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[1] Long-term observations of large active rockslides show accelerating deformation
over many thousands of years since the last deglaciation. The effect of deglaciation on
slope stability is however poorly understood due to (1) limited long-term observations
and (2) a complex interaction between glacier retreat and hydrogeological, mechanical,
and morphological processes. To assess the sensitivity of rockslide dynamics to these
different processes, a model of progressive damage through intact rock mass is developed
in this study, based on the finite element method. This model uses time-to-failure laws
based on rock laboratory creep experiments. It is able to reproduce progressive damage
localization along shear bands associated with strain rate acceleration as observed during
tertiary creep. The model reproduces the different phases of deformation associated with
morphologies typical of large rockslides. This model is thus suitable for simulating the
dynamics of large rockslides and the transition from initiation to rapid sliding. The
sensitivity of rockslide kinematics and morphology to different mechanical properties is
analyzed. This analysis shows that the time evolution of the rockslide can be inferred
with the knowledge of only one time parameter, independent of the knowledge of the
mechanical properties of the rock mass. This parameter is here chosen as the time when
the summit slope displacement has reached 10 m, a parameter that can be estimated with
cosmogenic dating. The model is then used to study the effects of deglaciation on the
valley flank stability and the formation of large rockslides. This study shows that the
deglaciation velocity can affect the morphology of the rockslide, with the shear band of
the rockslide emerging at higher elevation as the velocity decreases. We also show that the
response to the deglaciation can last several thousands of years after the glacier retreat.
Citation: Lacroix, P., and D. Amitrano (2013), Long-term dynamics of rockslides and damage propagation inferred from
mechanical modeling, J. Geophys. Res. Earth Surf., 118, doi:10.1002/2013JF002766.

1. Introduction

[2] The risk associated with large rockslides is of major
concern in many mountainous regions. These rockslides can
develop into debris flows or dam valleys; such dams create
the risk of outburst floods [Eisbacher, 1984]. Large active
rockslides with typical volumes of 1.107 m3 or more are
observed in many different lithological settings, in particu-
lar, in overdeepened glaciated valleys [Erismann and Abele,
2001]. Many of these rockslides, often associated with deep-
seated gravitational slope deformation, are characterized by
slow surface deformation ( 10 mm/yr) and long-term evo-
lution (up to 15,000 years) [Le Roux et al., 2009]. Their
initiation and failure has long been thought to be a direct
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cause of deglaciations [Abele, 1974]. However, it has been
shown that the rockslide evolution results from a complex
combination of geological [e.g., Brideau et al., 2009] and
topographical factors [e.g., Varnes et al., 1989], with possi-
ble interaction with external factors such as water infiltration
[e.g., Ballantyne, 2002], seismic shaking [e.g., McCalpin,
1999], fluvial erosion [e.g., Crosta and Zanchi, 2000], or
postglacial debutressing of the valley flank [e.g., Agliardi
et al., 2001]. All these processes act at different time and
spatial scales, and their coupling is difficult to quantify.
For instance, Strozzi et al. [2010] showed a progressive
acceleration of an alpine rockslide that can be related to a
combination of stress release due to deglaciation and rain
events. Seasonal fluctuations of this movement illustrate
the complexity of the interaction between precipitation and
glacier retreat impact. This complexity means that accurate
prediction of the slope failure is very challenging.

[3] The short- to medium-term (day to decennial) behav-
ior of large rockslides is well documented, showing
the important control of precipitation on the observed
kinematics [e.g., Crosta and Agliardi, 2003; Potherat
and Effendiantz, 2009; Helmstetter and Garambois, 2010;
Strozzi et al., 2010; Nishii and Matsuoka, 2010]. On a longer
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time scale (102-104 years), rockslide behavior is much less
known. On such time scales, deglaciation is considered as
the main activation factor of these instabilities. Ballantyne
and Stone [2004] showed the potential long time response
(several thousands of years) of rockslides to glacier retreat
using cosmogenic dating of rockslide failures. The works of
Ballantyne [2002] and Cruden and Hu [1993] suggested that
the response of rock slopes to glacier retreat is characterized
by a decreasing occurrence of rockfalls since deglaciation
with a relaxation time scale of 10 to 1000 years. Another
study [Ambrosi and Crosta, 2006] compared the present rate
of deformation measured by permanent scatterer interferom-
etry to long-term deformation rates deduced by field obser-
vations. They concluded that present-day displacement rates
could explain the total observed displacements along major
landslide structures without large changes since deglacia-
tion. The long-term kinematics of two large rockslides have
also been estimated using geomorphological observations
and cosmogenic dating [El Bedoui et al., 2009; Le Roux
et al., 2009]. They are characterized by slow displacement
rates for thousands of years followed by a stage of progres-
sive acceleration. In both cases, the phase of acceleration
takes place several thousand years after the deglaciation.
The progressive nature of the movement call into question
the factors involved in their mechanics and the processes
leading to their potential failure. In this context, it is of pri-
mary importance to understand the generic relations between
rockslide dynamics (namely the progressive damage of a
rockslope and its resulting deformation) and the role of
lithology, topography, glacier retreat, and fluid flows. In this
study, we aim at quantifying the effects of mechanical and
geometrical parameters on the time to failure and shape of
deformation of large rockslides and characterizing the time
response of the rock mass to the glacier retreat.

[4] Due to limited observations on long-term rockslide
dynamics, past studies have focused on the mechanical
modeling of these instabilities. Different models have been
developed to simulate the morphology of rockslides [e.g.,
Vengeon et al., 1999; Muller and Martel, 2000; Forlati et al.,
2001; Bruckl and Parotidis, 2001; Bachmann et al., 2004;
Eberhardt et al., 2004; Helmstetter et al., 2004; Ambrosi and
Crosta, 2006; Stead et al., 2006; Chemenda et al., 2009;
Kveldsvik et al., 2009; Guglielmi and Cappa, 2010]. In the
event of a rockslide occurring along a preexisting surface, its
mechanics can be simulated through the sliding block model
[Newmark, 1965] based on limit equilibrium techniques.
This model simulates the displacement of a homogeneous
block sliding on a slope based on friction laws, but is only
adapted for relatively small landslides. In larger rockslides, a
preexisting sliding surface is unlikely [Einstein et al., 1983],
and the role of progressive failure through intact rock mass
is key to explaining the initiation and the mechanics of
landslides [Muller and Martel, 2000; Forlati et al., 2001;
Eberhardt et al., 2004; Bruckl and Parotidis, 2005; Petley et
al., 2005; Stead et al., 2006]. The initiation and progressive
maturation of failure surfaces in rockslides without preex-
isting heterogeneities can be explained through subcritical
crack growth [Bruckl and Parotidis, 2001]. This mechanism
explains how a crack can slowly propagate even when the
applied stress is much lower than the instantaneous mate-
rial strength [e.g., Atkinson, 1984; Brantut et al., 2013]. This
process has been shown to be the dominant mechanism of

deformation under upper crustal conditions [Anderson and
Grew, 1977]. Other mechanisms like weathering processes
can also alter rock properties. The latter however mostly
concerns shallow areas (� 50 cm) and previously damaged
zones. Weathering cannot therefore explain the initiation and
maturation of faults and consequently are not considered in
this study.

[5] To overcome the limited application of the sliding
block model to the simulation of large active rockslides,
three numerical approaches have been used to model their
mechanics (see Stead et al. [2006] and Van Asch et al. [2007]
for a review). (1) Continuum methods (finite elements
and finite differences) are based on strain-stress relation-
ships including either progressive rock damage or strain
softening, or viscosity [e.g., Bruckl and Parotidis, 2001].
(2) Discontinuum mechanics (distinct elements) explicitly
describe the movement and the interaction between blocks
through contact and friction rules [e.g., Vengeon et al., 1999;
Kveldsvik et al., 2009]. (3) Hybrid methods use a combi-
nation of continuum and discontinuum methods to simulate
the progressive brittle fracturing through adaptive remeshing
techniques depending on the damaged state of the elements
[e.g., Eberhardt et al., 2004].

[6] Discontinuum methods are particularly suitable for
modeling large displacements due to slip and can be mostly
used to study the short-term landslide dynamics during the
phase prior to the failure. The description of all microcracks
and their propagation in the discontinuum approach is diffi-
cult to realize core complex objects like landslides, and these
methods are thus not suitable to simulate progressive rock
damage. Continuum methods, on the other hand, have been
shown to be useful for simulating long-term dynamics and
progressive rock failure [Bruckl and Parotidis, 2005], by the
use of material of equivalent elastic properties during the
rock damage evolution. These models can be used to relate
processes from the initiation to the observable deformation
and structures of landslides.

[7] In continuum models, progressive landslide failure
is classically modeled through increasing damage and
changes of progressive mechanical properties [Forlati et
al., 2001; Eberhardt et al., 2004; Bruckl and Parotidis,
2005; Bachmann et al., 2009; Chemenda et al., 2009;
Guglielmi and Cappa, 2010]. In these models, damage
occurs in zones where a stress field criterion (usually
Mohr-Coulomb or Hoek-Brown criterion) has been reached.
Damaged elements are simulated using analogue materi-
als of lower shear modulus or lower mechanical resistance
(friction and/or cohesion variations). However, time is not
well accounted for in these models. Bruckl and Parotidis
[2005] simulated time by fitting observed landslide veloc-
ity during primary and tertiary creep regimes, corresponding
respectively to phases of damage zone maturation and accel-
eration toward the slope failure. The time was thus not
directly related to the damage evolution and to the mechan-
ical properties of rocks. This limitation prevents the use
of these models for studying the time control of long-term
effects like glacier retreat. The originality of our approach
is to include time-to-failure laws, derived from subcritical
cracking instead of empirical laws used in previous stud-
ies, to simulate the long-term behavior of rock slopes. We
show that this single process reproduces many temporal and
spatial features of large rockslides.
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Figure 1. Velocity of the Séchilienne and the La Clapiere
landslides estimated from cosmogenic dating for past
velocities [Le Roux et al., 2009; El Bedoui et al., 2009]
and geodetic measurements for actual velocities [Kasperski,
2008; El Bedoui et al., 2009].

[8] The paper is organized as followed. We first review
the large similarities between the long-term dynamics of
rockslides and laboratory creep experiments (section 2).
These similarities allow us to transpose a model of pro-
gressive damage of rocks under brittle creep [Amitrano and
Helmstetter, 2006] to large rockslides (section 3). The
model uses time-to-failure laws based on laboratory rock
creep experiments. We show that the model is suitable
for simulating the kinematics and damage of large rock-
slides and the transition from the initiation to rapid sliding
(sections 4.1 and 4.2). Then, we analyze the sensitivity of
the landslide dynamics to different mechanical properties
(section 4.3). Finally, this model is used to study the impact
of glacial retreat on the geometry and time to failure of large
rockslides (section 5).

2. Long-Term Rockslide Dynamics Observations
[9] The long-term evolution of landslides is known

from morphological observations and dating of their
scarps [Le Roux et al., 2009], cracks opening [El Bedoui
et al., 2009], debris [Hippolyte et al., 2009], or deposits
[Gutiérrez-Santolalla et al., 2005]. A precise dating se-
quence has notably been carried out in two alpine rock-
slides, in Séchilienne [Le Roux et al., 2009] and La Clapiere
[El Bedoui et al., 2009], using cosmic ray exposure dat-
ing. These two sequences show the landslide evolution over
15,000 years, that is, since the last deglaciation (Figure 1).
They show different phases: (i) no significant displacement
is observed during several thousand years. (ii) Then a slow
and progressive increase of displacement rate occurs. The
associated deformation initiates from the toe and propagates
to the top of the slope. (iii) A rapid acceleration and failure
of the slope can then occur.

[10] The stress release resulting from the deglaciation
or “glacial debutressing” has been frequently proposed to
explain the initiation of slope movements [e.g., Cossart et

al., 2008]. The deformation onset was sometimes observed
to be synchronous with deglaciation [Agliardi et al., 2009].
However, the large time lapse between deglaciation and ini-
tiation of the slope movement observed in the Séchilienne
and La Clapiere rockslide sequences questions the real trig-
gering factor of these rockslides. Time lapses of several
thousand years were also often reported between deglacia-
tion and slope failure in many other landslides mostly in
the Alps (Flims landslide [Ivy-Ochs et al., 2009], Fernpass
rockslide [Prager et al., 2009], Koefels landslide [Ivy-Ochs
et al., 1998], and Kandertal landslide [Tinner et al., 2005]).
These studies provided exposure ages during the Holocene
when conditions were warmer and wetter, and corroborated
the hypothesis of climatic triggering to explain the origin
of the failure [Soldati et al., 2004]. Seismic triggering has
also been invoked to explain these dates in the Alps, as ages
of gravitational destabilizations coincide with the tectonic
activities [Sanchez et al., 2010].

[11] However, the cases of Séchilienne and La Clapiere
bring new insights into the long-term dynamics of large
rockslides, showing the large time scale of rock damage pro-
cesses. In these two cases the climatic factor cannot explain
the progressive acceleration observed over more than 8000
years. An alternative explanation could rise from the pro-
gressive acceleration being related to damage evolution of
the rock mass. The different phases observed correspond
first to maturation of the failure surface without significant
displacement, followed by a phase of progressive accel-
eration until the slope fails. These phases coincide with
different creep regimes observed during rock sample creep
experiments [Boukharov et al., 1995; Brantut et al., 2013].
The primary phase of creep is characterized by strain rate
decrease and is followed by a tertiary creep regime where
strain rate and velocity increase. The velocity is notably
found to follow a power law that has been used to pre-
dict the failure [Voight, 1989]. The secondary creep regime
observed in brittle creep experiments [Brantut et al., 2013],
corresponding to the transition between these two phases,
is sometimes observed in nature [Heap et al., 2011]. Previ-
ous studies have shown that there is a progressive change
from primary to tertiary creep, experimentally [e.g., Heap
et al., 2009b; Brantut et al., 2013], numerically [Amitrano
and Helmstetter, 2006], and analytically [Main, 2000]. Sec-
ondary creep can be considered as the transition between
these two steps, when the strain rate varies very slightly.
Based on these observations and also as already shown by
a previous study [El Bedoui et al., 2009], rockslide dynam-
ics and creep experiments share large similarities. Due to
these similarities, the model proposed in this study for dam-
age evolution and rockslide dynamics is transposed from
a model of brittle creep on rock samples [Amitrano and
Helmstetter, 2006].

3. Modeling
3.1. Progressive Damage Model

[12] The common approach to simulate the progressive
failure of brittle rock is to adopt an elastic-brittle-plastic
or strain-softening model. This approach is often based on
a linear Mohr-Coulomb failure criterion or on a nonlinear
criterion such as the Hoek-Brown failure criterion, above
which either the elastic properties (Young’s modulus and/or
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Poisson’s ratio) of the rock sample [e.g., Amitrano and
Helmstetter, 2006] or material strength [Chemenda et al.,
2009] vary. Hajiabdolmajid et al. [2002] developed a model
of progressive rock failure based on the cohesion loss and
friction increase as plastic strain increases. This model has
been used to simulate the relief evolution at a regional scale
[Guglielmi and Cappa, 2010].

[13] A major problem, however, arises from the use of
the model developed by Hajiabdolmajid et al. [2002] to
simulate the landslide dynamics. This model relies on the
hypothesis that the strength of the material decreases first
by friction reduction and then by cohesion reduction using
an ad hoc time function. This makes it difficult to relate
the time to failure to material properties when rock strength
changes. On the contrary, the elastic-brittle model simu-
lates progressive damage of rocks through changes in elastic
properties, without changing their strength. In particular,
Amitrano and Helmstetter [2006] simulated the time evolu-
tion of brittle rock damage using time-to-failure laws based
on creep experiments and subcritical crack growth theory
[Atkinson, 1984]. This model reproduces both the spatial
distribution of the damage at the macroscopic scale and its
temporal evolution.

[14] Hereafter, we provide a short description of this
model. More details can be found in Amitrano and
Helmstetter [2006]. The model is based on time-to-failure
laws in order to model the time evolution of damage and
deformation under creep. A macroscopic element i is char-
acterized by its Young’s modulus Ei. An element is damaged
when the shear stress � on this element exceeds a damage
threshold. Experimental observations by Heap et al. [2009a]
showed that the damage onset can be described by the
Mohr-Coulomb criterion. This criterion is thus chosen as the
instantaneous damage threshold. The Mohr-Coulomb crite-
rion is classically defined by the cohesion C and the internal
friction angle ˆ relating normal (�) and shear stress (�):

� = C + � tan(ˆ) (1)

[15] This damage process is simulated through the
decrease in elastic properties of the element i by a factor D
(0 < D < 1):

Ei,t+�t = (1 – D)Ei,t (2)
[16] When the instantaneous threshold is not fulfilled,

i.e., when the applied stress is lower than the instantaneous
strength, we consider a delayed damage described by a static
fatigue law. The increment of time �t needed to reach the
delayed damage is based on measurements of time to fail-
ure (tf) from static fatigue law experiments, which express
tf as a function of the major stress �1 and the instantaneous
strength �0:

tf � T0 exp(–b�1/�0) (3)

The time T0 has been shown to be dependent on the param-
eter b as T0 � exp(b) [Amitrano and Helmstetter, 2006].
Equation (3) expresses the brittle fracture of rocks through
subcritical crack growth. This process is related to an envi-
ronmentally sensitive chemical reaction between silicate
bond and water [Atkinson, 1987]. In rocks, the parame-
ter b has been shown to decrease with increasing humidity
[Nara et al., 2010], increasing temperature [Kranz et al.,
1982], decreasing confining pressure [Atkinson, 1987], and

increasing degree of anisotropy of the crystal orientation
fabric [Sano and Kudo, 1992]. The range of b parameter
variation is derived from creep experiments on rock samples
(see the review in Amitrano and Helmstetter [2006] for more
details). For a typical rockslide, temperature, pressure, and
the crystal orientation fabric vary little over time. Therefore,
the main variations of b are caused by water circulation. We
do not however consider here the effect of water.

[17] The decrease of Young’s modulus in the element i
leads to the redistribution of stresses around this element,
which can allow other elements to exceed the threshold of
the yield stress criterion. This process creates an avalanche
of events, typical of many failure phenomena [Zapperi et al.,
1997; Sethna et al., 2001]. At the end of the avalanche, the
stress state of each element is recalculated and the process is
iterated until no other element exceeds its damage threshold.

[18] Elastic interactions between elements and the hetero-
geneity of the mechanical properties lead to the emergence
of a complex macroscopic behavior. The elementary rup-
tures connect until they form a macroscopic shear band as
damage rate starts accelerating, which corresponds to the
onset of the tertiary creep. The model also reproduces the
power law decay of the rate of strain, damage events, and
energy release associated with the primary creep regime.
The tertiary creep is also well simulated, with an increase
of these three parameters. The model thus reproduces many
properties of rock creep as observed at the laboratory scale,
including both the macroscopic behavior as also simu-
lated by micromechanical models [Brantut et al., 2012] and
the progressive damage localization. These two observa-
tions have not been captured acting in concert by previous
modeling efforts. In particular, an increase of the appar-
ent Poisson’s ratio is observed at the macroscopic scale
[Amitrano, 1999], despite the Poisson’s ratio � being kept
constant at the elementary scale during the damage process.
This type of simple model is characterized by the emergence
of macroscopic properties that are not included at the ele-
mentary scale [Amitrano, 2004], including the anisotropic
nature of the damage at the macroscale despite the Poisson’s
ratio being considered as a scalar. Moreover, from the exper-
imental point of view, previous studies [Katz and Reches,
2004] have shown that the scalar representation of damage
at the local scale does not preclude the good representation
of the anisotropic damage at the macroscopic scale. More
elaborated theoretical models considering tensorial expres-
sion of the damage could be used instead, but their inherent
complexity and the several parameters needed preclude, at
least at this stage of our work, their application to study the
temporal evolution of damage within a rock slope.

[19] It is however well known from experiments that the
Poisson’s ratio evolves during the deformation of rocks. The
manner in which the Poisson’s ratio evolves varies depend-
ing on the type of rock. Theoretical considerations suggest
that the Poisson’s ratio decreases in the same manner as
the Young’s modulus [Kemeny and Cook, 1986; Kachanov,
1993]. Experimentally, however, the general case is that
� increases from an initial value of about 0.25–0.35 to a
higher value sometimes as high as 0.45–0.5. This is partic-
ularly the case of initially low porosity rocks [see Heap et
al., 2010; Eslami et al., 2010]. The range of increase of �
when the macrofailure is achieved may vary from 0.05 to
0.15. For initially porous rocks, the evolution of � can be
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Figure 2. Schematic diagram showing parameters related
to model geometry and boundary conditions.

more complicated as a decrease can been observed for some
rocks [e.g., Wassermann et al., 2009; Heap et al., 2010].
These relationships have been established for uniaxial load-
ing conditions, and it is unsure that they also apply for
triaxially loaded rocks. As a consequence, including the evo-
lution of � in our model at the elementary scale appears to
be difficult due to the variety of possible evolutions and the
dependence on the type of rock. In this work, we chose to
keep � stable. The detail behavior related to a more elab-
orated evolution of the damage is beyond the scope of the
present study.

3.2. Large Rock Slopes Modeling
[20] The aforementioned model is adapted to simulate

rock slope behavior under the influence of gravity. The
geometry is controlled by the angle ˛ of the slope (Figure 2).
Typical values of ˛ for large rockslides range from 25ı to
50ı [McCleary et al., 1978]. The height of the slope is fixed
to typical values of 1000 m [McCleary et al., 1978]. The dis-
tances to the slope boundaries are defined in Figure 2 and are
chosen long enough to avoid interactions with the damaged
zone. The domain is divided into triangular elements. The
meshing uses a Delaunay triangulation. The input of the tri-
angulation, referred in the following as the mesh resolution,
is the maximum edge size of the triangles. The triangulation
is then computed by optimizing the quality of the elements,
which is a criteria on the triangle area distribution.

[21] The mesh resolution has been chosen based on two
criteria. First for optimizing the simulation duration and
second for describing with sufficient details the geometry
of the failure. We tested the effect of the size of the mesh

Table 1. Simulation Duration for Various Mesh Resolutiona

Mesh Resolution Number of Elements Simulation Duration

100 m 1,000 200 s
50 m 3,700 5,000 s
30 m 10,400 45,000 s

aThe geometry of the simulations is shown in Figure 3.

elements with three different values: 100 m, 50 m, and 30 m
(Figure 3). The simulation time increased by approxima-
tively 25 as the element size is divided by 2 (Table 1). Then,
the geometry of the failure is found to be poorly defined with
an element 100 m in size. At this scale, the simulation shows
that the geometry of the modeled deformation depends on
the orientation of the borders of the individual elements.
Geometry of the failure plane can even be determined by
the arrangement of the elements. On the contrary, the simu-
lations with elements 50 m and 30 m in size provide a very
similar geometry of the failure: the parabolic shape of the
failure plane is conserved as well as its double branch on top
of the slope (Figure 3). Based on these simulations, we chose
a mesh element 50 m in size (approximatively 3700 elements
for a 45ı slope), meaning that we consider the material as
homogenous at this scale.

[22] The mechanical properties of rocks at the rockslide
scale are derived from the properties at the rock sample
scale. Unfortunately, few measurements have been realized
to determine the mechanical parameters of rocks and rock
masses at a macroscopic scale. Some attempts have been
made to characterize the macroscopic values of rock strength
and deformability from field observations, notably using the
Geological Strength Index (GSI) [Hoek and Brown, 1998].
This index can be related to elastic modulus, cohesion,
and friction [Cai et al., 2004]. Despite all its limitations
(the GSI is a local, superficial, subjective measurement,
which is not adapted to anisotropic materials and sensitive
to ground water content), it provides a range of the macro-
scopic mechanical properties of rocks that show scaling
effects between the laboratory sample scale and the macro-
scopic scale. This scaling effect can partly be explained by
the fact that mechanical properties at the laboratory scale
are measured on fairly intact rock samples, whereas large
fractures in the rock mass are encountered at larger scales
in observations. This damage size effect has been mod-
eled [e.g., Min and Jing, 2003] and sometimes measured
[Kulatilake et al., 2004]. These different studies showed that

Figure 3. Simulations realized for the same set of parameters but with three different mesh resolutions.
Size of the elements are (a) 100 m, (b) 50 m, and (c) 30 m. The white dashed line is the best fit for the
failure plane (see section 4.3.2).
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Table 2. Mechanical Parameters Used in the Simulations

Parameter Definition Min Value Max Value Steps

˛ Slope angle 25ı 50ı 5ı
ˆ Internal friction 25ı 40ı
� tan (ˆ) 0.5 0.8 0.1
� Poisson’s ratio 0.35 0.45 0.05
C0 Minimum cohesion 8 MPa 20 MPa 3
b Coefficient 20 40 5
Ei,t Initial Young’s modulus 20,000 MPa 20,000 MPa
D Damage coefficient 0.1 0.1

(i) the cohesion of rocks at macroscopic scale is lower than
measured on rock samples, (ii) the Young’s modulus is lower
at the rock mass scale than at the rock sample scale, and
(iii) the Poisson’s ratio increases with increased damage and
is thus related to the observation scale. The Poisson’s ratio is
found to increase by 20% when increasing the size of obser-
vation from a 10 m scale to a 30 m scale [Kulatilake et al.,
2004], reaching 0.34 at a 30 m scale. Contrary to the scaling
effects described above, friction is found to be fairly constant
at greater scales [Ishida et al., 2010].

[23] Based on this scaling effect, we define the range of
variation of the mechanical parameters used in the following
as shown in Table 2. The range of variation of parameters
is chosen to represent a large range of material properties.
The Poisson’s ratio is voluntarily chosen high to take into
account both the scaling effect and the generally higher �
when damage evolves (see section 3.1).

[24] The simulation starts with the following boundary
conditions (Figure 2). (i) The cohesion values are random-
ized to create heterogeneities on the mesh and enable the
initiation of the process. For simplicity reasons, cohesion
values are chosen following a uniform distribution between
C0 and 2C0, where the range of variation of C0 is defined
in Table 2. This randomization has very little effect on the
simulations as shown later. (ii) The bottom boundary is fixed
in the vertical direction, and the left and right boundaries
are fixed in the horizontal direction. This means that at the
time scale of the simulations, the tectonic displacement can
be neglected. (iii) Roller boundary conditions are used in
the other directions (free displacement along the horizon-
tal direction for the bottom boundary and free displacement
along the vertical direction for the lateral boundaries). These
conditions are classically used for simulating the elastic
reaction of the embedding material [Griffiths and Lane,
1999; Forlati et al., 2001; Guglielmi and Cappa, 2010], as
it allows the reduction of the impact of boundary condi-
tions when large scales are simulated [Guglielmi and Cappa,
2010]. (iv) Gravity is applied to each node. The stress
is calculated using a rock density of � = 2700 kg m–3,
corresponding to fairly common values for rocks.

[25] During the simulation, three kinds of parameters are
estimated. (i) The displacement field of each node of the
mesh. In the following, we will particularly focus on the
summit slope displacement (ds), as shown in Figure 4a. (ii)
The number of ruptures in each element. This parameter evo-
lution is represented in Figure 5 at different times of the
simulation. (iii) We also define N, the cumulative number
of ruptures over all the elements, as shown in Figure 4b.
The simulations are run until ds reaches 200 m. Once this
threshold is exceeded, the continuous material hypothesis

cannot be considered true anymore (20% of deformation).
According to experimental observations at the end of the
dynamic failure, the simulations diverge when the material
is softened because the loading is kept constant. We there-
fore chose to stop the simulations once N reaches 100,000.
This value has been chosen because in our simulations, the
tertiary creep is always found to occur beforehand.

4. Results and Discussion
[26] There are 450 simulations which have been per-

formed using different mechanical parameters (Table 2)
on slopes without preexisting heterogeneities, in order to
test the sensitivity of the model. Hereafter, we present the
generic behavior and the effect of each parameter.

4.1. Space and Time Analysis
[27] All the simulations exhibit similar overall evolution

over time (Figure 4) and space (Figure 5), that is, (i) the
cumulative number of ruptures presents first a decelerating
followed by an accelerating pattern. (ii) The time evolution
shows a progressive acceleration of ds. (iii) The ruptured ele-
ments are first located at the toe and propagate upward. This
evolution creates a damaged zone, from where a shear band

Figure 4. Example of time evolution of (a) summit dis-
placement ds, (b) Cumulative number of ruptures (N), and
(c) rate of N as a function of time. The set of parameters
represented here is (� = 0.40, � = 0.6, C = 8 Mpa, b = 30).
Primary and tertiary creep regimes are defined upon the
simultaneous decrease and increase of the N rate. The arrows
show the times of the different steps represented in Figure 5.
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Figure 5. Different steps (Figure 4) of the damage evolution process. The color scale represents the
number of damage events per element in logarithmic scale. The set of parameters is (� = 0.40, � = 0.6,
C = 8 Mpa, b = 30).

progressively emerges. This shear band is firstly located at
the top of the damaged zone and propagates downward. This
progressive localization leads to the emergence of a highly
damaged zone that we consider as the failure surface. (iv)
Displacements are small over a large time span, and we
define the time t10 when ds = 10 m, or 1 % of the height of
the slope.

[28] The simulations correctly reproduce the long-term
dynamics of large rockslides (section 2) with progressive
acceleration of the deformation. The modeling clearly dis-
plays a two-stage damage process: first, an initiation and
maturation of the damaged zone with diffuse damage and
without much displacement, and second, a stage of acceler-
ation when the damaged area connects the toe and the top of

the slope. These two stages coincide with the primary and
tertiary creep regimes observed in rock creep experiments
characterized by, respectively, a decrease and an increase
in the number of ruptures and strain rates (Figure 4c). We
must notice that the randomization of the cohesion at the ini-
tiation of the simulation leads to very similar results over
time, with 1% error over both t10 and N10. This value has
been calculated by running the model 20 times for the same
set of mechanical parameters but with different cohesion
randomizations.

[29] The modeling also reproduces the general morphol-
ogy of large rockslides, with a scarp at the top of the slope
and bulging at its toe [Agliardi et al., 2001]. The spatial
randomization of the cohesion does not affect this general

Figure 6. Example of final morphology for two simulations with different sets of parameters. (left)
Obtained for � = 0.35, � = 0.8, C = 20 MPa, b = 20. (right) Obtained for � = 0.35, � = 0.6, C = 11 MPa,
b = 20. The color scale represents the cumulative number of ruptures per element at the end of the
simulation. These simulations exhibit commonly observed features of large rockslides like counter scarps
or double ridges.

7



LACROIX AND AMITRANO: LONG-TERM DYNAMICS OF ROCKSLIDES

Figure 7. Relationship between the first and the second time derivative of the summit displacement
( P� and R�) in the subplot a) and of the energy released ( PE and RE) in the subplot b). Dashed lines indicate
the Voight law with 	 = 1.35 and 	 = 1.4 for the displacement and 	 = 1.35 and 	 = 1.5 for the energy
which corresponds to the best fits of the data.

morphology. The randomization only affects the details of
the shear band. For instance, it can lead to the formation of
specific features once the shear band is formed, like double
ridges or counter scarps (Figure 6). These morphologies
are usually observed on large rock slope instabilities [e.g.,
Agliardi et al., 2001]. We conclude that double ridges or
counter scarps of rockslides can be created during the defor-
mation process and can be related to heterogeneities of the
mechanical properties of the rockslope. In particular, it is
observed that counter scarps are associated with curvature
changes of the shear band geometry (Figure 6) and thus are
formed after the localization of the shear surface.

[30] We also observe that the shear band does not emerge
at the toe. This behavior reproduces that of numerous large
rockslides that are suspended above the valley (e.g. Rosone
[Forlati et al., 2001], Ruinon [Tarchi et al., 2003], and
Séchilienne [Kasperski, 2008]).

4.2. Acceleration Toward the Failure
[31] The end of the simulations shows an accelerating

pattern of both displacement and the number of ruptures

(Figure 4), which concurs with many observations reporting
accelerating displacements or deformation rates [Bhandari,
1988; Zvelebill and Moser, 2001; Petley et al., 2002] or
seismic release rate [Amitrano et al., 2005] before the slope
failure. Depending on the authors, the acceleration is found
to follow either an exponential or a power law toward the
time of collapse. Petley et al. [2002] suggested that the
exponential law is observed for landslides in ductile mate-
rials. The power law acceleration of the slope prior to the
failure has been proposed to be analogous to the final stage
of the tertiary creep of brittle materials as observed in lab-
scale experiments [Saito and Uezawa, 1961; Kennedy and
Niemeyer, 1971; Voight, 1989; Heap et al., 2011]. Such
power laws have been observed for landslides and proposed
as a tool for determining either the time of collapse or
velocity thresholds useful for risk assessment [Crosta and
Agliardi, 2003]. Voight [1989] proposed a general law link-
ing the acceleration and the velocity of the displacement of
a creeping material toward failure:

R� = A P�� (4)

Figure 8. (a) Cumulative number of fractures (N) as a function of time for different cohesion values
and � = 0.7, b = 25, � = 0.4. The dashed lines represent t10, the times for which ds = 10 m. (b) The same
parameter but with the time scale normalized by t10.
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Figure 9. Same as Figure 8 but for the displacement of the slope summit (ds).

The first and second time derivatives of the displacement
are P� and R�. A and 	 are constants. Voight suggests
that this power law can be recovered when using various
variables, including strain and seismicity rate. In the fol-
lowing, we analyze the acceleration generated in the model
to see if it fits with Voight’s model. We compute the first
and second time derivative for surface displacement ( P�
and R�, respectively) and for the energy released ( PE and RE,
respectively) for different slope angle values while keep-
ing all the other parameters constant (b = 25, C = 8
MPa, � = 0.6, � = 0.4). Figure 7 shows that this con-
curs with Voight’s model. The best fit is obtained with
	 = 1.35 – 1.4 for the displacement for all slope angles.
For energy release, 	 ranges from 1.5 to 1.35 as the slope
angle varies from 30ı to 50ı. These values concur with nat-
ural observations, with values between 1.1 and 2.2 reported
on various slopes [Crosta and Agliardi, 2003]. We should
however notice that the exponent of the Voight’s model
calculated with the progressive damage model is nearly con-
stant whereas the one calculated on observations varies and
is dependent on the time span of observation [Crosta and
Agliardi, 2003]. This can be explained by seasonal forcings
that can affect the dynamics of natural slopes and that are not
modeled here.

[32] We should also note that the final step of the simula-
tion after which the damage localization is fully developed

occurs for velocity between 1 and 17 m yr–1, corresponding
to 3–46 mm/day. These values are comparable to the velocity
thresholds calculated by Crosta and Agliardi [2003] for the
Ruinon rockslide, which are used as emergency/alert trig-
gers. Hence, the proposed model appears to be adequate for
describing the acceleration related to the progressive damage
of a rock slope.

4.3. Sensitivity Analysis to the Mechanical Properties
[33] In this section, we analyze the 450 simulations

covering the range of parameters described in Table 2.
4.3.1. Sensitivity of the Time Evolution

[34] The cumulative number of ruptures N shows a
progressive increase leading to the macroscopic rupture
(Figure 8a). The curve N(t) shows homothetic behavior,
that is, the number of ruptures for different mechanical
parameters can be inferred by a transformation of the time
axis normalized by t10 (Figure 8b). This behavior shows
that the cumulative number of ruptures is not significantly
affected by the mechanical parameters of the slope. For
the same amount of displacement, the same number of
ruptures occurs. This concurs with experimental observa-
tions [Baud and Meredith, 1997; Kranz and Scholz, 1977],
showing that the failure during creep occurs at a constant
amount of strain and number of ruptures, independent of the
applied stress.

Figure 10. t10 (year) as a function of the cohesion represented for different values of the (a) friction,
(b) Poisson’s ratio, and (c) b parameter.
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Figure 11. Definition of the different geometric parameters
used in this study. V = volume, W = width of the damaged
zone.

[35] The displacement ds presents a progressive acceler-
ation with time, strongly affected by all mechanical param-
eters of the slope (Figure 9). All the simulations display a
long plateau followed by a rapid acceleration. The ds(t) evo-
lution is found to be similar for all mechanical parameters
once the time scale has been normalized by t10. Therefore,
to better quantify the impact of the mechanical parameters
on this plateau length, the time t10 is analyzed (Figure 10).
This analysis shows that t10 increases as C, b, and � increase
and as � decreases. The evolution of t10 with b is obvious,
because b controls the time to failure of rock sample ele-
ments. The effect of cohesion also concurs with observations
at the rock sample scale, with increasing time to failure for
stronger rocks. The effects of � and � are less obvious.
Unfortunately, no observations, even at the rock sample
scale, exist on the sensitivity of the time to failure for these
mechanical parameters.

4.3.2. Sensitivity of the Morphological Evolution
[36] To better quantify the geometry of the damaged

zone and its sensitivity to different mechanical parameters,
we first characterize the damaged zone when the summit
displacement reaches 10 m. This is done by first calcu-
lating the axial strain gradient ( R
xx) for each element of
the slope, then selecting the points with ( R
xx) greater than
( max( R�xx)

10 ), and finally fitting these points with a 2ı polynomial
(Figure 11).

[37] Based on this shear band retrieval, we then compute
the different geometrical values (Figure 11):

[38] 1. The volume V of the rockslide refers to the pseudo
2-D volume between the failure surface and the free surface.

[39] 2. The thickness T of the rockslide is calculated by
averaging the thicknesses over all the pseudo 3-D volume.

[40] 3. The parameter Xt corresponds to the X coordinate
of the failure surface at the top of the model, with X = 0 at
the toe.

[41] 4. The parameter Yb corresponds to the Y- coordinate
of the failure surface at the bottom of the model, with Y = 0
at the toe of the slope.

[42] 5. The parameter W corresponds to the width of the
damaged area calculated on the axial strain values when the
summit displacement reaches 10 m. To retrieve W, we first
compute for every 50 m along the failure surface, the quan-
tity 
xx as a function of the normal distance to the failure
surface d. The quantity 
xx(d) is fitted with a Gaussian func-
tion (Figure 11). We then define w as two times the standard
deviation of this Gaussian function. W is then found by
averaging w along the failure surface.

[43] Parameters C, �, and b have first-order effects on the
rockslide volume and thickness (Figure 12), with a thick-
ness decrease, while C and � increase and b decreases. The
effect of � on the failure plane geometry is of second order.
An increase of � slightly decreases the volume and the
landslide thickness. This simulated effect of � concurs with
results from numerical modeling simulating the progressive
damage through cohesion loss [Chemenda et al., 2009].

[44] Finally, the sensitivity of the width W of the dam-
aged area to �, �, b, and C is shown in Figure 13. It shows

Figure 12. Mean thickness T (m) retrieved from simulations with different mechanical parameters. The
coupled effect of the cohesion and (a) the friction, (b) the Poisson’s ratio, and (c) the b parameter.
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Figure 13. Effects of mechanical parameters on the width of the damaged zone (W). The coupled effect
of the Poisson’s ratio and (a) the cohesion, (b) the friction, (c) the b parameter.

the dominant effect of � and the secondary effect of C, �,
and b on W. W increases as � and b increase, and as C
and � decrease. The C, �, and � effects show that softer
rocks have a wider damaged zone than stiffer rocks. This
behavior reflects the fact that softer rocks have a more dif-
fuse damaged zone than stiffer rocks, as usually observed
experimentally or in the field [Jaeger and Cook, 1976].

[45] The slope modeling shows a large impact of b on the
shear band geometry and particularly on the rockslide mean
thickness (Figure 12). This effect is surprising as b is a time-
to-failure parameter (equation (3)). This shows that the b
value is a critical parameter of the simulation. The b param-
eter is always measured at the rock sample scale, and the
scaling effect of b with the sample size is not known. Thus,
for a specific case study, we propose to evaluate the b param-
eter by fitting the simulated t10 to the long-term displacement
of the observed rockslide. This time can be estimated using
for instance cosmogenic dating of the scarps with an uncer-
tainty of about 5–10% [e.g., Le Roux et al., 2009]. This error
propagates with uncertainties of about 1% on the estimation
of the b parameter.
4.3.3. Slope Effects

[46] The model has been run for different slope angles
ranging from 25ı to 50ı, corresponding to typical values of
large rockslides (Figure 14). It is first observed that simula-
tions with slopes of 25ı never evolve toward the rupture, as
no localization occurs. We note that for all simulations that
evolve toward rupture, 25ı corresponds to the lowest-angle
values of the sliding surface as it emerges at the slope toe
(Figures 5, 6, 11, and 15). This can explain why simulations
with a slope angle of 25ı do not evolve toward the rupture.
This shows either that the model is not adapted to simulate
the rockslopes for slope angles equal to or below 25ı or that
the evolution of rockslopes of low slope angles is controlled
by preexisting heterogeneities [Brideau et al., 2009] (either
topographical or inside the massif).

[47] We observe that the qualitative pattern of deforma-
tion does not change for various slope angles. However, the
time t10 and the number of ruptures N10 to reach 10 m of
displacement highly depend on the slope, that is, both t10
and N10 increase as slope angle decreases. We notably see
that an exponential relation exists between ˛ and t10, and a

quasi linear relation exists between t10 and N10 (Figure 14).
This behavior reflects the fact that slopes of lower angles are
more stable.

[48] To show the applicability of this model to simulate
the time evolution of different slope morphologies, we also
run the model using a different valley profile, characteristic
of glacial alpine valleys (Figure 15). This profile is com-
posed of steeper slopes at lower elevations due to erosion
by glaciers and a bank at the slope toe. This simulation
follows exactly the same steps as observed previously in the
case of a simplified geometry (section 4.1), with an initiation
of the surface rupture at its toe and a progressive matura-
tion toward the top. The change of slope at the middle of
the slope limits the propagation of the fault surface to the
top of the slope. This general pattern reproduces correctly
the state of strain observed on the Randa rockslide, exhibit-
ing a similar geometry [Eberhardt et al., 2004]. Concerning
its time evolution, the general primary and tertiary phases
are also observed as well as the progressive acceleration of
the damage rate toward the rupture associated with the ter-
tiary creep. The profile is however characterized by a longer
phase of fault localization (primary creep) than a similar
simulation using a constant angle profile of 35ı, due both

Figure 14. Evolution of parameters (a) N10 and (b) t10 as a
function of the slope inclination. Set of parameters used is
� = 0.4, � = 0.7, C = 20 MPa, and b = 25.
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Figure 15. Axial deformation obtained over a typical topo-
graphical profile of alpine valleys. Set of parameters used is
� = 0.4, � = 0.7, C = 20 MPa, b = 25.

to the presence of the bank at its toe and the lower extent
of the steepest part, therefore applying a lower stress on
its toe.

5. Effect of Glacier Retreat
5.1. Glacier Retreat Modeling

[49] In this part, we run the model over rock slopes
affected by glacier retreat to better understand the shape and
time response of the slope to the deglaciation. We assume the
valley history starts as the valley is formed and completely
filled by a glacier. The effect of the valley excavation by
glacier or fluvial erosion is thus not taken into account in this
study. The latter has been shown to have the same qualita-
tive effects as valley deglaciation on the slope stability, that
is to say a collapse of the upper part of the slope but not of
the toe [Hurlimann et al., 2006]. Moreover, it is known that
glaciations lead to erosion of the valley walls and therefore
to steeper slopes. This process is a major factor of instability
(Figures 14 and 15). For these two reasons, we hypothesize

that omitting the valley erosion before the glaciation will not
alter the qualitative results of glacier retreat effect.

[50] We analyze two parameters of the deglaciation: the
origin time of deglaciation t0 since the glacier emergence
(assumed to be the beginning of the glacial period) and
the duration s to deglaciate the entire valley. In the French
Alps, the last glacial period occurred during the last years
of the Pleistocene from � 110, 000 to 10,000 years ago.
The maximum extent of glaciation occurred� 18,000 years
ago and lasted for approximatively 5000–8000 years, with
many local variations. At that time, the ice thickness reached
1200 m above sea level [Monjuvent and Winistorfer, 1980].
These values provide an idea of the glacier retreat duration s
(� 103–104 years) compared to the time t0 (� 105 years).

[51] We use a constant slope angle of 45ı and a slope
height of 1000 m, characteristics of alpine valleys such as
the Romanche or Tinée where the Séchilienne and the La
Clapière rockslides developed. The effect of the glacier is
modeled as a boundary condition on the slope flanks, that is,
the ice applies a pressure p on each element perpendicular to
the slope, dependent on the ice column thickness (hice) the
ice density �ice = 917 kg.m–3, and the gravity g:

p = �iceghice (5)

Together with the boundary conditions described in
section 3, p is applied to the slope. The model is run during
the glacier retreat, which is assumed to be a linear function
of time:

hice = H if t � t0 (6)

hice = H
�

1 –
t – t0

s

�
if t0 + s > t > t0 (7)

hice = 0 if t > t0 + s (8)

5.2. Glacier Retreat Effect
[52] The resulting fracturing activity and summit dis-

placement are shown in Figure 16. We analyze the effect of
t0 and s on the morphology and time to failure of the slope
for one set of mechanical parameters (b = 28, C = 10 MPa,

Figure 16. Cumulative number of (a) rupture events and (b) summit displacement as a function of time
for a scenario where a glacier fills the valley until time t0. Deglaciation occurs between t0 and t0 + s. The
set of parameters is b = 28, C = 10 MPa, � = 0.7, � = 0.4.
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Figure 17. Effect of glacier retreat on the temporal and morphological behavior of rockslides.
(a) Summit displacement at the end of deglaciation. (b) Time between the end of deglaciation and the time
to reach 30 m of displacement. (c) Altitude of the failure emergence above valley bottom Yb (Figure 11).
All parameters are represented as a function of glacier retreat time span s and for different glacier retreat
onset time t0. The set of parameters is (b = 28, C = 10 MPa, � = 0.7, � = 0.4).

� = 0.4, � = 0.7). This set of parameters, notably the b
parameter, has been chosen because it provides a time scale
on the order of the one observed for the Séchilienne and
La Clapière rockslides, for which both glacier retreat his-
tory and scarp dating are available. Three parameters are
shown in Figure 17 , that is, (1) the summit displacement
�X at the end of the deglaciation (t = t0 + s), (2) the time �t
between the end of the deglaciation and the time the summit
displacement reaches 30 m. This 30 m value corresponds to
the height of the scarp observed on the Séchilienne rockslide
[Le Roux et al., 2009], and (3) the parameter Yb correspond-
ing to the altitude of emergence of the sliding failure plane
(altitude of the toe is Y = 0).

[53] We see that the glacier impacts the slope behavior
in different ways. First, it stabilizes the slope during the
entire glaciation. The summit displacement is blocked in
most cases by less than 1 m during glaciation (Figures 16 and
17). Second, its retreat leaves the movement to evolve freely
with a sudden acceleration of the summit after the retreat
(Figure 16). Third, the time response�t of the movement to
the glacier retreat is longer for shorter s and t0 (Figure 17)
and is on the same order of magnitude than the deglacia-
tion duration. Finally, it changes the failure geometry, with a
migration of the failure surface upward as the glacier retreat
speed decreases (Figure 17). The three first points correctly
reproduce the long-term kinematics observed on the La
Clapière and Séchilienne rockslides (Figure 1) [El Bedoui
et al., 2009; Le Roux et al., 2009], with first a displacement
blocked during the initial phase of deglaciation and then
a large time response for the movement after deglaciation
(3000 years for La Clapière and 5500 years for Séchilienne).
This large time response for these two rockslides can be
explained by a long characteristic time (large b parameter)
of the rock damage.

[54] This set of observations also show that the duration
of retreat is a dominant parameter controlling the position
of the damaged zone. The migration of the failure surface
upward shows that the damage localization is small dur-
ing the phase of glaciation and that shear band formation
occurs during the phase of deglaciation. Other simulations
done with much different values of b do not show an upward
migration of the failure plane. This shows that the fault

migration can occur only when the characteristic time of
rock damage (here exp(b = 28) s � 4500 years) is on the
order of the characteristic time of the glacier retreat (s). This
control of the speed of retreat on the rockslide geometry con-
curs with observations of different rockslides along alpine
valleys [Ambrosi and Crosta, 2011]. Indeed, Ambrosi and
Crosta [2011] showed that deglaciation occurs at different
rates along the same alpine valley and can lead to different
failure geometries at different positions along the valley.

[55] Finally, our modeling shows that the kinematic
response of the slope to the glacier retreat can have occurred
many thousands of years after the end of deglaciation
(Figure 17) because of the long maturation time of the
damage zone after deglaciation. This can lead to an onset of
the movement during the climatic optimum of the Holocene,
occurring between 4000 and 8000 years after the end of
deglaciation. Therefore, an ambiguity between deglaciation
and climate forcing can exist concerning the triggering fac-
tors of these large instabilities. This result is particularly
relevant when considering that the rockslide initiation can
be an indicator of climate change [e.g., Ivy-Ochs et al.,
1998; Soldati et al., 2004]. We argue that the validity of
this conclusion must be estimated by evaluating the time
response of the rockslide to the glacier retreat, particularly
for large rockslides where maturation of failure surfaces is a
long-term process.

6. Conclusion
[56] We developed a model simulating the long-term

dynamics of large rockslides based on the progressive
damage of rocks. This model aims to simulate the time and
geometrical evolution of large rockslides. Progressive dam-
age is simulated by decreasing Young’s modulus through
time. The time evolution of elastic modulus is simulated by
the use of time-to-failure laws observed at the laboratory
rock scale (10–1m).

[57] This model exhibits observed geomorphological and
temporal features of large slow-moving rockslides. In par-
ticular, it reproduces primary and tertiary creep regimes
observed on rockslides. The tertiary creep regime is found
to follow Voight’s law according to field observations.
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Spatially, it explains how a shear band can initiate without
predisposed heterogeneities, and it reproduces geomorpho-
logic features observed on rockslides such as double ridges
or counter scarps. Therefore, this model is well adapted
for rockslide dynamics simulations from the initiation up to
velocity thresholds in the order of 20 mm/day. After this
value, discontinuum methods should be used.

[58] The sensitivity of rockslide geometry and time
behavior to different mechanical properties of rocks is esti-
mated. Our study shows the large sensitivity of rockslide
dynamics to rock mass properties, particularly cohesion,
Poisson’s ratio, and the b parameter, a parameter defining the
velocity of subcritical crack growth at the massif scale. All
these properties are difficult to measure at the slope scale,
which could make the use of this model to specific case
studies difficult. However, a major result of this analysis
is that the time evolution of the landslide dynamics scales
with one time parameter t10, reflecting a characteristic time
scale of the deformation. This time evolution is also kept
unchanged in shape, concurring with a constant parameter of
the Voight’s law. The time evolution of the landslide dynam-
ics can thus be inferred independently to the knowledge of
the mechanical properties of the slope. This parameter is
chosen as it can easily be measured on head scarps of major
landslides using cosmogenic dating [e.g., Le Roux et al.,
2009].

[59] This model can also be used to test different mech-
anisms leading to the present geometry and dynamics of
specific rockslides. In particular, we test the deglaciation
effect on the landslide kinematics and geometry. The evo-
lution toward the rupture is obtained without introducing
external factors such as rain, seismic shaking, or permafrost
thaw. The deglaciation is found to have three main effects:
(i) the time response of the rockslide movement to the
glacier retreat can be as long as many thousands of years,
(ii) the kinematic response is progressive with accelerating
movement, and (iii) long deglaciation creates a migration of
the rockslide upslope, which can explain different rockslide
morphologies along the same valley.

[60] This modeling also questions the factors of initiation
of such large instabilities, with possible response of the rock-
slide to the last deglaciation during the Holocene. Therefore,
caution must be taken when considering the rockslides
onsets as climatic proxies [e.g., Ivy-Ochs et al., 1998]. For
quantitative comparison of these different forcings, future
developments of the model should include pore water pres-
sure and seismic shaking effects on the rockslide dynamics.
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