logistical means to quickly reach the site and
deploy in case of a sudden large eruption?
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