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In contrast with acoustical imaging methods, for which the wave field is dominated by 
propagation effects, electromagnetic imaging of conductive media suffers from the diffusive 
behavior of the electromagnetic field. An important question to address when working 
toward the achievement of electromagnetic imaging concerns the possibility of resolving 
the diffusion damping. Exact inversion will be looking at the solvability of the integral 
equation relating a diffusive field to its dual wavefield. This equation is ill posed because 
its Laplace-like kernel makes the inverse problem of finding the dual wave field a notori- 
ously difficult (both numerically and mathematically) one. Stochastic inversion is another 
alternative based on least squares fitting. In this inverse problem approach, extracting 
the wave field is still a relatively instable process, although the L2 misfit function for data 
without noise presents a global minimum. The simulated annealing overcomes this insta- 
bility for parameterization of this problem designed as follows. The unknown wave field is 
expected to be a sequence of impulsive functions. The number of impulsive functions can 
be determined by using a statistical criterion, called AIC, which comes from the Prony 
technique. The simulated annealing is applied to the positions of the reflections, while 
the amplitudes, which are not taken as parameters, are obtained by linear fitting. The 
simulated annealing method proves to be efficient even in the presence of noise. Further- 
more, this nonlinear numerical inversion furnishes statistical quantities which allows an 
estimation of the resolution. Simple synthetic examples illustrate the performance of the 
inversion, while a synthetic finite element example shows the final pseudo-seismic section 
to be processed by standard seismic migration techniques. 

INTRODUCTION 

For typical Earth conductivities the electromagnetic 
response is mainly controlled by a diffusion process 
broadening the signal and making it quite different from 
a seismic signal. Obtaining the electromagnetic re- 
sponse of an arbitrary conductive medium is in itself 
an already difficult task investigated with approaches 
as different as integral equations, in both time domain 
[SanFilipo and Hobmann, 1985] and frequency domain 
[Wannamaker et al., 1984], or as finite difference for- 
mulations [Orisiaglio and Hobmann, 1984]. Recovering 
conductive information is an even more difficult oper- 
ation investigated with limited success [Weidelt, 1972, 
1975; Tripp et al., 1984; Barnett, 1984; Smith, 1988; 
Tarits, 1989]. 

Although a mathematical parallelism between elec- 
tromagnetic and seismic signals in layered media has 
been underlined previously [Weldell, 1972; Kuneiz, 
1972; Lee et aL, 1987; Levy et aL, 1988; Lee et at, 
1989], seismic forward modeling techniques, as well as 
the different seismic migration and inverse formulations, 
have not met a great success in electromagnetism. The 
method of Zhdanov and Frenkel [1983], which proposed 
the "reverse" propagation of residus from the observers 
into the medium widely used in seismic migration, has 
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been applied only to homogeneous media with analyt- 
ical Green functions. This "reverse" propagation re- 
quires a process opposite to the diffusion which might 
be considered as an unstable procedure. 

The link between seismic and electromagnetic phe- 
nomena is emphasized with the integral transforma- 
tion between a fictitious wave field and the electromag- 
netic field. This transformation has been known for a 

long time [Filippi and Frisch, 1969; Lavrent'ev et al., 
1980]. An illustration of the forward problem has been 
given recently by Lee et al. [1989]: they first compute 
the fictitious wave field response to a given conductive 
medium and transform it into an electromagnetic re- 
sponse, which is a stable procedure. Although they 
apply finite difference codes, they suggest the use of 
efficient seismic modeling tools as ray tracing programs 
for computing the response of a conductive medium. 

A more ambitious target is extracting the fictitious 
wave field from the electromagnetic response. The en- 
countered difficulties are similar to the ones met in the 

Prony's method or in exponential fittings [McDonough 
and Huggins, 1968]. Construction of an exact inversion 
operator leads to problems of convergence and stability, 
the analysis of which is beyond the scope of this paper. 
How can we transform this ill posed inverse problem 
into a better posed problem with a tractable solution? 
From the statistical point of view a stable solution will 
be the stochastic inverse [Tarantola, 1987]. How to ob- 
tain this solution is the question we want to address in 
this paper. 
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Once obtained, the fictitious wave field can be pro- 
cessed by seismic migration methods, opening to us 
the possibility of reconstruction of conductivity inside 
a given medium. 

After a brief description of electromagnetic propaga- 
tion in conductive media and the integral transforma- 
tion we set up the inverse problem and describe the 
difficulties we must solve. This leads us to prepro- 
cess our data in order to find our parameterization. 
Then, the solution is constructed by simulated anneal- 
ing. With the help of one-dimensional examples, we 
discuss the efficiency of this technique, the stopping cri- 
terion, and the structure of the final solution. Finally, 
two-dimensional medium geometry is investigated with 
inversion of synthetic finite element data. 

DIFFUSION of ELECTROMAGNETIC RESPONSE 
IN CONDUCTIVE MEDIA 

If we assume the displacement current is negligible, 
the electric field E satisfies the diffusion equation, 

v x v x 
0E(r, t) 

= S(r,t) (1) 

where •r is the electric conductivity of the medium. p is 
the magnetic permeability which is taken constant. The 
source term S is causal. Following Lee et ai. [1989], we 
introduce a fictitious wave field U and a source term F 

related by the following relation: 

V x V x U(r, q)+ pa(r) 
0:•U(r, q) 

= F(r, q) (2) 
Oq :• 

where q is an independent variable with the dimension 
of square root of time. The corresponding "seismic" 
velocity turns out to be 1/•. An integral relation 
between E(t) and U(q) (see Lee et ai. [1989] for refer- 
ences), 

E(t) - I (3) 

introduces a kernel corresponding to the diffusive green 
function of three-dimensional medium. The spatial de- 
pendence of E and U has been left implicit. This trans- 
formation involves only the time t and the variable q 
and is independent of r. The source terms S and F 
are related by the same expression. One can write the 
expression (3) in the spectral domain under a simpler 
form, 

E(w) - e -•i• q U(q)dq (4) 

already used by Weldelf [1972]. We select the following 
square root of • 

1 

V•- •(,-!- 1), (5) 
with an exponentially damped kernel, making the in- 
verse problem difficult to solve. Following Kunetz [1972] 
and Levy et ai. [1988], we assume that only reflections 
contribute to U, and we neglect the slow retrodiffusion 

associated with smooth variations. We look after sharp 
discontinuities of conductivity, following an approach 
common in seismic migration problem. Moreover, we 
assume that the response has been deconvolved of the 
source function. The excitation function is a plane wave 
propagating vertically. The associated wave response is 
an impulsive signal for each reflection, 

N 

U(q) = u.(q - q.), (6) 

when we neglect response beyond critical distance which 
is a well-verified assumption except for very steep reflec- 
tions. Inserting this expression into equation (4), one 
component of the electric field can be written: 

N 

- (7) 

where r, equals qn 2. In the time domain we obtain a 
similar expression, 

We want to estimate the time shifts r. and the ampli- 
tudes Un, from a given set of M measured data E(rm) 
or E(w,•). Because E(w,•) has a simpler form, we se- 
lect it for our numerical investigations. The number of 
events is denoted by N. 

From our different numerical tests we can argue that 
the selection of the number N of events is very im- 
portant for a convergence toward reasonable solutions. 
Similar conclusions have been previously stated for the 
Prony's method applied in time series analysis [Van 
Biaricum and Mittra, 1978] where an erroneous number 
of events leads to unphysical time shifts and amphtudes 
of reflections. In other words, the number N of reflec- 
tions, i.e., the number of basic functions, must be also 
estimated from the data. 

In a more theoretical framework [Hadamard, 1932] 
this problem is ill posed because values of some param- 
eters are not continuous functions of the data. Let us 

assume two models with one reflection of given ampli- 
tude defined by: 

E1 (w) - U1 e -vq•¾, 
_ (o) 

The distance between these two models can be defined 
as the usual modulus 

For any values of amplitudes U• and U2 we can find ar- 
bitrary times rl and r2 making this distance as small as 
we want. From the practical point of view this means 
that a wide range of models gives identical images in 
the data space. Fortunately, this difficulty is partially 
overcome by the observed frequency range and the max- 
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imum depth that we consider. This often gives a stable 
solution. in any case, we can increase the stability by 
the very powerful constraint I U, I< 1. This constraint, 
which states that reflections have a smaller amplitude 
than the emitted incident wave, makes the problem well 
behaving with a global minimum for the misfit function, 
as we shall see. 

ESTIMATION or TnS NUMSE•t 
OF I•FLECTIONS 

Selecting the number N of events is a very impor- 
tant step and makes the problem more stable. Levy 
et al. [1988] have proposed on a similar subject to re- 
duce the nonlinear problem of finding amplitudes U, 
and times v, to a linear problem in amplitudes when 
the time vn of each event is fixed. The solution is regu- 
larized by reducing the number of significant events by 
mean of a minimization of the L• norm of the solution 
vector (see also Oldenburg [1990]). 

We prefer an alternative approach which we describe 
now. Let us define one component of the reflected field 
by: 

N 

E(•,•) - E U.e-¾'•. (m-- 1,...,M), (11) 

in such a way that the M frequencies are sampled with 
a regular step in the square root of frequency, which 
means that 

with •,• = m6y + •o. (12) 

The reflected field can now be written: 

N 

E(ym) -- Em- E Un oZn Z•', (13) 

with 

0Z, = e- ,½•-Z,o, 
Z. - e- '••". (14) 

The expression (13) is very similar of the Prony model 
[e.g., Kay and Marpie, 1981] widely applied for spectral 
analysis of transient signals in the terminology of sig- 
nal processing. N is the order of the model. Among 
many ways to evaluate the order of Prony's model, we 
have found the spectral analysis of the data covariance 
matrix introduced by Van Blaricum and Mittra [1978] a 
very efficient method, which we present in the appendix. 

Let us repeat that the decoupling between the num- 
ber of reflections and the reflection positions provides 
us with a stable and efficient inversion approach, while 
inverting simultaneously these quantities is a more un- 
stable procedure. 

SIMULATED ANNEALING 

Once we know how many reflections are expected, we 
must locate them: this is our nonlinear inverse problem. 
In order to estimate the misfit function we need the am- 

plitude U• which is computed by standard techniques 
[Lawson and Hanson, 1974] of linear least squares in- 

verse problems under constraints. Let us underline that 
amplitudes are not involved in the nonlinear inverse 
problem as unknowns: they are computed as quanti- 
ties once the nonlinear parameters, i.e., the reflection 
positions, are selected. 

What makes this inverse problem ill posed? Let us 
consider the misfit function, hereafter also referred to 
as the energy function, with L2 norm defined by 

M 

$ - 1/2 E (Eob0(•,•) - E(•,•, r•, ..., r,)) 2 (15) 
m----1 

where we sum over M frequencies sampled in the ob- 
served frequency range. For a zero-mean Gaussian 
white noise with variance aa, the energy function may 
readily be converted to a probability density function 

•P- •e -s/• (16) 
where C is a normalizing constant. For each assumed 
position of the reflections we compute the amplitude. 
The misfit function is deduced from the amplitude mis- 
fit. 

For a given model with three reflections at positions 
q = 0.067., 0.139, and 0.204, let us plot the misfit 
function which is a three-dimensional function in this 
particular case. We consider slices of this function as 
shown in Figure 1, and obvious symmetries are related 
to permutations of the three events. For example, the 
global minimum is located at six different places. When 
the third event is at q - 0.204, i.e., between the first 
and second slice starting from the top of the Figure 1, 
we have two symmetrical positions coming from per- 
mutation of the first two events. Two other positions 
of the global minimum are also found near the fourth 
slice from the top of Figure I when the third event is at 
q = 0.139. Finally, we observe two other positions when 
the third event is at q - 0.067 near the sixth slice from 
the top. Although the global minimum is well defined, 
the procedure to reach it by gradient methods can be 
quite slow, because we have to turn around apparent 
potential barriers: starting in the sixth slice from the 
top, we do not converge to the global minimum of this 
slice if we need for that to go through a situation with 
two nearby reflections. When an unwanted reflection 
is near a true one, the inverse procedure balances be- 
tween these two reflections for interpreting the single 
reflection and gives a misfit function higher than for a 
single event, creating a small barrier not seen in the 
Figure 1. The game is to go to the global minimum 
using a rather long path preventing the situation of two 
nearby reflections. Moreover, the main valley of the 
global minimum presents a rather fiat bottom which 
can be very sensitive to noise perturbation: another 
reason to avoid using gradient methods. The two sides 
of the valley have very steep slopes which can be seen, 
for example, on local variations perpendicular to slices 
near the fourth slice from the top and, consequently, 
any discretization of the cost function must take care of 
apparent local minima coming from the sampling. How 
to escape from these difficulties? 
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Fig. 1. Misfit function for three reflections. Slices 
are plotted in grey scale. Variations perpendicular to 
slices are shown on two background planes. Symme- 
try of the figures comes from permutations between the 
three reflections: the global minimum is found above 
the second slice from the top, above the fourth one, 
and near the sixth one. For each of these slices, two 
positions of the global minimum are obtained by per- 
mutation of the two other events. The path performed 
by a gradient method from any arbitrary point in the 
cube is a rather complex line which must avoid a situ- 
ation with two reflections nearly at the same position. 

The simulated annealing technique, originally pro- 
posed by Kirkpatrick et al. [1983] and Cerny [1985], is 
the answer we select compared to a pure Monte-Carlo 
approach. Although this technique requires the solu- 
tion of the forward problem many times, it has proven 
its efficiency in many situations (see van Laarhoven and 
Aarls [1987] for a review and Rothman [1985, 1986], 

[1989], [1990] 
geophysical applications). Simulated annealing is a two- 
loop procedure which is a compromise between local 
convergent methods and Monte-Carlo methods. The 
first (inner) loop is the Metropolis algorithm which con- 
sists of randomly perturbing the model parameters and 
accepting the new model with a probability 

7•M -- min(1; e-aS/T), (17) 

where AS is the change in the misfit function due to the 
model perturbation, and T is a parameter called, for his- 
torical reasons, the temperature. The probability 7)M is 
such that when the change AS is positive (i.e., the new 
model is worse) the perturbation is not systematically 
rejected. The second (outer) loop of simulated anneal- 
ing is the cooling schedule which consists of decreasing 
the temperature while loophag over the Metropolis al- 
gorithm. It can be shown that for an infinite number of 
attempted perturbations the energy distribution of the 

where Z is a normalizing partition function. The simi- 
larities between the probability distributions 7 • of (16) 
and 7•B of (18) allows for a bridge between simulated 
annealing and inverse problem theory [Mosegaard and 
Tarantola, 1991]. In fact, the temperature T and the 
noise variance a2 play the same role, and decreasing 
the temperature during the cooling schedule is equiv- 
alent to gradually enhancing the influence of the data 
(i.e., increasing the signal-to-noise ratio) when selecting 
the models in the Metropolis loop. 

In practice, the Metropolis algorithm is not efficient 
at low temperature where the rejection probability level 
of most perturbations is high, and it can be replaced 
by a faster procedure known as the heat bath method 
[Creulz, 1980] and applied by Rolhman [1986]. For each 
of the k possible values of the currently considered time 
shift vn (keeping all the other time shift parameters 
fixed) one computes the relative probability of accep- 
tance by the following expression, 

e-Sk/T 

7•A(*n,k) -- K -Sk/T ' (19) Zk=l e 

for each k between 1 and K. The denominator of (19) 
may be viewed as a marginal partition function. From 
this probability distribution one makes a random guess. 
This guess is always taken and gives the new value for 
vn. We must repeat this procedure for every reflection. 

Whether simulated annealing is efficient or not 
strongly depends on the possibility of the process to 
jump from one particular acceptable model to another 
one. When the temperature is high (i.e., when the 
singaLto-noise ratio is assumed low), almost every par- 
ticular model is likely to be accepted. However, when 
the temperature decreases (i.e., when the signal-to-noise 
ratio is assumed larger and larger), only a few models, 
belonging to a relatively small subset of the model set, 
remain with a significant likelihood of acceptance. For 
such low temperatures, and due to the local nature of 
the attempted transitions, it may be difficult, in prac- 
tice, to tunnel from an acceptable model to another 
one since the number of worse and intermediate mod- 

els to visit may be large [Hajek, 1988]. Obviously, this 
number changes according to the manner in which we 
perform our model perturbations. It has been reported 
previously that the tunneling effect is sometimes easier 
when the perturbation involves several model parame- 
ters simultaneously [Ettelaie and Moore, 1987; Heynd- 
erickz and De Raedt, 1988]. Our numerical attempts 
showed us that these more sophisticated perturbation 
schemes have no effects in our problem. Consequently, 
at each iteration, we have perturbed a single parameter, 
namely, the position of one reflection. 

In summary, our algorithm proceeds in the following 
steps: selection of the number of events N as explained 
in the previous section and computation of the accep- 
tance probability (equation (19)) used for the drawing 
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of a new value of the selected position. When we have 
considered every reflection, we have performed a single 
iteration. The simulated annealing repeats this itera- 
tion while the temperature is decreased in an adequate 
way. 

COOLING SCHEDULE 

Good control over the convergence parameter T is 
the difficulty of the simulated annealing. By a too slow 
cooling, we can make the solution very expensive, while 
a too quick cooling might trap us into an unwanted 
solution [Kirkpatrick et al., 1983; Kirkpatrick, 1984]. 
In other words, the convergence rate toward a mini- 
mum increases when the cooling rate increases, but the 
probability to be in the global minimum diminishes. 
Therefore, we must have an adequate slow cooling, and 
until now, despite theoretical attempts [Hajek, 1988], 
only experiences in different practical situations [Rolh- 
man, 1985] provide bounds to this cooling. Nullon and 
$alamon [1988] and Andresen et al. [1988] propose an 
adaptative annealing schedule for global optimization 
problems. 

In our case, we have selected the strategy proposed 
by Huang et al. [1986] where the cooling is made at a 
constant thermodynamic speed A. We must verify that 
the averaged energy at iteration n + 1 is below the aver- 
aged energy at the iteration n by A times the standard 
deviation, denoted sd(), of the energy at iteration n. 
Getting realistic estimates of these statistical quantities 
implies that the energy distribution at a given iteration 
must be sampled accurately before changing the tem- 
perature. We have the following formula, 

< $(n + 1) >=< $(n) >-• sd($(n)), (•0) 

where A is chosen in order to guarantee an appreciable 
overlap between the energy distributions at iterations 
n and n-9 1. The greater this overlap, the larger the 
probability to escape from local minima. The cooling 
law• 

T(n + 1) - T(n)e -•T(")/'d(s(")), (21) 

is deduced [Huang et al., 1986]. The choice of the pa- 
rameter A is not crucial and we have taken A - 0.75, 
a rather high value compared to those (~ 0.1) often 
chosen by most authors. In practice, the thermal quasi- 
equilibrium at a given temperature is quickly reached in 
accordance with the results obtained by Creutz [1980], 
and 10 iterations at constant temperature are sufficient 
to give good estimates of average energy and standard 
deviation. 

Finally, we must specify the initial temperature and 
the stopping temperature of the cooling procedure. The 
initial temperature must be high enough to allow nearly 
any transitions (i.e., the probability distribution 7•A of 
(19) is almost uniform). The temperature is taken as 
the averaged energy over 100 random configurations in- 
cremented of the standard deviation: 

TABLE 1. Model Description 

Conductivity, s/m Layer thickness, m 

0.01 300. 

0.10 100. 

0.02 100. 

0.01 150. 

0.10 oo 

equal to the noise variance, 

T. oi,• = sd(noise) 2, (23) 

might be good since for this particular choice the proba- 
bility distributions 7 • (equation (16)) and 7•, (equation 
(18)) are identical, and the model space is sampled ac- 
cording to the a posteriori distribution 7 • [Mosegaard 
and Tarantola, 1991]. By decreasing the temperature 
below this level it can be shown that each parame- 
ter converges towards the maximum-likelihood solution 
[Mosegaard and Tarantola, 1991]. This encourages us 
to continue the cooling until the following final temper- 
ature: 

Tnoise Tnoise 
< Tii.., < •. (24) 100 10 

FinM]y, increasing in one step the temperature to 
will allow the computation of the conditional probabil- 
ity distributions 7•A (equation (19)) which are our final 
solution and give an insight upon the location error of 
the reflection. 

SIMPLE EXAMPLE FOR TESTING 
SIMULATED ANNEALING 

The selected example is a one-dimensional medium 
with four reflections, described in Table 1. The posi- 
tions of primary reflections are converted in travel time 
r and variable q in Table 2. The amplitudes of reflec- 
tions are also given in Table 2. We compute electromag- 
netic responses using (3) at 100 frequencies between 1 
Hz and 1.5 kHz. We add a Gaussian white noise with 

zero mean to this synthetic data. We construct three 
data sets with signal-to-noise ratio of 30 dB, 20 dB and 
10 dB (Figure 2). The spectral analysis of data co- 
variance matrices using the Akaike's information crite- 
rion-AIC- (see Table 3) shows us that three reflections 
can be located for the first two data sets, while the 
presence of important noise in the last one allows only 
two reflections to be located. The statistical criterion is 

constructed for a maximum of 15 expected reflections 
(= N'), a number significantly higher than the a priori 
selected number of reflections (N), always lower than 

TABLE 2. Positions and Amplitudes of Events 

Events Amplitude U r, ms q, V• 

= < s(,) > + sd(S(,)). (22) 

This choice allows more than 80% of possible transi- 
tions, as suggested by Kirkpatrick [1984]. The selection 
of the final temperature is less obvious. A temperature 

1 -0.52 4.524 0.067 

2 0.28 19.088 0.139 

3 0.11 28.860 0.170 

4 -0.31 41.420 0.204 
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- 
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log]o[period (s)] 

Fig. 2. Synthetic data obtained by convolution. 
Three signal-to-noise ratios are defined: (a) a ratio of 
30 dB •variance a2 = 10-5), (b) a ratio of 20 dB (vari- 
ance •r • = 10 -4) and (c) a ratio of 10 dB (variance 
o.2_ 10-3). 

six events. This is necessary in order to have a signifi- 
cant number of terms in the sum and product of (A9) 
(see the appendix). 

For the high signal-to-noise ratio of 30 dB, the re- 
solvable three reflections given by the criterion AIC are 
well located (Figure 3) when Tlinal equals Tnoise/10. 

TABLE 3. AIC Value for an a Priori Number of Events 

Events 
Signal-to-Noise ratio, dB 

30 20 10 

1 1388 345 289 

2 331 321 277 

3 318 315 299 

4 334 331 322 

5 361 359 348 

6 382 380 366 

Bold numbers give the AIC selection for the number of 
events. 

The amplitudes are also well defined (Table 4). Let us 
note that the two intermediate events have the same 

sign in amplitude and are not resolved by our proce- 
dure. The estimated amplitude of the second reflection 
is nearly the sum of these two intermediate real reflec- 
tions. Once the positions are given, we compute the 
conditional probability at Tnoise (Figure 3). This prob- 
ability would lead to a possible analysis of the final reso- 
lution which is not performed in this study. Intuitively, 
one can see in Figure 3 the decrease in resolution with 
depth. 

It is interesting to follow the evolution of the event 
locations when we proceed to the cooling (Figure 4). In 
the same figure we give the temperature evolution, the 
decrease of the averaged energy < $ >. One can see the 
hierarchy where the most superficial reflection is first lo- 
cated, the second deeper one, and so on. This evolution 
is the one we obtain in all the numerical simulations 
we undertake. The energy variation are best seen with 
the computation of the derivative A < $ >/AT, which 
is analogous to a specific heat. The decrease of the en- 
ergy is associated with a better organized system, which 
is often related, if not always, to the interface position. 

75- •30. 
- 

0.5- 
- 
- 
- 

r = ?.. (= 
snr = 30 dB 

0.0 , , , , I , , , i , , i' , 
0.0 0.05 0.1 0.15 02 

q "time" (i •=) 

Fig. 3. For a signal-to-noise ratio of 30 dB, condi- 
tional probabilities associated to each of the inverted 
events. Flags indicate final positions of the reflections 
obtained at the end of cooling schedule (T = Tlinal from 
equation (24)). For each reflection, conditional proba- 
bilities have been computed by varying the position of 
the considered event (see equation (19)) while keeping 
the remaining reflections at their final positions. 
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TABLE 4. Amplitude Estimation of Events After Simulated Annealing 

Events True Amplitude Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 

1 -0.520 -0.520 -0.520 -0.525 0.001 -0.828 

2 0.280 0.353 -0.009 0.376 -0.525 O. 451 

3 O. 110 -0.272 0.381 -0.288 0.463 - 

4 -0.310 - -0.291 - -0.375 - 
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Fig. 4. Evolution of reflection positions on the top 
panel during the cooling. Intermediate panel shows the 
prescribed temperature evolution and the decreasing 
energy. Variations of the energy are better seen with 
the specific heat coefficient on the bottom panel. 

On the bottom of Figure 4, the specific heat presents 
three bumps related to the temperature interval where 
an interface starts to freeze at a given position. 

When four reflections are a priori sought, the unre- 
solved event, which is the second one with a small ampli- 
tude (Table 4), perturbs the positions of the three other 
reflections and decreases the global resolution (Figure 
5). This is an a posteriori proof of the importance of de- 
tecting the number N of events and gives a justification 
for the AIC we have used. 

Of course, when the noise increases, events are much 
more difficult to locate. Figure 6 presents three located 
pulses at the final temperature T, oise/10 with a strong 
degradation of resolution: only the first event is per- 
fectly resolved. Introducing an extra event with respect 
to the AIC still gives a nonlocated event which perturbs 
the two deepest events both in locations (Figure 7) and 
in amplitudes (Table 3). We emphasise that this event 
has a very small amplitude which can be used to reject 
it. 

For a noisy environment as the final example, the 
AIC allows two reflections. One can see that the first 

one is welllocated, but the second one is located in a 
wrong position near the first one at the final tempera- 
ture (Figure 8). The whole strategy fails for this signal 
to-noise ratio, and the second reflection interprets only 
noise in the data (Figure 2c). 

Two-DIMENSIONAL REALISTIC EXAMPLE 

In this last section we would like to test the per- 
formance of simulated annealing on synthetic data ob- 
tained by an entirely different forward modeling than 
the integral equation (3). We have used a finite element 

'-' 0.75- 
• - 

,.• - 
0 . 

•' 0.5: 
Ill - 
cl - 
0 - 

• - 

,• 0.?..5- 
I:1 - 

T = T•. (= 10-') 
snr = 30 dB 
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Fig. 5. Same as Figure 3 for a priori four reflections. 
Please note the unlocalized event. 



8064 GIBERT AND VIRIEUX: ELECTROMAGNETIC IMAGING AND SIMULATED ANNEALING 

L0- 

- T=T•..(=104 ) 
4-• - -• snr = 20 dB 
= 0.75- ß • _ 

. 0.5: 
• - 

o : 
...,i 

• o25: 

"• : ..... ........ ,... 
, ..,.," 

0.0 ] [ [ [ I [[ ] [ I • [ [ [ 1 [ ] ] [ I [ 
0.0 0.05 0.1 0.15 02 

q "time" (s •") 

Fig. 6. Same as for Figure 3 but with a signal-to- 
noise ratio of 20 dB. Three reflections are deduced from 
the criterion AIC. 

program [Wannamaker et ai., 1985] for a simple realistic 
medium. This model is designed such that the deepest 
and third interface is fiat with an important constrast 
of the resistivity. Above this interface a more complex 
pattern of interfaces is considered first for perturbing 
the diffusion process and for checking the performance 
of the simulated annealing. Moreover, resistivity con- 
trasts are smaller than for the deepest interface (Figure 
9). We neglect displacement current as usually done in 
the usual magnetotelluric approximation, and we con- 
sider transverse magnetic mode for our experiment. 

We use 63 traces with only 50 frequencies between 
1 Hz and 1.5 kHz with the regular sampling of the 
square root of frequency (equation (12)). An extra 
Gaussian white noise is added with a signal-to-noise ra- 
tio of 30 dB. 

During the cooling for each trace, the parameter A 
is equal to 0.75, while 10 iterations are performed at 
each temperature before the selection of the next posi- 
tion. The final temperature is taken as Tnoise/10. The 
criterion AIC turns out to select between three and six 

events, although only two reflections are correctly lo- 
cated' the final conditional probabilities of these extra 
events are rather fiat. 
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Fig. 7. Same as for Figure 3 but for a priori four 
events and a signal-to-noise ratio of 20 dB. Please note 
the unlocalized event and the unwanted perturbation of 
the latest reflection. 
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Fig. 8. Same as for Figure 3 but for a priori two events 
and a signal-to-noise ratio of 10 dB. One reflection is 
correctly located, while the second is at a wrong posi- 
tion and fits some noise in the signal. 

The conditional probability is shown for each trace in 
an equivalent seismic section in Figure 9. We emphasize 
that the electromagnetic source is a vertical plane wave 
exciting the medium at the free surface. In other words, 
the pseudo-seismic section is the one expected after a 
CMP stack before migration. 

The simulated annealing has the capacity to detect 
two interfaces: The top interface is the best localized, 
while the second is slightly blurred out. This second in- 
terface, which is fiat in the real medium, has a slope in 
good correlation with the resistivity above it. The com- 
plexity on the right of the model is entirely unresolved 
and does not even degrade the solution: interfaces are 
too near each other with a too small jump of resistivity. 

Sometimes, reflections are mislocated with a spread 
conditional probability: a posteriori analysis might re- 
quire the restarting of the cooling schedule, and an im- 
proved picture would be obtained. We have not un- 
dertaken this strategy and have preferred to present 
straight results from the inversion. 

horizontal position (m) 

• p - 600 tim 

p - 200 tim 

Fig. 9. The two-dimensional model on the top with 
a deep fiat interface. From TM signals at the free sur- 
face, we deduce a pseudoseismic section which is equiva- 
lent to a CMP stack before migration. More accurate 
readability of the event position is obtained by plot- 
ting the conditional probability at the temperature 
Wn ois e . 
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Fig. 9. (continued) 

The conversion from pseudotime to depth will require 
the use of migration techniques used in seismic data 
analysis. The discussion of this transformation is be- 
yond the scope of this paper. Poststack migration might 
be applied to this pseudo-seismic section and, hopefully, 
the deepest interface will become fiat. 

CONCLUSION 

We have shown that diffusive electromagnetic signals 
can be converted to impulsive pseudo-wave signals by a 
procedure similar to deconvolution. This procedure is 
efficiently performed by simulated annealing. We have 
studied the different steps in order to achieve this trans- 
formation and have defined the parameters controlling 
the cooling. Except for the very noisy example, we suc- 
ceed in locating reflections, as well as in estimating their 
amplitudes. 

This success enables us to propose the different mi- 
grations of seismic exploration in order to construct the 
contrast of conductivity inside the medium. This will 
be the purpose of a future work. 

Each trace is inverted independently from the neigh- 
boring ones. A promising strategy for future work will 
include the coherence between traces to accelerate the 

search for the global minimum for each trace. This tech- 
nique will improve the pseudo-seismic section we have 
obtained in the previous paragraph. 

APPENDIX 

The spectral analysis of the data covariance matrix 
introduced by Van Blaricum and Mittra [1978] turns 
out to be a very efficient method for determining the 
number of reflections. 

Let us define the polynomial P(Z) of total degree N 
with roots 

N N 

P(Z)- H (Z- Z,)- E atZN-t' (A1) 
n=l 

with a0 equal to 1. Multiplying (13) by at, we obtain 
the following expression: 

N 

- y] oZZ'. , 
n=l 

with œ- 0,...,N and j - N + 1,...,M. By summing 
the N terms on the LHS, we obtain the expression, 

N N N 

E atE. i-t - E Un oZn E atZJ•-t' (A3) 
l=0 n=l •=0 

with (j = N + 1,..., M). The polynomial on the RHS 
is evaluated at one of its roots Z, and is consequently 
equal to zero. Thus the linear system 

N 

E atEi-t = 0 (A4) 

with a0 - 1 and j - (N + 1,..., M), holds and can be 
written in the compact form: œa - 0, where we have 
introduced the matrix œ, 

E1 -.. Et½+l ] œ = : '.. ß , (A5) 
EM-N ." EM 

and the vector a t = (a•v,.-., a0). As usual, we reduce 
to a square system by multiplying (A4) with the con- 
jugated transposed matrix œa of œ. If we divide also 
(A4) by the number of unknown parameters N + 1, we 
obtain the data covariance matrix 7• and the equivalent 
system, 

'R,a = 0. (A6) 

This expression shows us that a is an eigenvector of 
the matrix 7• with an eigenvalue equal to zero. The rank 
of matrix 7• is lower or equal to the number of events 
N. Of course, in presence of noisy data, eigenvalues 
are not identically zeroes: we must select a threshold 
under which we decide with a given criterion that the 
eigenvalue is almost zero. For white noise with variance 
•r a, the covariance matrix has the following form with 
I as the identity matrix, 

7•' = 7• + o'•I, (A7) 
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from which one can obtain: 

7•'a -- •'2a (AS) 

which states that the threshold can be taken as a2 [Van 
Blaricum and Mittra, 1978; Kay and Marpie, 1981]. As 
statistical test of decision, we use the Akaike's test se- 
lected by Waz and Kailath [1985] for a very similar 
problem. We compute a data covariance matrix for a 
number of reflection N' higher than the expected num- 
ber N. The true number of reflections is the one which 
makes the Akaike's information criterion-AIC- mini- 
mum.' 

AIC(N)--2Log[ 1-Ii:•v+• ]Uv'-•V)(M-•V') 
_ N½ 

+ - :v), 
(4s) 

where the Ai are the eigenvalues of 7•' arranged in de- 
creasing order. We found this criterion very successful 
in obtaining the number of reflections in even relatively 
noisy signals. For a more detailed description of this 
criterion we refer the reader to Wa• and Kailalh [1985]. 
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