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Received 19 June 2004; accepted 18 July 2005
Available online 2 November 2005
Abstract

The Phanerozoic geological evolution of the Equatorial Atlantic domain has been controlled since the end of Early Cretaceous by the
Romanche and Saint Paul transform faults. These faults did not follow the PanAfrican shear zones, but were surimposed on Palæozoic
basins. From Neocomian to Barremian, the Central Atlantic rift propagated southward in Cassiporé and Marajó basins, and the South
Atlantic rift propagated northward in Potiguar and Benue basins. During Aptian times, the Equatorial Atlantic transform domain
appeared as a transfer zone between the northward propagating tip of South Atlantic and the Central Atlantic. Between the transform
faults, oceanic accretion started during Late Aptian in small divergent segments, from south to north: Benin-Mundaú, deep Ivorian
basin-Barreirinhas, Liberia-Cassiporé. From Late Aptian to Late Albian, the Togo-Ghana-Ceará basins appeared along the Romanche
transform fault, and Côte d�Ivoire-Parà-Maranhão basins along Saint Paul transform fault. They were rapidly subsiding in intra-
continental settings. During Late Cretaceous, these basins became active transform continental margins, and passive margins since
Santonian times. In the same time, the continental edge uplifted leading either to important erosion on the shelf or to marginal ridges
parallel to the transform faults in deeper settings.
� 2005 Published by Elsevier Ltd.
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1. Introduction

In the African and South American lithospheric plates,
the Equatorial Atlantic domain is a peculiar area where
both Phanerozoic structures and geological evolution have
been controlled by few but very long transform faults, still
active since their initiation at the end of Early Cretaceous.
From south to north, there are the Chain, Romanche and
Saint Paul fracture zones (Fig. 1). The continental basins
that appeared along these transform faults are the Benue
and Potiguar basins (Chain), Togo-Ghana and Ceará
basins (Romanche), the Côte d�Ivoire and Pará-Maranhão
basins (Saint Paul) (Fig. 1). Between these transform faults,
short segments of conjugated divergent margins are from
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south to north Benin-Mundaú, deep Ivorian basin -Barre-
irinhas, Liberia-Cassiporé (Fig. 1).

Unfortunately, this area has been relatively poorly
investigated for several reasons:

• as for many sedimentary basins, there are few aerial out-
crops, especially along the African margin;

• the continental margins are mainly of transform-types,
thus very narrow and potentially less interesting than
wide divergent margins for oil prospection;

• vertical seismic lines does not provide good images of
the numerous strike-slip faults;

• the geodynamic framework is poorly constrained
because the oceanic accretion started during the Creta-
ceous quiet magnetic period, because the present
position below the magnetic equator prevails good qual-
ity magnetic measurements, and finally because the
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Fig. 1. Main structures in Equatorial Atlantic. Brazilian basins from Milani and Thomaz Filho (2000); cratons and intracontinental shears modified from
Villeneuve and Cornée (1994). C1: West African craton; C2: Eburnean shield; C3: Sâo Francisco craton; C4: Sâo Luis craton; C5: Guyana craton. S1:
Kandi lineament; S2: Guinean-Nubian lineaments; S3: South Adamaoua shear zone; S4: Sanaga shear zone; S5: Patos shear zone; S6: Pernambuco shear
zone; S7: Trans-brazilian fault zone. Conjugated divergent basins: b1 (Liberia) and b2 (Caciporé); b3 (deep ivorian basin) and b4 (Barreirinhas); b5
(Benin) and b6 (Mundaú). Intracontinental divergent basins: b7 (Solimões), b8 (Amazonas), b9 (Marajó), b10 (Tacutu). Conjugated transform continental
margins: b11 (Côte d�Ivoire) and b12 (Pará-Maranhão); b13 (Ghana-Togo) and b14 (Ceará). Strike-slip basins: b15 (Benue), b16 (Potiguar).
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numerous and wide fracture zones make the correlation
of magnetic anomalies uneasy (e.g. Campan, 1995).

Most of the available geological informations on the
continental shelf come from drill-holes and seismic lines
performed by the oil industry. During the seventies, the sci-
entific exploration was focused on the survey of fracture
zones in the deep basins and dedicated to a first investiga-
tion of continental margins (Fail et al., 1970; Arens et al.,
1971; Delteil et al., 1974; Emery et al., 1975). From the
eighties, investigations were focused on the Côte d�Ivoire-
Ghana margin, in the central part of the African equatorial
margin, and along the intersection of the Romanche frac-
ture zone with the deep Ivorian divergent basin (review in
Basile et al., 1996). These investigations culminated with
four scientific drill-holes performed during Ocean Drilling
Program Leg 159 along this margin (Mascle et al., 1996).

From this data set, we describe in this paper the geolog-
ical evolution from a pre-rift reconstruction (Fig. 2a) to the
present day stage.

2. Latest Proterozoic to Triasic: pre-rift

The Equatorial Atlantic margins extend over an assem-
blage of Proterozoic to earliest Palæozoic tectonic
domains, that mainly result from the PanAfrican-
Braziliano orogeny (Black, 1984) which occurred between
ca. 720 and 520 Ma (Villeneuve and Cornée, 1994; Caby,
2003; Guiraud et al., this issue). This fold-thrust belt devel-
oped around the West African craton, the Guyana craton,
the Sâo Luis craton-Eburnean shield and the Sâo Francisco
craton (Fig. 2a). It was associated with major strike-slip
fault zones which rejuvenated during Phanerozoic times
and more or less influenced the development of the
Equatorial Atlantic, as the central African fracture zone
(Cornacchia and Dars, 1983; Black, 1984), the Kandi-
Transbrazilian fracture zone (Guiraud and Alidou, 1981;
Caby, 1989), and the Guinean-Nubian lineaments
(Guiraud et al., 1985) (Fig. 2a).

Erosion and tectonic quiescence followed the
PanAfrican-Braziliano orogeny. It resulted in a large sedi-
mentary area trending WSW to ENE from northeastern
Brazil to West Africa. In Ghana (Kjemperud et al., 1992)
(Figs. 3 and 4a) and Côte d�Ivoire basins (Tucker, 1992)
as in Brazil (Solimões, Amazonas and Parnaı́ba basins,
Milani and Thomaz Filho, 2000), continental terrigenous
sedimentation took place from Ordovician times
(Fig. 2a). These basins registered marine invasions between
middle Devonian and Early Carboniferous, when large
marine platforms extended from the Proto-Pacific Ocean
over South America during global sea level highstands
(Isaacson and Dı́az Martı́nez, 1995; Williams, 1995).
Marine sediments included sandstones, silts, shales, carbo-
naceous shales and limestones. Poorly dated Late Carbon-
iferous to Triassic continental sandstones overlaid the
marine Carboniferous. The total thickness of the preserved
Palæozoic series can reach 1000–1200 m (Fig. 4a).

3. Late Triassic to Jurassic: rifting in the Central Atlantic

The Late Triassic rifting in the Central Atlantic
extended southward in northern Brazil: Late Triassic



Fig. 2. Geodynamic evolution of the Equatorial Atlantic. Same legend as for Fig. 1: (a) Pre-rift (latest Proterozoic to Triasic) reconstitution. Continental
fit after Unternehr et al. (1988), modified from Campan (1995). Africa is supposed fixed. (b) Oxfordian reconstitution. V indicates Early Liassic volcanism
in Guyana, Liberia, NE Brazil and Benue basin. (c) Late Aptian reconstitution. Plate boundaries modified from Campan (1995). V indicates Early
Cretaceous volcanism in NE Brazil, Potiguar and Benue basins. (d) Santonian reconstitution. Plate boundaries modified from Campan (1995).
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terrigeneous continental formations have been drilled in
the offshore Caciporé (Brandão and Feijó, 1994) and
Marajó basins (Milani and Thomaz Filho, 2000). The ori-
entation of rifting in this northern area has been likely con-
trolled by the PanAfrican Rokelides belt trend. This rifting
stage was followed in the earliest Lias (around 200 Ma) by
the development of the Central Atlantic Magmatic tholei-
itic Province (Wilson and Guiraud, 1998; Burke et al.,
2003). This province extended southward over the western
part of the future Equatorial Atlantic. Tholeiitic volcanism
occurred either intercalated within the sediments in
Caciporé, Marajó, Solimões and Amazonas basins, or in
NNW–SSE trending dykes in the western edge of Caciporé
basin (Milani and Thomaz Filho, 2000), French Guyana
(dated 196-200 Ma: Deckart et al., 1997), and Liberia
(186-201 Ma: Mauche et al., 1989).

While oceanic accretion started during the Jurassic in
Central Atlantic, the Guinean-Nubian/Ouachita-Wichita
fault zone (Fig. 2b) acted as a transfer zone between the
divergent area northward and an almost stable area south-
ward. South of this fault zone indications of plate diver-
gence are restricted to limited subsidence and some
volcanism. Liassic to Tithonian continental sandstones
and shales deposited along the NW–SE trending Liberia
basin (Martin, 1982). Late Jurassic continental terrigenous
formations also deposited offshore Côte d�Ivoire (Martin,
1982), in Ghana (Martin, 1982), Benin (Dray et al., 1989)
and in upper Benue (Guiraud, 1993) basins (Fig. 2b). In
this equatorial area, the Mesozoic sedimentation seems to
have been independent from the PanAfrican structures,
but was probably localized over Devonian basins. Basalt
flows occurred in the eastern Ghana basin during the
Callovian (Akpati, 1978) (Fig. 3), in the Benue basin and
in the western part of the Maranhão basin since 147 Ma
(Popoff, 1988; Fodor et al., 1990; Maluski et al., 1995).
Basaltic dykes intruded around the northwestern Brazil
Potiguar basin during Middle Jurassic (Horn et al., 1988;
Bellieni et al., 1992) (Fig. 2b). They are trending N70� to
N80�E as the PanAfrican Adamaoua and Sanaga linea-
ments on the African side, or Patos and Pernambuco linea-
ments on the Brazilian side.

This Callovian to latest Jurassic local rejuvenation or
initiation of basin sedimentation and magmatism must be
underlined as it is synchronous with similar events occur-
ring along the Central African Rift System, e.g. the upper
Benue, the central Sudan or the Anza basin in Kenya (cf.
Guiraud et al., this issue). These different clues witness
of a change in the paleo-stress field that affected the
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African-Arabian/south American plates, characterized by
the occurrence of local tensional regimes which represent
far-field effects of the opening of the Central Atlantic ocean
and the Somali basin (western Indian Ocean). They predate
the strong rifting activity that occurred since earliest Creta-
ceous times.
4. Late Berriasian to Late Aptian: rifting in the South

and Equatorial Atlantic

During the Early Cretaceous, a new rift axis appeared
in the South Atlantic, in relation with the emergence of
the Paraná plume. The volcanic activity of the plume
head started 138 Ma ago (Stewart et al., 1996), with a
main magmatic episode between 134 and 129 Ma (Peate,
1997). Volcanism occurred in and around the Paraná
area, as far as north Brazil in the East Maranhão (115–
122 Ma: Fodor et al., 1990) and Potiguar basins (130–
140 Ma: Bellieni et al., 1992), and in the Benue basin
(Maluski et al., 1995; Coulon et al., 1996) (Fig. 2c). From
130 to 120 Ma, rifting propagated northward to the
Benue area, and across Africa to the Tethys realm (Gui-
raud and Maurin, 1991, 1992). Syn-rift sedimentation
started in intracontinental basins since the Berriasian in
the Potiguar basin (Araripe and Feijó, 1994) and proba-
bly along the Patos lineament in the Araripe (Baudin
and Berthou, 1996) and Rio do Peixe basins (Senant
and Popoff, 1991; Françolin et al., 1994). During Early
Barremian sedimentation started in the Benue Trough
(Brunet et al., 1988), the Ghanaian Keta basin (Doyle
et al., 1982) and Foz do Amazonas (Brandão and Feijó,
1994). During this first stage of rifting in the equatorial
area, the Niger delta area appears as a triple junction
between the South Atlantic rift, the Benue transtensional
rift and the transform zone of en échelon equatorial
basins (Fig. 2c). The rifting of the northeastern branch
of the south Atlantic failed around 120 Ma, at the time
of the final break up of Gondwana, when oceanic accre-
tion started between Antarctica and India (Scotese
et al., 1988). This incipient oceanic accretion imposed a
kinematic plate reorganization (Nürnberg and Müller,
1991), and the connection between South and Central
Atlantic by the en échelon Romanche and Saint Paul
right-lateral transform faults, cross-cutting the PanAfri-
can structures but localized on previously subsiding
areas.

During Aptian times, intracontinental siliciclastic sedi-
mentation occurred in fluvial to lacustrine environments
all along these two transform faults, in strongly subsiding
basins controlled by strike-slip or transtensional faults
(Zalan et al., 1985; de Caprona, 1992; Chierici, 1996;
Mascle et al., 1996, 1998; Basile et al., 1998; Attoh et al.,
2004) (Figs. 3, 4b, d and e). Between the two transform
faults, the Côte d�Ivoire area represented a pull-apart struc-
ture, dominated by ENE-WSW extension and tilted blocks
in the central part of the deep Ivorian basin (Blarez and
Mascle, 1988; Basile et al., 1993; Sage, 1994). However,
most crustal thinning and associated subsidence was local-
ized along the curved coastal fault (de Caprona, 1992;
Chierici, 1996), which was the termination of St Paul trans-
form fault in the extensional area. Similarly, horsetail splay
occurred at the connection between the Romanche trans-
form fault and the southern side of the rifted Ivorian basin
(Basile et al., 1993).
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5. Late Aptian to Late Albian: post-rift, intracontinental

transform

Rifting in the equatorial divergent basins stopped when
the first oceanic crust accreted during the Cretaceous quiet
magnetic zone (Fig. 2c). Starting accretion correlates with a
Late Aptian post-rift unconformity observed in the deep
Ivorian basin (Basile et al., 1993; Basile et al., 1998)
(Fig. 4b) and in the conjugated Ceará basin (Zalan et al.,
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the transform basins. First marine influences appeared in
the Equatorial area during Late Aptian (Koutsoukos,
1982; Mascle et al., 1996; Maisey, 2000), but open marine
connection between South Atlantic and Central Atlantic
oceans occurred only during Late Albian times, through
narrow but locally deep basins (Pletsch et al., 2001).

While rigth-lateral transform faulting developed in the
Equatorial Atlantic, left-lateral strike-slip faults were still
active in the Benue trough (Guiraud, 1991), indicating that
the Niger delta was still a triple junction up to Late Albian,
even if displacements in the Benue area were probably very
small when compared with displacements in the Atlantic
area.

This intracontinental transform stage ended when the
active transform fault brought into contact an oceanic lith-
osphere against a continental lithosphere. A second uncon-
formity is associated to this event (Fig. 4c and d), expected
to have been diachronous along the transform fault, and
older on the eastern termination of the transform faults
on the African side (respectively on the western end on
the Brazilian side) (Mascle and Blarez, 1987). Conse-
quently, the ages of the unconformity vary along the mar-
gin, but are not younger than Late Albian, as at the
African westernmost end of the Romanche transform, in
the Côte d�Ivoire-Ghana marginal ridge area (Basile
et al., 1998).

6. Latest Albian to Late Santonian: active transform margin

This stage started everywhere on the Equatorial conti-
nental margins by a diachronous unconformity that sealed
the deformation. However, the reconstructions of the oce-
anic opening imply that transform faults were still active at
that time between continental and oceanic lithospheres.
This implies that the active transform zone shifted from
the continental edge to the continent-ocean boundary,
and that the deformation ceased on the continental margin
(e.g., Basile et al., 1993; Basile et al., 1998). One of the most
striking event at this stage is the uplift of the continental
edge along the transform continent-ocean boundary.
Where the continental crust was thinned and deep, as in
the deep Ivorian basin or in Liberia, this resulted in the for-
mation of a marginal ridge parallel to the transform fault
(Fig. 4b and g). Where the continental crust has not been
thinned, the uplift resulted in tilting towards the continent
and erosion (e.g. da Costa et al., 1990; Attoh et al., 2004)
(Fig. 4a and f). Since Mascle and Blarez (1987) and Todd
and Keen (1989), this uplift along transform continental
margins has been mainly explained as a consequence of
transient heat transfer from the hot oceanic lithosphere
to the coldest continental one. However, two of the most
important results of ODP Leg 159 are that uplift occured
along the Côte d�Ivoire-Ghana marginal ridge since middle
Albian times (Basile et al., 1998), i.e. during the intraconti-
nental stage, and that there are no evidences of heating
associated with the contact between oceanic and continen-
tal lithospheres (Basile et al., 1998; Wagner and Pletsch,
2001). Consequently, an alternate explanation has been
proposed for transform uplift, based on the lithospheric
flexure resulting from erosional unloading of the continen-
tal crust along the transform fault, when plate displace-
ment brings into contact continental crust at sea-level
against deeper thinned continental crust, then oceanic crust
(Basile and Allemand, 2002).

This stage ended when the oceanic accretion took place
against the transform margin (Fig. 2d). As for the begin-
ning of this stage, this end is diachronous as the accretion
axis moved along the transform fault. The last contact
between the continental lithosphere and the accretion axis
occurred during Late Santonian (84 Ma) (Fig. 2d), and
was coeval with a major kinematic change for the African
plate (Guiraud and Bosworth, 1997).

7. Post-transform evolution: passive continental margin

From Late Santonian to present times, the continental
margins experienced continuous subsidence, increased
above previous basins by differential compaction, and
reduced above the previously uplifted continental edges.
In the deep parts of the margins, changes in sedimentation
indicate an increasing influence of deepwater circulation,
probably as the consequence of the establishment of a N–
S circulation through the Equatorial Atlantic gateway
(Pletsch et al., 2001). In the shallower parts, the Oligocene
unconformity (e.g. Chierici, 1996) (Figs. 3, 4b and c),
known in all West African coastal basins, appears as the
most important event in the sedimentary section, and was
probably related to a main sea-level fall. Anyway, because
of their very steep continental slopes, the transform mar-
gins of the Equatorial Atlantic were not widen as divergent
margins during the post rift stage: progradation of the shelf
break by sedimentary accumulation is restricted to the nar-
rows divergent basins as the Mundaú or deep Ivorian
basins; along transform margins, shelf sediments by-passed
through the continental slope directly to the abyssal plain.
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northeastern Brazil (Ceará-Mirim): K/Ar age, palaeomagnetism,
petrology and Sr–Nd isotope characteristics. Chem. Geol. 97, 9–32.

Black, R., 1984. The Pan-African event in the geological framework of
Africa. Pangea 2, 6–16.

Blarez, E., Mascle, J., 1988. Shallow structures and evolution of the Ivory
Coast and Ghana transform margin. Mar. Pet. Geol. 5, 54–64.

Brandão, J.A.S.L., Feijó, F.J., 1994. Bacia da Foz do Amazonas. Boletim
de Geociências da Petrobras 8 (1), 91–99.

Brunet, M., Dejax, J., Brillanceau, A., Congleton, J., Downs, W.,
Duperon-Laudoueneix, M., Eisenmann, V., Flanagan, K., Flynn, L.,
Heintz, E., Hell, J., Jacobs, L., Jehenne, Y., Ndjeng, E., Mouchelin,
G., Pilbeam, D., 1988. Mise en évidence d�une sédimentation précoce
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inférieur: synthèse structurale, mise en évidence de deux étapes dans la
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Martin, G., 1982. Geologie des Küsten-gebietes von Nordwest-Africa
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