
Landslides are major natural hazards that cause thou-
sands of casualties each year1. Catastrophic land-
slide events are the consequence of the rapid collapse 
and downslope transport of soil, rock and fluids, and 
are often triggered by heavy rainfall2, earthquakes3 or 
anthropogenic activities1. The destructive force of cata-
strophic landslides makes it nearly impossible to meas-
ure their physical parameters (such as the landslide 
velocity, groundwater content, basal friction and mate-
rial damage) in the field during failure. Consequently, 
constraining the mechanisms that control slope failure 
remains challenging. Although it is difficult to monitor 
catastrophic landslides in real time, non-catastrophic, 
slow-moving landslides, which move downslope for 
months to decades (or even centuries) at rates ranging 
from millimetres to several metres per year, provide an 
excellent opportunity to study landslide processes4.

Slow-moving landslides rarely claim lives5, but 
fast-moving (m s−1) debris flows can initiate from within 
the slow-moving landslide mass and inundate large 
areas6,7. In addition, slow-moving landslides sometimes 
accelerate rapidly and fail catastrophically, causing 
widespread destruction and casualties8–10. In fact, slow 
ground motions (mm year−1 to m year−1) have often 
been identified, retrospectively, as precursory deforma-
tion signals before catastrophic landslides8,10–14. One of 

the best examples of a slow-moving landslide that failed 
catastrophically is the 1963 Vajont landslide, Italy. After 
three years of slow motion at rates of about 1 m year−1, 
which was initiated by a dammed-lake impoundment, 
the landslide mass collapsed into the lake, creating a 
tsunami that claimed 1,900 victims8. Thus, landslide 
detection before catastrophic collapse is a primary goal 
of current research.

Aside from the potential for runaway accelera-
tion, slow-moving landslides also permanently affect 
the lives of local communities by destroying human 
infrastructure5,15–17 and agriculture18. As a consequence, 
local communities must adapt to live with landslides or 
migrate to new regions19. Furthermore, slow-moving 
landslides play a major role in controlling the evolu-
tion of mountainous landscapes and cause substantial 
erosion over geomorphic timescales20,21.

Slow-moving landslides occur in large numbers across 
the world in areas that typically have mechanically weak, 
clay-rich soil and rock, and high seasonal precipitation. 
Slow-moving landslides exhibit non-uniform spatial 
and temporal kinematic changes22–24 and tend to be 
deep-seated (>3 m thick)21,25 with a complex subsurface 
hydrological system26. The term ‘slow-moving landslides’ 
has been used to describe a wide variety of landslide 
styles, including those that flow, creep, topple and slide. 
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Here, we specifically define slow-moving landslides as 
masses of coherent soil and rock that move, primarily 
by frictional sliding along discrete shear zones and/or by 
viscous flow, at rates ranging from a few mm year−1 to 
100 m year−1 (defined by ref.27 as very slow to inter-
mediate velocity landslides). Therefore, our definition 
of slow-moving landslides uses a wider velocity range 
than previous definitions27, incorporating a range of 
velocities that are measurable by modern ground-based 
and remote-sensing monitoring techniques. We also 
define the time period over which a slow-moving land-
slide remains active as its ‘life’ and the point at which it 
stops moving, often as a result of changes in stress due 
to erosion or catastrophic collapse, human engineering 
or long periods of drought, as its ‘death’. While this ter-
minology is not often used to describe landslides, we 
feel it provides context that allows us to differentiate 
slow-moving landslides from more commonly known 
catastrophic landslides.

The first mention of slow-moving landslides dates 
back to the early twentieth century28, and their velocity 
was first measured in the 1930s, with pioneering work in 
the USA and New Zealand29–31. Since that time, several 
hundreds of slow-moving landslides have been moni-
tored worldwide, with either geodetic or geophysical 
measurements. The main aim of slow-landslide moni-
toring is to evaluate the hazard posed by their motions 
and to understand their role in landscape evolution. 
It is impossible to refer to all studies of slow-moving 
landslides here, so, instead, we focus on a selection 
of landslides that have increased understanding of their 
physical properties. The landslides discussed are selected 
on the basis of several criteria, including the presence 
of long-term, multi-parameter monitoring (such as 
displacement, groundwater and seismicity analysis), 
coupled with a sufficient characterization of the land-
slide properties (for example, the geology, geometry, 
mechanism and velocity), environment and forcing fac-
tors (such as precipitation events, earthquakes, human 
activity and coastal or river erosion).

In this Review, we provide a synthesis of 80 years 
of research on slow-moving landslides. We focus 
on recent advances in data collection since the 
1970s that have enabled continuous landslide mon-
itoring via ground-based23,32–39 and remote-sensing 
techniques9,10,18,40–47 and, consequently, has facilitated a 
better understanding of landslide mechanics25,32,33,48–51. We 
examine the environmental conditions of landslide-prone 
regions, analyse the forcings that drive their motion, the 
subsequent implications on their mechanics (for example, 
their basal friction, bulk damage and chemical processes) 
and discuss circumstances where slow-moving land-
slides can accelerate rapidly or even fail catastrophically. 

Finally, we present new opportunities and challenges for 
future landslide research.

Environmental conditions
Table 1 presents the key characteristics of 31 well-known, 
slow-moving-landslide regions (fig. 1), with landslide 
surface areas ranging between 0.03 and 2.5 km2 (fig. 2). 
figure 1 reveals several clusters of reported landslides, 
which can partly be explained by the development of 
national landslide observatories over the past 20 years 
(OMIV52, USGS-USA), and the cultural aspects of the 
landslide hazard mitigation: for example, in some parts 
of Italy, governments at the regional scale take charge of 
landslide monitoring53. More generally, the spatial dis-
tribution of reported slow-moving landslides empha-
sizes that detection and monitoring is usually only a 
concern in developed countries (for example, Western 
Europe8,54–62, the USA6,10,25,63–68, New Zealand69–71 and 
Japan72). Several factors can explain the geographical 
distribution in monitoring of slow-moving landslides, 
such as poorly funded natural-hazard-management pro-
grammes and a priority to manage deadly catastrophic 
landslides at the local and national government level 
in less economically developed countries. However, 
monitoring of slow-moving landslides is taking place 
in some less economically developed countries (such as 
Peru, Congo and Iran), in part, owing to collaborations 
between developed and less economically developed 
countries16,18,43,44,50,73.

Despite the geographical gaps in research on 
slow-moving landslides, the current inventory covers a 
wide variety of environmental and geological conditions 
(Table 1). Many mountain chains worldwide, such as the 
European Alps, Alborz, southern Alps of New Zealand, 
Apennines, Rockies, Andes, Japanese Alps, Virunga 
Mountains and California Coast Ranges (fig. 1), which 
have major differences in seismicity (low to moderate 
seismicity in the French Alps, strong earthquakes in 
Japan, New Zealand or Peru), precipitation (several 
metres per year in the southern Alps of New Zealand, 
desertic areas — as low as 2 cm year−1 — in the western 
margin of the Peruvian Andes), elevation (near sea level 
in the California Coast Ranges to thousands of metres 
high in the Rockies) and rock type (accretionary prism 
mélange in the California Coast Ranges; gneiss in the 
Italian Alps; volcanic/lacustrine rocks in Peru; shales 
in Japan; flysch in the northern Apennines, Italy), are 
affected by slow-moving landslides.

Most slow-moving landslides typically occur in 
weak materials, either Quaternary soils or highly 
damaged sedimentary layers with gentle slope angles 
(<20°; fig.  2b; Table  1). Both materials often have 
interbedded clay-rich layers that host the sliding sur-
face or failure zone35,37,74,75. Slow-moving landslides in 
weak materials such as soils and damaged sedimen-
tary layers deform by flow-type processes, frictional 
sliding or lateral-spreading mechanisms27. However, 
some slow-moving landslides are also found in highly 
weathered metamorphic rocks59,60,76 (Table 1), where 
the presence of clay layers are not reported. In weath-
ered metamorphic rocks, deformation mechanisms can 
include toppling and creep and do not always have a 

Key points

•	Slow-moving	landslides	occur	all	around	the	world	in	mechanically	weak	rock	and	soil.

•	The	persistent	and	long-term	motion	of	slow-moving	landslides	provides	an	
exceptional	opportunity	to	investigate	landslide	processes	and	mechanisms.

•	The	landslide	velocity	is	modulated	by	external	forcings	(such	as	precipitation,	
earthquakes,	material	supply	and	anthropogenic	activity).

•	Slow-moving	landslides	can	sometimes	accelerate	rapidly	and	fail	catastrophically.
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Table 1 | metrics of some of the most studied slow- moving landslides in the world

Site velocity 
(m year−1)

Dominant material Presence 
of clay

area and 
maximum 
depth

Slope Dominant forcings

Earthflow

La Montagna, Italy80 0.4–92 Cenozoic flysch + 0.2 km2 7° Groundwater

Northern California, USA20,25, 

35,42,45,47,65,84,140,185,186,190,191
0.4–4.2 Mesozoic metasediments + 104–106 m2 10–25° Groundwater (seasonal 

and interannual rainfall)

Oak Ridge, USA66,192 2.15 Mesozoic metasediments + 0.35 km2 17° Groundwater (rainfall)

Portuguese Bend, USA63,118 1 Cenozoic shales, tuffaceous 
shales and volcanics

+ 1 km2 6° Coastal erosion, 
groundwater, 
anthropogenic loading

Raukumara, New Zealand69,93 6 Cenozoic argillite + 0.03 km2 10° Groundwater (cyclones)

Central San Andreas Fault, 
USA64

0–0.25 Mesozoic metasediments + 0.003–2 km2 18° Groundwater (seasonal 
rainfall), earthquakes

Slumgullion, USA22,32–34,68,193 0.5–8 Weathered Cenozoic lava + 1.8 km2, 27 m 8° Groundwater (snowmelt, 
rainfall)

Super- Sauze and La Valette, 
France26,46,55,85,194

0.01–0.4 m day−1 Mesozoic marls + 0.2 km2, 10 m 25° Groundwater

Complex flow/slide

Cleveland Corral, USA6 1 Colluvium and former landslide 
deposits

+ 0.05 km2 19° Groundwater

Corvara, Italy56,195 0.16–24 Mesozoic clayey silt or silty clay 
material

+ 2.5 km2, 48 m 17° Groundwater (rainfall, 
snowmelt)

Harmalière, France13,57,131 0.1 m year−1 to 
50 m month−1

Quaternary glacio- lacustrine 
deposits

+ 1 km2, 50 m 15° Groundwater (seasonal 
rainfall, snowmelt)

Hollin Hill, England131,177,196 3.5 Mesozoic mudstone + 105 m2 12° Groundwater (rainfall)

Pont- Bourquin, 
Switzerland37,54,106,170

0.05 m day−1 Mesozoic shales + 0.4 km2 25° Groundwater (rainfall, 
snowmelt)

Tessina, Italy62,197 1–8 Cenozoic flysch + 0.6 km2, 30 m 12° Groundwater

Utiku, New Zealand198 0.02 m day−1 to 
0.02 m year−1

Cenozoic sandstones and 
mudstones

+ 2 km2, 65 m 10° Groundwater

Slide

Alani- Paty, USA199 0.2 Clayey rich debris + 0.03 km2 9° Groundwater (seasonal 
rainfall)

Cromwell Gorge, New 
Zealand71,200

0.002–0.005 Mesozoic micaschists − 1.5 km2, 160 m 21° Groundwater (rainfall)

Huangtupo, Three Gorges 
Reservoir, China15,92,108,109

0.02–1 Mesozoic mudstones to 
argillaceous limestones

+ 1.3 km2, 92 m 8–15° Groundwater (rainfall,  
lake infill)

Ikoma, DR Congo16 3 Weathered tertiary and 
Quaternary basaltic layers

+ 0.2 km2 9° Weathering, groundwater 
(annual rainfall)

Johnson Creek, USA67 0.06 Cenozoic mudstone to 
sandstone

+ 0.1 km2 11° Groundwater, earthquakes

Kahrod, Iran73 0.3 Jurassic brecciated sandstone 
and shale

+ 1.5 km2, 70 m 25° River sapping

La Clapière, France40,42,58,78,201 5–50 Paleozoic gneiss − 1 km2, 160 m 30° Deglaciation, 
groundwater

Maca, Peru23,50,81,82 0.2–10 Quaternary fluvio- lacustrine 
and rock avalanche deposits

+ 1 km2, 80 m 11° Groundwater (seasonal/
interannual rainfall), 
earthquakes, river sapping

Mud Creek, USA10,202 0.5 Mesozoic metasediments + 0.23 km2 32° Groundwater (rainfall), 
coastal erosion

Siguas, Peru18,44 35 Cenozoic sediments: siltstones 
to conglomerates interbedded 
with sands and ignimbrites

− 1 km2, 80 m 14° Groundwater (irrigation)

Vajont, Italy8,107 ~1 m year−1 
before collapse 
in 1963

Mesozoic limestones − 2 km2, 250 m 30° Lake infill
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clear failure zone at depth60. Toppling occurs when rocks 
have pre-existing near-vertical fractures77 and a high 
slope gradient (≥30°; Table 1). Steep rockslides are often 
initiated following a deglaciation, with slow motion that 
can occur over 10,000-year timescales76,78,79. In general, 
despite differences in the geology of slow-moving land-
slides, weak and/or altered material is always associated 
with slow motion.

Slow-moving-landslide velocities are found to be 
highly variable in space and time. For instance, La 
Montagna earthflow, Italy, displays velocities varying 
spatially from 0.4 to 92 m year−1 (ref.80), while the Maca 
landslide, Peru, displays velocities that can vary tem-
porally from 0.01 to 10 m year−1 in a single location81,82. 
Nearly all slow-moving landslides exhibit daily, seasonal 
and yearly velocity variations, with large changes in 
velocity sometimes observed during a single year33,83,84. 
For example, the Super-Sauze earthflow, France, can stop 
moving in the dry season (between July and September) 
and then move at rates of 0.4 m day−1 during the wet 
season85. Owing to the wide changes in kinematics in 
space and time, it is difficult to define the mean velo-
city of a single landslide. As such, we report the max-
imum annual velocity measured on the central part of 
the landslide body (Table 1). Most of the slow-moving 
landslides described in this Review move at maximum 
rates between 0.3 and 10 m year−1 (fig. 2c), which cor-
responds with deformation that is easily recognizable 
by analysing the surface morphology or damages on 
human infrastructure. In addition, the velocities of 
most slow-moving landslides described here are within 
the precision of common geodetic methods (such as the 
Global Navigation Satellite System; GNSS) and, there-
fore, provide the opportunity to investigate landslide 
mechanics and forcing factors.

Forcings and mechanisms
A variety of internal and external factors are known to 
drive landslide dynamics (fig. 3), resulting in changes in 
the mechanical properties of the material and/or land-
slide acceleration or collapse (fig. 4). Internal and exter-
nal forcings include upslope loading of the landslide 
from deposition of new material7,44,63,86 (fig. 4a); changes 

in groundwater from rainfall or snowmelt10,25,32–34,36,47,87–91 
(fig. 4b); changes in the water level within lakes, reservoirs 
and rivers, particularly during impoundments8,15,86,92 
(fig.  4c); shaking from earthquakes3,23,50 (fig.  4d); 
deforestation93; and debuttressing of the landslide toe 
from river erosion66,73, man-made infrastructure86 or 
glacier retreat78,79 (fig. 4e). By reviewing how landslide 
properties relate to the different forcings, we provide 
a better understanding of the mechanical controls on 
landslide processes.

For simplicity, let us consider a landslide with a slid-
ing surface at depth. The parameters that influence slope 
stability are derived from equations originating from 
critical-state soil mechanics with a Mohr–Coulomb 
failure criterion94. The Mohr–Coulomb failure criterion 
states that failure, or motion, will occur when the combi-
nation of shear and normal stresses acting on any point 
of a material reaches a threshold value that is controlled 
by some material properties (for example, cohesion and 
angle of internal friction).

Stability is generally described with a factor of safety 
(FoS), which is calculated as the ratio between the resist-
ing forces (shear strength) and the driving forces (shear 
stress) acting on a shear plane at the bottom interface 
between the landslide mass and the stable material. 
Stability is expected when FoS >1, whereas instability 
occurs when FoS <1. When FoS = 1, stability is at the 
limit equilibrium. Landslide forcings act to decrease 
the FoS and either trigger the initial failure or induce the 
acceleration of already failed slopes. Below, we further 
describe how changes in the driving or resisting stresses 
can influence the behaviour of slow-moving landslides.

Decreasing the strength. Changes in the shear strength 
of landslide material is a primary cause of failure and/or 
acceleration. Decreased shear strength can occur from 
weathering and alteration (either mechanical or chemi-
cal)16,95,96, reduction of the effective normal stress, dim-
inution of the soil cohesion (the cohesion of a granular 
material results from capillary force, electrostatic bonds 
and grain cementation) and fluidization of subsurface 
layers. All these processes, in combination with grav-
itational stresses, can lead to progressive damage of 

Site velocity 
(m year−1)

Dominant material Presence 
of clay

area and 
maximum 
depth

Slope Dominant forcings

Slide (cont.)

Vallcebre, Spain61 0.5 Late Cenozoic to early 
Cenozoic sediments

+ 0.8 km2 10° Groundwater (rainfall)

Zentoku, Japan72,203 0.05–0.2 Mesozoic weathered 
crystalline schist

+ 2 km2 28° Groundwater, earthquakes

Complex slide/topple

Åknes, Norway204–206 0.01–0.4 Palaeozoic orthogneiss − 0.6 km2, 70 m 40° Groundwater

Moosfluh, 
Switzerland59,77,130,207

0.04 m year−1 to 
0.8 m day−1

Palaeozoic metamorphic and 
magmatic rocks

− 1.3 km2, 175 m 35° Deglaciation

Séchilienne, 
France36,60,79,208,209

1 Paleozoic fractured micaschists − 2.1 km2, 200 m 35° Groundwater, deglaciation

The velocity is taken as the typical velocity registered in the central body of the landslide. The size of each landslide is given as the surface area and, when available, the 
maximum depth. The slope is calculated as the mean slope gradient over a longitudinal profile crossing the entire landslide.

Table 1 (cont.) | metrics of some of the most studied slow-moving landslides in the world
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the landslide material, development of fractures and, 
ultimately, coalescence into a shear band8 (1 in fig. 3). 
The shear zones might then become susceptible to 
low-magnitude external forcings (such as small rain 

events following periods of relative quiescence13,97) that 
result in landslide triggering and acceleration.

In addition to changes in strength induced by weath-
ering and material damage, hydrological processes, 

60°

45°

45°

–40°

–45°

–15°

–16°

–17°

40°

35°

–60°
–120°

–120° 0° 5° 10° –73° –72° –71°

170° 175°

–125°

0 1,000 2,000 3,000 4,000 5,000 6,000
Altitude (m)

Earthflow

Slide

Complex flow/slide

Complex slide/topple

120° 180°–60° 60°0°

0°

a

b c d

e

JC

JC

HO

VL

SS LC LM

VA
TE
COMOPO

KA

IK

HU ZE

CG

UT

RA

HA
SE

AK

CCNC
OR
MU

PBAP

SI

MA

SA
SL

NC

MU

PB

OR

SA

VL

LCSS
HA

SE

PO MO
CO

VA

TE

LM

RA
UT

CG

MA

SI

CC

b

e

c

d

Fig. 1 | the location of some of the best studied slow-moving landslides. 
A selection of slow-moving landslides reported worldwide, including AK, 
Åknes, Norway; AP, Alani-Paty, USA; HO, Hollin Hill, UK; HU, Huangtupo, 
Three Gorges Reservoir, China; IK, Ikoma, DR Congo; KA, Kahrod, Iran; SL, 
Slumgullion, USA; and ZE, Zentoku, Japan (panel a). Multiple landslides have 
been observed in the western USA (panel b): CC, Cleveland Corral; JC, 
Johnson Creek; MU, Mud Creek; NC, northern California; OR, Oak Ridge; PB, 
Portuguese Bend; and SA, Central San Andreas Fault; Europe (panel c): 
CO, Corvara, Italy; HA, Harmalière, France; LC, La Clapière, France; LM, 

La Montagna, Italy; MO, Moosfluh, Switzerland; PO, Pont-Bourquin, 
Switzerland; SE, Séchilienne, France; SS, Super-Sauze, La Valette, France; 
TE, Tessina, Italy; VA, Vajont, Italy; and VL, Vallcebre, Spain; New Zealand 
(panel d): CG, Cromwell Gorge; RA, Raukumara; and UT, Utiku; and 
Peru (panel e): MA, Maca and SI, Siguas. The distribution of slow- 
moving landslides highlights that they are typically only reported in 
developed countries. Different types of slow-moving landslides (earthflow, 
slide, complex flow/slide and complex slide/topple) are displayed in 
the legend.
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such as water infiltration and compression or extension 
of saturated landslide materials, result in shear-strength 
variations. Hydrologically induced strength changes pri-
marily occur because of variations in pore-water pressure 
and, correspondingly, effective normal stress. As such, 
strength changes depend on the water-saturation level of 
the hillslope material. For example, when the material is 
not fully saturated, suction forces from capillary effects 
and clay swelling in the lateral shear surfaces can increase 
shear strength and help stabilize a hillslope35,98. However, 
when the material is nearly or fully saturated, an increase 
in pore-water pressure induces a loss of cohesion, along 
with a decrease of the effective normal stress and, con-
sequently, causes a reduction in the shear strength of the 
landslide material (possibly leading to liquefaction)99. 
The magnitude of the resulting variations in shear 
strength depends on the drainage conditions of the slope. 
If the slope has ‘drained’ conditions, water can flow out 
of the landslide mass before excess pore-water pressures 
develop. The opposite is true for ‘undrained’ conditions, 
where a rapid increase of stress owing to a specific load-
ing such as water infiltration, with respect to the time 
required for the water to be drained, in loose, nearly 
saturated fine-grained formations leads to the build-up 

of excess pore-water pressure and, subsequently, to a 
dramatic decrease of the effective normal stress100.

The infiltration of water into a hillslope can have several 
origins. Rainfall and snowmelt (2.1 in fig. 3) and anthro-
pogenic irrigation18 (2.2 in fig. 3) can infiltrate through the 
hillslope matrix25,49,87,91,101–103 (figs 3,4b) or through prefer-
ential flow paths, such as fissures and cracks generated by 
the landslide activity38,104–106 (1 and 2.3 in fig. 3). Variations 
in atmospheric pressure, for example, atmospheric tides, 
can also cause vertical migration of the groundwa-
ter within the landslide. At the Slumgullion landslide, 
USA, daily variations in atmospheric pressure of less  
than 1 kPa lead to variations in landslide velocity from 
less than 1 mm day−1 (higher atmospheric pressure) to 
more than 2–3 mm day−1 (lower atmospheric pressure)33. 
Changes in the water level of a lake or reservoir (natural 
or man-made) at the hillslope toe can also generate varia-
tions in the groundwater levels within the landslide body 
and, therefore, impact landslide kinematics8,15,71,92,107–109 
(fig. 4c and 2.4 in fig. 3).

The relationships between rainfall and/or snow-
melt and landslide acceleration has been documented 
in many regions worldwide34,56,61,87,89,110–112 and indicate 
that the highest velocities are generally observed during 
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periods of intense or long-lasting rainfall (such as wet 
seasons, monsoons and/or summer storms) and during 
periods of high snowmelt discharge (winter to spring). 
For example, the Slumgullion landslide, USA, attains 
its maximum velocities of ~10 m year−1 (170% the aver-
age annual rate) during peak snowmelt34. Furthermore, 
the Maca landslide, Peru, accommodates 90% of its 
1–10 m annual displacement within the five months of 
the rainy season81. In the same way, but with a much 
lower magnitude, the Charlaix landslide, French west-
ern Alps, has slide velocities of 13–16 cm year−1 from 
November to March and 0–2.5 cm year−1 from April 
to October113. The direct relationship between rainfall 
and/or snowmelt-induced water infiltration and land-
slide occurrence and acceleration led to the proposal 
of early-warning systems for shallow (generally no 
more than a few metres), catastrophic landslides based 
on regional-specific rainfall intensity and duration 
thresholds88,114,115. However, rainfall-based early-warning 
systems are not appropriate for deep-seated (thickness 
>3 m), slow-moving landslides, owing to the increased 
complexity of their subsurface hydrological network 
relative to shallow catastrophic landslides (for which the 
early-warning systems were designed)26,116.

Water infiltration can also originate from man-made 
operations, such as irrigation for large-scale agricul-
ture or personal use and from sewage and drainage 
systems18,63,117 (2.2 in fig. 3). For instance, massive irri-
gation for farming in the desert of Tacama, South Peru, 
led to the reactivation of huge slow-moving landslides 
in the two distinct valleys of Siguas and Vitor18. In the 
arid environment of the Tacama desert, a 20-year delay 
between the onset of irrigation and the initiation of 
landsliding was observed, which was interpreted as the 
time needed to develop high pore-water pressures18. 
Ultimately, migration of the Punillo Sur landslide gen-
erated displacements of ~300 m in 30 years. In addition, 

the Portuguese Bend landslide, USA (Table 1), was 
reactivated in the mid-1950s following gravitational 
loading at the head of the landslide by a highway fill up 
to 20 m thick and water infiltration originating from 
rainfall, waste water and surface watering63. Since then, 
the landslide has remained active, owing to rainfall and 
additional waste water from nearby residences63,118.

Further insights into the influence of man-made 
operations on the motion of landslides can be gained 
by studying the pore-water geochemistry of different 
landslides, such as the clayey Manaihan landslide in 
eastern Belgium. The Manaihan landslide, which had 
been dormant for around 1,600 years, was reactivated 
twice, first in the 1970s and then again in 1998 (with 
motion continuing to the present day). The second 
reactivation was triggered by a broken sewage pipe and 
heavy rainfall117. Interestingly, geochemical analysis on 
different industrial sewage waters showed enrichment in 
monovalent ions (such as Na+ and K+), which might have 
promoted the landslide movement117,119. Experimental 
studies conducted on quick clays in Norway119,120 showed 
that replacing in situ cations by cations of smaller 
hydrated radii (bigger cations with an associated lower 
water-ion volume) decreased the thickness of the elec-
trical diffuse double layer between clay particles and 
improved the undrained and remoulded shear strength, 
and the Atterberg liquid limit, of the tested soils, thus 
inhibiting the rapid motion or catastrophic failure of 
landslides. The influence of pore-water geochemistry 
and clay mineralogy have been long investigated for clay 
liner applications but remain poorly reported in landslide 
investigation, with the exception of quick clay117,119,121,122. 
As such, it remains an area of prospective research.

Deforestation (3 in fig. 3) can also cause drops in 
the shear strength of landslide material and promote 
landsliding in several ways. First, vegetation favours 
transpiration and, as such, reduces the amount of water 
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infiltrating the subsurface, which has the largest impact 
for deep-seated landslides. Second, roots absorb water 
from the subsurface and increase suction, which stabi-
lizes shallow landslides. Third, the spatial distribution of 
the root network into the ground mechanically increases 
shear strength99 and, therefore, reduces the probability of 
shallow landslides initiating.

A decrease in strength can also result from slip- 
dependent or rate-dependent changes in material prop-
erties and from stress changes during earthquakes. 
Some landslides exhibit rate-weakening friction, where 
the frictional strength decreases as the landslide velocity 
increases123,124. The origin of rate-weakening behaviour 

is still debated and might reflect the pure frictional 
behaviour of the sliding surface or the plastic defor-
mation of junctions in the bulk material125. Critically, 
rate-weakening friction promotes acceleration that 
sometimes ends in catastrophic failure51,124. Stress changes 
during earthquakes can also reduce the shear strength. 
Indeed, many studies have explored the role of fluids dur-
ing seismic shaking and have found that fluid migration, 
following an earthquake, occurs because of changes in 
permeability126 and could result in a rise in the pore-water 
pressure, owing to undrained soil conditions127. In addi-
tion, grain crushing in the shear band following seismic 
shaking can lead to liquefaction of the sliding surface128,129. 
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Quantification of the different earthquake-related forc-
ing mechanisms remains challenging, demonstrating that 
more observations of slow-moving landslides accelerated 
by earthquakes are required to study the mechanical 
implications of seismic shaking.

Increasing the shear stress. Changes in the FoS and, 
therefore, the probability of landslide motion might also 
occur through changes in the shear stress of a hillslope. 
Increased shear stress can result from oversteepening of 
the slope, debuttressing of the toe (4.1 and 4.2 in fig. 3) 
or upslope loading (5 in fig. 3). For example, several 
deep-seated landslides, which occur along the flanks 
of steep mountain valleys (such as the La Clapière and 
Séchilienne landslides in France78,79), were initiated fol-
lowing the most recent deglaciation period (~10,000 
years ago) and, thus, removal of material from the toe of 
the landslide. Similar debuttressing effects at the toe 
of landslides owing to deglaciation or river incision have 
also been observed on the Kahrod landslide in Iran73, 
on the Oak Ridge earthflow in the USA66 and on the 
Moosfluh landslide in Switzerland77,130.

Internal or external structural changes following 
natural or man-made mass redistribution can also lead 
to increased shear stress and generally occur in several 
(at least two) stages (fig. 3). First, a phase of erosion or 
man-made surface changes in the upper part of the land-
slide transports material down to an accumulation zone. 
The resulting growth of soil thickness at the accumulation 
zone can induce an increase in the driving shear stress 
acting on the landslide body, which can cause undrained 
loading and trigger acceleration and/or a transition from 
sliding to flowing48. Landslide acceleration following 
loading has been observed at several sites. For example, 
the Silt Creek landslide, USA, was reactivated due to 
undrained loading following two debris flows that depos-
ited 10 m of material onto the upper part of the landslide’s 
transport zone7. Similar observations have been made at 
other landslides around the world13,18,44,63, including the 
Harmalière landslide, France, the Portuguese Bend land-
slide, USA or the Siguas and Punillo landslides, Peru, 
where new material supplied by the regression of the 
headscarp led to acceleration of the main landslide body 
(displacements increased by ~50 m in 3–5 weeks)13,18.

A transition from sliding to flowing owing to struc-
tural changes in the landslide body has been observed 
at many landslides (such as the Harmalière, Hollin Hill, 
Pont-Bourquin and Super-Sauze landslides; fig. 1). The 
transition to flowing can occur because the increase in 
shear stress resulting from material deposition acts to 
decrease the water content required to trigger a transi-
tion from sliding to flowing131. However, the increased 
driving stress owing to loading is not always sufficient 
to trigger landslide acceleration. In some cases (often 
in drained conditions), the increase in normal stress 
from the additional material weight acts to cancel out 
the increased driving stress and results in negligible net 
change in landslide shear strength.

Short-term transient loading such as ground shak-
ing from earthquakes can also dynamically increase the 
stress on a landslide shear band and, therefore, lead to 
a transient decrease of the FoS132 (6 in fig. 3). Dynamic 

loading can explain the co-seismic acceleration of 
slow-moving landslides such as the Maca landslide in 
Peru, which displayed ~2 cm of co-seismic slip during 
a nearby Mw 6.0 earthquake43,50 (fig. 4d). The co-seismic 
motion was followed by ~6 cm post-seismic motion over 
5 weeks, where no notable rainfall events occurred. The 
post-seismic motion of the Maca landslide was explained 
mechanically using rate-and-state friction laws50,51. 
However the viscoplastic properties of clay layers and 
the effects of fluids under seismic forcing must be taken 
into account to better understand the mechanics of 
slow-moving landslides during earthquakes.

Recent studies have also shown that complex com-
binations of the different forcings, such as rainfall 
combined with earthquakes or debuttressing, control 
the occurrence of rapid landslides133 and rockfalls134, 
as well as the kinematics of slow-moving landslides23,79. 
For slow-moving landslides, earthquakes and rainfall 
together produce larger motions than the two forcings 
individually, as earthquakes can further damage the 
landslide material and increase water-infiltration capac-
ity, which, in turn, leads to an additional decrease in the 
effective normal stress23. Similarly, the joint action of 
debuttressing and increased rainfall promotes landslide 
motion79. The interplay of different forcings illustrates 
the complexity of landslide mechanics. Furthermore, in 
many situations, the same forcing can lead to variations 
in both the shear strength and the normal stress acting 
on a landslide slip surface. We, therefore, emphasize the 
necessity to instrument slow-moving landslides with 
diverse equipment (for example, piezometers, seis-
mometers, and ground-surface and depth-displacement 
sensors) to extract various landslide properties (such as 
velocity, damage and pore-water pressure) and for study-
ing landslide mechanics in general. Owing to the inher-
ently heterogeneous properties of landslides (such as 
their velocity, water flow, type of material and geometry), 
instrumentation needs to be spatially and temporally 
extensive.

From slow to rapid landslides
In this Review, we have focused on slow-moving land-
slides that have remained active for many years, some-
times as long as 1,000 years135–137. However, it is also 
possible for slow-moving landslides to accelerate 
rapidly, move unusually large distances and even fail 
catastrophically8–14,66 (schematic shown in fig. 5a). The 
transition from slow to rapid movements can occur 
in any lithology; for example, lacustrine deposits13, 
metasediments10 or metamorphic rocks8,9,14. However, the 
duration of landslide acceleration is typically longer in 
stiff rocks. For instance, landslide acceleration can occur 
over several months in metamorphic rocks8,9,14, but might 
last only days in clay-rich sediments13. Landslide accel-
eration over timescales spanning days to months pre-
sents both opportunities and challenges for pre-failure 
detection.

The mechanisms driving the transition from slow 
to rapid behaviour have been widely investigated 
and include a switch from shear-induced dilatant 
strengthening to contraction weakening76,100,138–141 (fig. 5b),  
a stress-induced decrease in material viscosity37,131,142 
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(fig. 5c) or strain localization143–145 (fig. 5d,e). Shear- 
induced dilation or contraction cause changes in  
pore-water pressure during sliding that can control the 
failure mode (fig. 5b). Dilatant strengthening (increas-
ing porosity) during slip events causes a decrease 
in pore-water pressure and an increase in shear 
strength, which help prevent runaway acceleration, while 
contraction weakening (decreasing porosity) causes 
pore-water pressure to rise and promotes runaway  
acceleration100,138,140,141,146. Whether the landslide material 
dilates or contracts upon sliding depends on its initial 
compaction state. Densely packed materials tend to 
dilate during sliding, while loose materials tend to con-
tract. A transition from dilation to contraction (slow to 
rapid motion) can occur when the material reaches its 
critical-state porosity (typically, the maximum porosity). 
During this transition, if the rise in pore-water pressure 
equals or exceeds the overburden stress, liquefaction 
will occur, leading to large, fast displacements and long 
runout distances141,147. For example, the basal surface 
of the catastrophic Oso landslide, USA, which killed 
43 people and destroyed 35 homes, liquefied during 
failure, resulting in rapid motion and high mobility141,147.

In addition, liquefaction can also occur from small 
stress changes37, owing to a bifurcation in viscosity 
or shear modulus of clay layers within landslides131,142 
(fig. 5c). Stress-induced liquefaction has resulted in the 
rapid acceleration and, correspondingly, large displace-
ments of several slow-moving landslides worldwide, 

such as the Harmalière and Super-Sauze landslides in 
France131. Finally, strain localization, which is the con-
sequence of progressive damage resulting from subcrit-
ical crack growth and leads to the formation of a narrow 
shear band along which sliding can occur (fig. 5d,e), 
can trigger constant acceleration of the landslide 
mass (fig. 5d).

Owing to the diversity in landslide behaviours, 
attempts have been made to unify the mechanical laws 
that govern both slow and rapid motions140. While 
the critical-state soil-mechanics framework domi-
nates the landslide literature, fault-mechanics-based 
rate-and-state friction theory provides another frame-
work that can be used to describe slow and fast land-
slide motion50,51,107,124,148. The empirical rate-and-state 
friction law predicts that slow landslide motion will 
occur if the landslide sliding surface becomes stronger 
with increased slip or velocity. Alternatively, if the sliding 
surface becomes weaker with increased slip or velocity 
and the landslide dimensions exceed a critical size, then 
there is potential for runaway acceleration149,150. The 
slip-dependent or rate-dependent frictional proper-
ties can result from inherent material properties123,151, 
strain localization144,145 and can be further enhanced by 
shear-induced changes in pore-water pressure140,152–154. 
However, more work is required to better connect 
fault-mechanics frameworks to slow-moving and 
fast-moving landslides. We emphasize the need for 
laboratory-based studies to measure the rate-dependent 

D
is

pl
ac

em
en

t
D

is
pl

ac
em

en
t

Time

Time

Catastrophic
failure 

Dilation and contraction Viscosity bifurcation

Seasonal and
yearly changes    

C
at

as
tr

op
hi

c 
fa

ilu
re

Distributed shear Localized shear

Slip surface

Sh
ea

r
zo

ne
 

C
ra

ck
 g

ro
w

th

Seasonal pore-
pressure changes

Po
re

pr
es

su
re

 

Time

Po
re

pr
es

su
re

 

Time

Sh
ea

r-
zo

ne
po

ro
si

ty
 

C
at

as
tr

op
hi

c
fa

ilu
re

ContractionCritical state 

Dilation

V
is

co
si

ty

Time

�1

2

3

�
�

� ,�3 2 >�crit

Catastrophic
failure 

Shear localization

Rate strengthening

Rate weakening

Sh
ea

r
st

re
ng

th
 

 R
at

e
de

pe
nd

en
ce

 

Slip

Distributed
shear 

Localized 
shear 

Friction

a

d

b c

e

Fig. 5 | Schematics of landslide displacement and their associated mechanisms during the transition from slow  
to fast motion. a | Time series of complex yearly and seasonal displacement and a transition to catastrophic failure. Inset 
shows an example of the precipitation-induced pore-water-pressure changes that drive the seasonal landslide motion. 
b | Dilatant strengthening and contraction weakening, represented by the shear-zone porosity and pore-water-pressure 
changes that result in slip events. Catastrophic failure occurs at the critical state line. c | Viscosity bifurcation time series, 
which displays a rapid reduction in viscosity when the stress exceeds a critical value (τcrit). d | Typical creep-to-failure time 
series, where the landslide accelerates at a constant rate. Shear zones with distributed shear, which occurs during the 
onset of motion, and localized shear, which occurs during the runaway final acceleration, are displayed in the insets. 
e | Shear strength and rate-dependent friction changes during shear localization, where the grey dashed line represents 
the transition from rate-strengthening to rate-weakening behaviour. In all figures, the orange box highlights the transition 
from slow motion to catastrophic failure. Panel b adapted with permission from ref.138, Geological society of America. 
Panel c adapted with permission from ref.142, APS. Panels d and e adapted with permission from ref.210, Annual Reviews.

www.nature.com/natrevearthenviron

R e v i e w s



and state-dependent frictional properties of landslide 
materials at appropriate stress conditions76,124, alongside 
field-based investigations using high-resolution kine-
matic measurements to constrain rate-and-state fric-
tion models. In particular, new data and measurements 
are required for cases where slip pulses are triggered by 
stress changes resulting from earthquakes or rainfall7,50,51.

It is necessary to develop ways to determine, in 
advance, whether a landslide will accelerate rapidly 
or continue to slide slowly. One common approach 
is to examine the time series of a precursory signal, 
such as displacement or strain, that precedes runaway 
acceleration12,143,155,156. Accelerating rates of the precur-
sory signal can be approximated by an empirical relation 
that describes the acceleration as a function of the rate, 
commonly referred to as the Failure Forecast Method 
(FFM) or Voight’s law, which describes the final stages 
of the tertiary creep of brittle materials (fig. 5d). For 
landslides, the FFM is often performed by analysing the 
form of the inverse velocity time series. In many cases, 
it has been shown, often retrospectively, that the timing 
of catastrophic landslide failure can be forecast by fitting 
a linear function to the inverse velocity (1/v) time series 
and identifying the point at which 1/v approaches zero.

The FFM has been applied to back analyse the 1963 
Vajont landslide107,157, showing that catastrophic failure 
could have been forecast almost a month in advance. 
The potential of failure prediction from pre-failure 
monitoring has led some countries, and private com-
panies (like those that operate mines and quarries), 
to install in situ monitoring systems, mostly based on 
extensometers or geodetical measurements of the sur-
face velocity in vulnerable areas where slow motions 
have been detected158–160. Failure predictions have been 
applied with varying degrees of success. Back analysis 
of monitoring data, and the predictions made, demon-
strate the importance of the continuous and precise 
landslide-displacement monitoring158–160.

It must be noted that precursory signals before land-
slide collapse are not limited to surface displacement 
or strain. For instance, the increase in endogenous 
micro earthquakes156,161,162 and a drop of the material 
rigidity23,37,97 have both been shown to be a precursor to 
landslide acceleration. For example, the Nuugaatsiaq land-
slide, Greenland, exhibited an inverse power law increase 
in the rate of endogenous microearthquakes towards fail-
ure, consistent with the FFM, although the microearth-
quakes were triggered only hours before the landslide 
failure occurred162. Similarly, the Pont-Bourquin land-
slide, Switzerland, exhibited a rapid and important decay 
of the material rigidity in the 3–5 days before its failure37. 
Both precursory signals can result from material damage 
or the landslide motion itself.

Further landslide material damage can result from 
external forcings such as groundwater circulation or 
nearby shaking from earthquakes23, with complex inter-
actions between the different forcings. On the Maoxian 
landslide, China, acceleration during the weeks before 
the catastrophic failure was triggered by several weeks of 
above-average rainfall that resulted in high pore-water 
pressures163. However, years of preceding slip and rock 
damage from nearby earthquakes likely contributed to its 

ultimate collapse9. The range of precursory behaviours 
outlined here highlights the importance of monitoring 
some selected slow-moving landslides over long time 
periods with a wide variety of sensors to understand the 
processes leading to the rupture.

Summary and future perspectives
Slow-moving landslides around the world are controlled 
by complex interactions between internal factors, such 
as the state of the landslide material or pore fluids, and 
external forcing factors, such as seismicity, river incision 
or human impact. As a result, landslides display a wide 
variety of kinematic behaviours that have meaningful 
implications for both hazards and landscape evolution. 
The kinematics of slow-moving landslides reveal a range 
of complex underlying physical parameters, involving 
the mechanical properties of the material (for example, 
cohesion, friction and bulk damage), sliding history, 
pore-water pressure and dynamic loading. The con-
tinued development of mechanical models of landslide 
dynamics is critical to provide a better understanding 
of the complex interactions that control landslides and, 
potentially, allow for the prediction of rapid landslides. 
It is, therefore, important to maintain continuous mon-
itoring networks on well-known landslides over long 
timescales (several decades) to develop and improve 
future models of landslide dynamics.

Similarly complex mechanical and kinematic behav-
iours occur in other geophysical phenomena, such as 
faults164, volcanoes165 and glaciers166,167. Much of the 
deformation associated with these other phenomena 
is related to rock damage and frictional sliding driven 
by stress or strain. Thus, investigation of slow-moving 
landslides, which are relatively easy to monitor com-
pared with volcanic eruptions or earthquakes (owing to 
their smaller size, shallow depth and persistent motion), 
offer a natural laboratory that can be used to gain a bet-
ter understanding of the mechanics of frictional sliding 
and failure in natural materials50,51,168. Recent efforts to 
apply the fault-mechanics-based rate-and-state friction 
model to landslides50,51,76,107, volcanoes169 and glaciers166,167 
emphasize the similarities between the different systems, 
and we encourage more collaboration between research 
based on landslides, volcanoes, glaciers and faults.

Challenges of future landslide research will certainly 
be directed towards improving monitoring tools, with 
the aim to get precise, high-frequency and extensive 
data. However, one of the primary concerns is the cost 
of instrumentation. Projects using low-cost instruments 
such as radio-frequency identification170, fixed optical 
cameras38 or low-cost GNSS and unmanned aircraft sys-
tems or drones171 will help mitigate some of the costs. In 
addition, monitoring of subsurface properties will bene-
fit from the development of dense geophysical sensor lay-
ers, either seismometers (associated with recent advances 
in continuous, passive, seismic-noise-monitoring 
techniques23,172) or resistivimeters173, which will con-
tribute to advancing understanding and modelling of 
material damage and groundwater circulation within 
the landslide body. To this end, recent progress has been 
made in time-lapse monitoring of 2D and 3D electrical 
and seismic parameters174–178.
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There is also a need to better understand the chem-
ical effects of groundwater circulation, especially on 
crack growth and bulk damage, as well as the condi-
tions leading to the fluidization of clay-rich layers131,141. 

Relatively long time series (decades) of multi-sensor 
monitoring on slow-moving landslides will be key to 
obtain a variety of groundwater measurements that can 
be used to better understand the non-linear response 
of slow-moving landslides to external forcings and 
the progressive damage of slow-moving-landslide 
material with time, especially in response to ongo-
ing climate change47,179. Some examples of multi-year 
monitoring efforts are already underway, such as at the 
French National Landslide Observatory (OMIV), which 
has maintained geodetic, seismic and groundwater 
measurements on several landslides since 2007 (ref.52).

Research on slow-moving landslides also helps us 
characterize behaviours that precede rapid landslides. 
As such, detection of slow-moving landslides is critical 
for alert purposes. Major developments are expected in 
landslide detection, owing to the increasing availability 
of high spatial and temporal resolution remote-sensing 
data across the globe9,12–14,180–183. Back analysis of various 
case studies show that landslide acceleration could have 
been detected from satellite data a few days to weeks 
before their catastrophic collapse. The use of freely avail-
able, high-frequency interferometric synthetic-aperture 
radar (InSAR) acquisitions, for example, from the 
Sentinel-1 satellites (minimum acquisition frequency of 
6 days), allows for the detection of cm month−1 changes 
in velocity9,12, whereas the cross-correlation of freely 
available optical images from high-frequency satellite 
acquisitions such as Sentinel-2, Landsat 7/8 and Planet 
(acquisition frequencies of 5, 8 and 1 days, respectively) 
allows for the detection of abrupt changes in velocity of 
~1 m day−1 (ref.13).

However, landslide forecasting from satellite data 
suffers from several limitations. First, forecasting will 
not work with satellite-based remote-sensing methods 
if the transition from slow to fast motion happens over 
days or less, or if the signals are further obscured by sea-
sonal effects13,162,184. Second, the signal can be masked by 
the noise of the satellite measurements. Third, data gaps 
always exist, owing to clouds, snow cover, topography, 
and vegetation (fig. 6). Fourth, the complex nature of 
landslide pre-failure motion does not always exhibit a 
unique time-dependent behaviour, which provides addi-
tional challenges for landslide prediction. For instance, 
the InSAR time series of the 2017 Mud Creek landslide, 
USA, did not indicate a clear transition to runaway 
acceleration as defined by the FFM, although the land-
slide did exhibit rapid acceleration and relatively high 
velocities (maximum rates up to 1.5 m year−1) compared 
with previous years (maximum rates between 0.1 and 
0.5 m year−1)10. The Mud Creek landslide highlights the 
necessity to establish long-term monitoring of landslide 
kinematics, which can be used to search for and iden-
tify ‘unusual’ patterns of movement that may warn of 
catastrophic collapse.

Future research of pre-catastrophic failure landslide- 
motion detection should focus on the synergy between 
satellite InSAR data and satellite optical images, to com-
plement the drawbacks of each method (fig. 6). Different 
inventories of slow-moving landslides at regional 
scales have already been created from both optical and 
InSAR satellite time series and include thousands of 
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Fig. 6 | velocity map of ground motion over 3 years before the collapse of the maoxian 
landslide, China. a,b | For each point, a time series of ground motion with time intervals of 
12 days is available. Data were acquired by the Copernicus Sentinel-1 radar satellites and 
the processing provides a velocity in the satellite line-of-sight (LOS) direction (in mm year−1). 
All data displayed were collected from freely available satellite data. The data present 
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slow-moving landslides worldwide18,46,185–189. In addition, 
we believe that back analysis of numerous case studies 
using remote-sensing data will allow for a better physi-
cal understanding of the landslide-rupture process and 
help improve detection of their precursory motions12. 
Precursor detection will benefit from machine-learning 
techniques, owing to the huge quantity of satellite data 
that are available.

We also hope that freely available remote-sensing 
data will improve landslide-monitoring efforts in less 

economically developed countries. Improving landslide 
monitoring in less economically developed countries 
is of particular interest, as they tend to be dispropor-
tionately impacted by landslides1, such as those in the 
high mountains of the Himalayas, Philippines, East and 
Central Africa or in the Andes. We strongly encourage 
scientists to ensure that the methods developed are freely 
available to use and to train students from all countries.
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