
Inverse Problems 10 (1994) 341-351. Printed in the UK 

High-resolution electromagnetic imaging of the conductive 
Earth interior 

Dominique Giberti§, Benoft Tourneriet 11 and Jean RrieuxtY 
t C3sciences Rennes, Uoiversit6 Reones I ,  h p u s  de Beaulieu, 35042 Rennes cedex. 
France 
i Institul de Gdodynamique, CNRS, Avenue A Einstein, 06560 Valbonoe. Pmce 

Received 15 July 1993 

Abstract. Ohmic dissipation in conductive media considerably limits the penetrative power of 
high-frequency electromagnetic imaging methods and implies that deep regions can be probed 
only with low-frequency fields. Uofortunately, these low-frequency fields xe govemed by a 
diffusive equation which prevents direct high-resolution imaging as in seismic and georadar 
imaging. However. a clue for high-resolution imaging in the diffusive approximation is given 
by a Fredholm integral equation of the first kind which links diffusive fields to their propagative 
duals. If these duals could be rewvered by inverting this integral equation, the seismic imaging 
toolbox might be used, at least from a theoretical point of view, to produce fine electromagnetic 
images. Spectnl decomposition of the integral operator shows that the invem problem is 
numerically ill-posed for both noisy andtor incomplete data. High-resolution c m  be achieved 
only by adding spxsity consmints upon the sought solution to the information content of the 
data. This type of o priori information also strongly regularizes the inversion but implies that 
the inverse problem must be mated as non-linear. A numerical algorithm, designed to work in 
3 continuous parameter space, wuples both the simulated annealing and the simplex to recover 
the propagative field. Numerical applications for pseudo-data with additive noise reveal th3t 
reflective interfaces un be imaged even within the poorly-favourable magnetotelluric setup. 

1. Introduction 

Imaging the Earth's interior is a major task in geophysics which involves different techniques 
depending on both the nature and the depth of the targets to detect. For instance, elastic 
body waves radiated from seismic regions are used to image the main discontinuities found 
in the whole Earth [7 ] ,  long-period surface waves are an efficient tool to probe the upper 
mantle down to 700 km in depth [26], while artificially-created elastic waves constitute the 
preferred means to image the first kilometers of the subsurface in the context of petroleum 
exploration [4]. Another and growing field of interest in high-resolution imaging techniques 
is subsurface geophysics which involves areas such as prospecting for water resources, waste 
disposal and civil engineering. Up to now, the main operational imaging techniques used 
in shallow geophysics are seismic [20] and georadar [5] soundings which respectively use 
information carried by elastic waves and electromagnetic waves. While seismic imaging 
can be adapted to any penetration depth, the georadar suffers a dramatic limitation to its 
penetrating power due to ohmic dissipation. The basic reason for such a limitation comes 
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from the fact that rocks are electrical, conductive media inside which the electromagnetic 
field is governed by the telegrapher equation, 

where p, E and stand for the magnetic permeability, and the electric permittivity and 
conductivity respectively. S(T, r) represents a source term. General solutions to this 
equation are damped waves but in the Earth, where the conductivity is large, the wave- 
like character of the electromagnetic field disappears very quickly to the benefit of the 
diffusive behavior 1291 and, for most geophysical models, the electromagnetic field is given 
by the diffusion equation, 

(2) 
a v x VE(T, 2) + pu(T)atE(T, t) = S(r, t ) .  

High-resolution electromagnetic imaging in this diffusive context has long been considered 
as an impossible challenge, mainly for the theoretical reason that diffusion constitutes a 
formal barrier to any ‘diffraction-like’ tomography. Links exist, however, between diffusion 
and propagation [9,17, U] and their study could cast new insights upon the possibilities 
for high-resolution electromagnetic imaging in a diffusive context. The need for a detailed 
study of the transformation from a diffusive to a propagative field is further motivated by the 
fact that the state of the art of wave-field imaging, which is now well developed [3], might 
be used to the benefit of diffusive-field imaging if a bridge could be put between the two 
domains [38]. For instance, and to illustrate this strategy, it is well established that wave- 
field imaging does not allow for high-resolution reconstructions of the velocity distribution 
but does for the reflectivity (i.e. impedance gradients) [13]. This result is also valid for 
the diffusive case and indicates that imaging in terms of the conductivity distribution (the 
electromagnetic equivalent of seismic velocity) will not allow for a high resolution which 
could be reached only in terms of conductivity gradients (i.e. the equivalent of seismic 
reflectivity). This strongly guides the way to parametrize the inverse problem. The goals 
of this paper are both to precisely document the formal inversion from a diffusive to a 
propagative field and, then, to rely on this formal inverse to set up a practical numerical 
inversion which could operate on actual data. Section 2 documents the links between 
propagation and diffusion and solves the inverse problem of transforming a diffusive field 
into a propagative dual. Section 3 examines and discusses the various constraints we 
use to stabilize the inversion of incomplete and noisy data. A numerical solution using 
simulated annealing is presented in section 4, and realistic synthetic examples are presented 
in section 5. Although primarily designed for geophysical purposes this study also applies 
to other fields interested in imaging conductive media such as in non-destructive control 
and medical imaging [41, 421. 

2. From a diffusive to a propagative field 

To set a link between diffusion and propagation we follow the approach given in [19] which 
formally introduces a field satisfying the wave equation 
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where q is an independent variable playing the role of pseudo-time with a physical dimension 
of square-root of time, and F(r ,  q )  is a source term. The wave speed C ( T )  = l / m .  
An integral equation between E(t) and U(q), 

introduces a kernel corresponding to the three-dimensional Green function of the diffusion 
equation. The spatial dependence of the fields has been left implicit since the transformation 
only involves the time t and the variable q .  The source terms S(r,f) and F(r ,q )  are 
related by the same expression. The direct problem of transforming a propagative field into 
a diffusive one is numerically stable as one may expect from the damped nature of the 
integral kernel in (4), and the inverse transformation from a diffusive field E(?-, t )  into its 
propagative dual U(r ,  q )  it must be stressed is highly unstable. This is more understandable 
in the Fourier domain ( t  -+ U) where (4) transforms into 

E(u) = exp(-q&)U(q)dq. (5)  lW 
This Fredholm equation posseses the nice property that its kernel only depends upon the 
product of the dual variables. Such a property is verified for many integral equations 
encountered in mathematical physics such as, for instance, in laser anemometry [23], 
light scattering by polydispersive media [30], and inverse diffraction [2]. Solutions of 
such dilationally-invariant Fredholm integral equations can be given under the form of an 
eigenfunction expansion [22]. Following this approach and looking for eigenfunctions 
verifying 

m 

@,(U) =A;' exp(-q&)@,(q)dq (6) 

we find the collection (w E R') 

where 

0, = arg [ r (; - +iw ) exp ("";i/Z')] 

and 

s e x p ( f x w )  
A, +-*J - cosh(so) 

The set (@; ,U E E%+} constitutes an orthogonal basis when the functional space 
1," f (C)g(F) d t ,  and projectingt both the is equipped with the scalar product (f. g )  

diffusive and the propagative fields upon this basis gives 

t Since OUI scalar product is defined for real-valued functions, the projection of the Fourier transform E(") 
implies thinking in terms of real-valued sine and cosine transforms. Integration restricted to v > 0 causes no loss 
of information since E ( t )  is real-valued. 
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w 

Figure 1. Eigenvdue spectra for different integral operators. The constant spectrum is for the 
Fourier transform while the most-decrwing one is for the Laplace transform. The spectrum 
labelled 'diffusion' corresponds to (9). 

Provided that E(u) is noiseless and known for every U > 0, (10) gives the complete 
solution to our inverse problem. The eigenvalues A? quantify the efficiency by which 
their corresponding eigenfunctions are transmitted into the data (see (6)): the larger the 
eigenvalue the more efficient the transmission of the information element. Eigenfunctions 
whose eigenvalues axe too small become lost in the noise, and the process of dividing 
by such small eigenvalues in (IO) will dramatically amplify any noise present in the data. 
Unfortunately, the specmm (9) decays asymptotically to zero as w + ocl (figure I), and 
this makes reconstruction (IO) ill posed. Including the high-mode eigenfunctions in the 
solution will produce meaningless results, and our solution may be rewritten as the sum of 
two components, 

= ud(q) + uo(q)  (11) 

where the cutoff wmar depends on the signal-to-noise ratio. The components Ud(q) and 
U,(q) correspond respectively to the part of the solution which can be recovered from 
the dam and to the one which cannot be. is a low-pass filtered version of the true 
solution U(q) and is insufficient to allow for a high-resolution reconstruction. In fact, the 
resolution follows the distribution of the zero-crossings of Ql?mu and rapidly deteriorates 
when q increases (figure 2). The only way to improve the resolution is to perform the 
inversion not only with data but also with some a priori information [34] whose role will 
be to extrapolate the reconstruction beyond the cutoff U-. From the point of view of 
inverse problem theory, this extrapolation may be considered as using a priori information 
to complete the basic solution U&) with a non-null U,(q) constructed in the null space 
generated by the basis {a?, w > w-1. 

3. Constraints and parametrization 

The a priori information suitable to our inverse problem are of three types. The first 
constraint concerns the causality of the field U(q) and limits the support of the solution 
to R+. 
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Figure 2. Q i ( q )  for w = 10 and w = 25 

A second constraint comes from the objectives of imaging which are of structural 
concern. In other words, the goal is to detect the edges of the more or less numerous 
homogeneous blocks which constitute the media to probe. This explains why the reflectivity 
is the right parameter to seek, since it is directly related to the edges of the structures where 
most of the jumps of the electromagnetic properties of the body occur. By definition 
these edges form a very sparse and irregular lattice in space which, thanks to the Huygens 
principle, will back-scatter sparse wavefronts when visited by an incident wavefront. As a 
consequence, and assuming an impulsive source term, F(q),  the sequences, U(q), recorded 
at each receptor will be sparse trains of replicas of this initial short pulse (see numerical 
simulations in 1371). This will be true only for real reflection coefficients and, equivalently, 
if the incident wavefront attacks the edges of the structures under subcritical conditions. 
This allows the success of the seismic method under near-normal reflection conditions. 
Were these conditions to be violated, several reflection coefficients might become complex, 
and the corresponding reflected events would no longer be simple replicas of the source term 
[I]. In the remaining part of this discussion we shall assume that all reflection coefficients 
are real and that 

is verified. Such a sparsity constraint upon the unknown field has been recognized to strongly 
stabilize ill-posed inverse problems similar to the present one 161. Indeed, such a constraint 
has already successfully been applied to deconvolution of noisy seismic data [U]. The last 
constraint acts upon the nature of the source terms. If the electromagnetic source is known 
or if it is possible to deconvolve the data, which is merely the case in magnetotellurics. 
we may assume a Dirac impulse for the initial pulse S ( t ) .  The corresponding propagative 
source term, F(q) ,  is also a Dirac impulse as is readily seen from (5) and (12) becomes 

which, when inserted into (3, gives 
N 

E(u) = U, exp ( - qn&) 
"=I 

In practice, the data are known for a finite set of  discrete frequencies {Eduta(u~),  
Ebw(uz), . . . , Edatu(u~) ]  from which one has to get estimates of the unknown parameters 
IN, q,. 42, . . ., q N ,  U , ,  U,, . . ., U N } .  This is the actual inverse problem which is discussed 
in the following section. 
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4. Computer implementation by simulated annealing 

The  inverse problem defined in the preceding section is linear with respect to the Uis 
and highly non-linear with respect to both the q j s  and N as seen in (14). Provided a 
suitable frequency sampling, model (14) can be recast under the form of the Prony model 
[ 101 for which linearized sub-optimal solutions exist and whose lack of robustness is well 
known 1141. Indeed, we found that the presence of a very small noise in the data renders 
any linearized inversion impossible. This led us to attack the inverse problem with a 
fully non-linear strategy and, among the various powerful algorithms recently proposed, 
we  retain simulated annealing [I51 because of its clear theoretical links with the theory 
of inverse problems [34]. Although simulated annealing has the potential power to allow 
for a simultaneous inversion of all parameters, we preferred to decouple them. essentially 
because a simultaneous inversion implies the use of a multiparameter cost function whose 
components proved very difficult to balance. Since all parameters do not play the same 
role with respect to the inversion, we decoupled the algorithm into three main blocks. The 
first one consists of an analysis of the information content of the data set to estimate the 
number, N, of events to invert. Selecting this number is very important and makes the 
problem more stable. This is particularly true for Prony analysis 1141 and, among the many 
ways to evaluate the order of Prony's model, we have found the spectral analysis of the data 
covariance matrix [35] a very efficient method [IO]. Once we know how many reflectors are 
expected, we must locate them: this is our non-linear inverse problem. Simulated annealing 
uses an explicit computation of the cost function which allows for a decoupling between the 
Ujs and the qis. In practice we applied the simulated annealing algorithm to the restricted 
parameter set {qI,q2. . . ., 4x1, and incorporated the linear parameters {U]- U,, . . . , UN] 
into the cost function by computing them once a set of q;s had been selected. In the present 
study, the Uis are computed by numerically solving a Vandermonde system with standard 
least-squares techniques [18,31]. This fixes the cost function to be the norm defined by 

and implies a Gaussian noise in the data for the inversion being optimal from a probabilistic 
point of view [34]. Just to make this section self-consistent, let us recall the basis of 
simulated annealing. The algorithm is a two-loop procedure whose inner loop consists 
of starting from a model (ql ,  9 2 . .  . ., 4x1 with cost S, then perturbing it to obtain 
(qj, 4;. . . ., qh] with cost S', and finally retaining this new model with the probability 
'P = min [ 1, exp(-(S' - S)/T)] where the parameter T, called the temperature for historical 
reasons. is kept fixed. Looping over this constitutes the Metropolis algorithm [24], and, 
provided there are a very large number of iterations, it can be  shown that the sequence 
of accepted models satisfies the Boltzmann distribution, FB = Z-' exp(-SjT), where Z 
is a normalizing partition function. The outer loop of simulated annealing is the cooling 
schedule which iterates over the Metropolis algorithm while the temperature is gradually 
lowered until no significant improvement occurs in the model perturbations. The two main 
questions to be answered when implementing the algorithm concern the lowering of the 
temperature in the cooling schedule and the way the parameter space is explored in the 
Metropolis algorithm. These two questions are addressed in the next two paragraphs. 

The cooling schedule appears critical in the simulated annealing algorithm because 
it controls the overall convergence towards the best model. A too rapid decrease of the 
temperature will 'freeze' the solution into a local minimum of the cost function by forbiding 
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any tunelling effect which could allow the trapped model to escape from the local minimum. 
Conversely, a too slow decrease may result in prohibitive computational costs. Various 
cooling schedules have been proposed [16], and several studies [28.25] about practical 
implementation of the simulated annealing algorithm favour the cooling schedule [ 12,331 

T(n  + 1) = T(n)exp - - ( s;%) 
where h is a parameter called the thermodynamic speed, and sd(S(n)) is the standard 
deviation of the costs of the models accepted during the Metropolis algorithm at temperature 
T(n) .  The choice of the value for A is not crucial and we retain h =~0.75. This cooling 
schedule is adaptive in the sense that the decrease of the temperature is slower when the 
models accepted during the preceding~ Metropolis loops have almost identical costs. In 
doing so, the schedule reiterates a sequence of Metropolis loops at an only-slightly lowered 
temperature such that the probability for an escape from an eventual local minimum is kept 
high. The initial temperature in this cooling schedule must be taken sufficiently high to 
allow for a wide exploration of the parameter space and the final temperature is set to one 
hundredth of the noise variance [IO]. 

The second question to answer when implementing the algorithm is: how to perturb 
the current model to obtain the new model to be tested? Most applications of simulated 
annealing deal with (very large) discrete sets of models as, for instance, in combinatorial 
minimizations like the famous travelling salesman tour [15]. Such fundamentally discrete 
problems possess natural minimal increments and thedifficulty is essentially how to combine 
them [SI. Many inverse problems, however. operate in continuous spaces where no ‘atomic’ 
minimum step may be simply defined. Choosing a too large a priori step-size in such a 
continuous space implies discretizing the parameter space with a coarse rigid frame which 
prevents any future fine zooming over the solution. Conversely, a too fine step-size produces 
an enormous number of models to visit and results in a dramatic decrease of the convergence 
rate analogous to the well known critical slowing-down phenomena encountered in Monte 
Carlo simulation [ l  I]. This difficulty led several authors [36] to implement an adaptive-step 
version of simulated annealing by characterizing the local topology of the cost function from 
the size of the domain explored during the preceding Metropolis loops. In the same spirit, 
a merging of both the simulated annealing algorithm and the simplex method has recently 
been proposed [32]. The basic idea is to use simulated annealing to relax, more or less, the 
downhill updating in the simplex procedure which explores the continuous parameter space. 
This allows the simplex to escape from basins of attraction attached to local minima of the 
cost function by augmenting the costs of the vertices of the simplex while decreasing the 
costs of the attempted moves of the highest point of the simplex. From an intuitive point of 
view, we  may conjecture that this procedure has the net effect of making the ‘cost landscape’ 
stochastically convex and, then. ensures convergence towards the absolute minimum. The 
main advantage of this algorithm is that it is free from any a priori discretization of the 
parameter space while it offers very attractive convergence rates. 

5. A practical example 

The algorithm described above has  hee en tested with a ID example previously inverted 
with a discretized version of simulated annealing [lo]. The solutions are identical within 
the numerical accuracy interval. These tests show an important improvement of the 
convergence rates with the algorithm described in the present paper. The global behaviour 
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Figure 3. Pseudo-data for a station (x = 750 m) of the en biseau model (top of figure 4). 
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structure from which pseudodata we computed. 
Middle, conditional probabilities of the inverted 
reflector. Bottom: main reflectors picked from 
the conditional-probabilit~ section. 

of this algorithm follows what we described in our previous paper, namely a hierarchical 
determination of the parameters and a jump of the specific heat when approaching a 
parameter determination (see [lo] for more details). 

Two inversions of 2D models have been done. The first model consists of an en biseau 
structure (top of figure 4) from which we generated pseudo-magnetotelluric data at 63 
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Figure 5. Anticlinal model. Top: sketch of the 
structure from which pseudo-data are computed. 
Middle: conditional probabilities of the inverted 
reflector. Boitom: main reflectors picked from 
the conditional-probability section. 

equidistant stations along the surface. A finite-element program is used for this purpose 
[39]. The data for each station are computed for frequencies ranging from 1 to 1500 Hz with 
an additive white Gaussian noise (d = corresponding roughly to a signal-to-noise 
ratio of 30 dB (figure 3). Each trace is inverted independently and our inversion consists, 
in fact, of a succession of ID inverse problems identical to the one recalled at the beginning 
of this section. The analysis of information content of the data indicates 3 events for almost 
all traces. Once the final temperature is reached, conditional probabilities 

are computed for T = a'. This allows evaluation of the uncertainties upon the location of 
the events (middle of figure 4). 

This procedure furnishes an electromagnetic reflectivity ( x ,  q)  section analogous to the 
classical non-migrated seismic ( x ,  t )  images. Deriving an ( x ,  z) section would involve a 
migration, a further step in the processing which has not yet been undertaken. Reflections 
from the first shallow interface are very well detected (bottom of figure 4) while deeper 
interfaces produce less strong, but coherent, wavefronts. A more complicated model consists 
of an anticlinal structure with a low-resistivity (i.e. low-velocity in the seismic sense) folded 
layer (top of figure 5). The conditional probabilities are more difficult to analyse (middle of 
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figure 5): the shallowest reflector remains well-detected but the deeper ones are somewhat 
interlaced and do not allow for a clear unambiguous interpretation (bottom of figure 5). 
This partial failure of the inversion appeals for a true ZD inverse algorithm which could 
ensure coherency between adjacent traces. 

6.  Conclusion 

We have shown that reflectivity electromagnetic imaging in a diffusive context is possible 
provided a careful parametrization of the inverse problem is used. This demonstrates the 
importance of a priori information such as sparsity constraints which, however, make 
the inverse problem highly non-linear. Use of simulated annealing coupled with the 
simplex algorithm allows for a rapid convergence without neglecting resolution. Synthetic 
assessments of the method with pseudo-data show that good results are obtained whenthe 
data are corrupted with a reasonable amount of noise. More stable results could be reached 
if the inversions of section-traces could be performed simultaneously by accounting for 
some coherency criteria. This next step is in progress and will be described in a future 
paper. 
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