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Correlations of ambient seismic or acoustic vibrations are now widely used to reconstruct the
impulse response between two passive receivers as if a source was placed at one of them. This
provides the opportunity to do imaging without a source, or passive imaging. Applications include
terrestrial and solar seismology, underwater acoustics, and structural health monitoring, to cite only
a few. Nevertheless, for a given set of data, correlations do not only yield Green’s function between
the sensors. They also contain residual fluctuations that result from an imperfect time or source
averaging that might eventually blur the images. In this article, we propose a heuristic model to
describe the level of fluctuations of the correlations in the case of nonstationary wavefields, and
more particularly in the case of scattering media. The work includes theoretical derivations and
numerical simulations. The role of multiple scattering is quantitatively evaluated. The level of
fluctuations decreases when the duration and intensity of the diffuse waves increase. The role of
absorption is also discussed: absorption is properly retrieved by correlation, but the level of
fluctuations is greater, thus degrading Green’s function reconstruction. Discrepancies of our simple
model in the case of strong multiple scattering (k€* < 18) are discussed. © 2008 American Institute

of Physics. [DOI: 10.1063/1.2939267]

I. INTRODUCTION

Classical waves propagating in heterogeneous media
have been subject to increasing interest during the last
30 years. Because diffuse waves show complex waveforms
due to the randomness of the medium, they have long been
considered to be devoid of any deterministic information.
Additionally, it is well established that conventional images
(obtained with ultrasounds, radar, seismic waves, etc.) are
degraded when scattering increases. Nevertheless, mesos-
copic physicists have demonstrated the existence of various
wave phenomena that survive, and even develop, in the pres-
ence of multiple scattering.k6 This mesoscopic approach has
led to an incredible number of applications in optics, acous-
tics, oceanography,7 and even seismology.&9 Such applica-
tions take advantage of multiple scattering to image, to com-
municate through, or to monitor heterogeneous media.

Field-field correlation and passive imaging are a more
recent idea that strongly benefit from the above develop-
ments. The idea is that the correlation of fully diffuse wave-
fields recorded at two sensors yields Green’s function be-
tween them as if one sensor was a source. The connection
between correlations and Green’s function is not new and
can be derived from the fluctuation-dissipation theorem. '’
But more recently, Weaver and Lobkis'"' proposed another
original approach that uses diffuse waves to reconstruct the
exact impulse response between two sensors. Their experi-
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ments were followed by an amazing breakthrough in
seisrnology,13’14 where earthquakes are not controlled but
sensors easily handled.

In practical applications such as seismology, we mostly
focus our effort on the reconstruction of direct (ballistic)
waves within an array of receivers. Such a reconstruction is
not trivial to obtain: correlations include Green’s function,
plus fluctuations that are not easily washed out. These rem-
nant fluctuations correspond to the difference between corre-
lations obtained after perfect and after imperfect averaging.
These fluctuations, also named pseudonoise in the following
manuscript, eventually reduce under time and source averag-
ing. Note that here, the pseudonoise is contained in the cor-
relations and blurs Green’s function, this is different from the
ambient noise constituted by natural vibrations used as input
data for the correlations.'>'® The purpose of the present ar-
ticle is to compare the level of pseudonoise to the level of the
perfectly averaged correlation (the signal). The signal and
pseudonoise terminology is chosen here by analogy to active
source-sensor experiments. For simplicity, we name signal-
to-noise ratio (SNR) the ratio between the level of signal in
the correlations and the level of pseudonoise.

In practical applications, estimating the level of signal
and pseudonoise in the correlations is a central issue. On the
one hand, one has to evaluate the minimum amount of data
needed to perform some passive images: how many sources
to employ, what is the necessary record duration, what dis-
tance is best between receivers, etc.? On the other hand, it
would be a waste of time to acquire and process an excess of
data if the signal-to-pseudonoise ratio (SNR) in the correla-
tion is satisfying for less. This SNR quantifies the conver-
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gence of the correlations toward Green’s function. Different
theories have been developed in helioseismology17 and
acoustics'®!"” to describe the convergence with respect to the
time of integration 7, the number of sources N, the distance
between receivers r, the frequency f, and bandwidth Af of
the recorded signal. These theoretical approaches assume sta-
tionary wave fields and are particularly adapted to ambient
noise records. What about nonstationary records, such as
coda waves? Theoretical and experimental works have dem-
onstrated that multiple scattering plays a central role in the
time and space symmetries of the correlations.”>** Another
point is now to quantify how multiple scattering affects the
convergence of correlations. Given a set of sources and re-
ceivers, we will see how multiple scattering improves the
estimations of Green’s function obtained by correlations. In
the present article, we will propose a prediction for the SNR
that could be used prior to an experiment. The formulation
that we will derive applies to nonstationary wave fields. Our
theoretical model will quantitatively describe how an in-
creasing multiple scattering improves the convergence of the
correlations.

In Sec. II of the present manuscript, we show an ex-
ample of Green’s function reconstruction in a multiply scat-
tering medium, using finite difference simulations. Sections
IIT and IV are devoted to the evaluation of the signal and the
pseudonoise in the correlations, theoretical predictions are
confronted to numerical simulations. In Sec. V, absorption is
added to our theoretical model for the SNR of the correla-
tions. The last section describes the SNR in the diffusion
approximation.

Il. EXAMPLE OF CORRELATION AND GREEN’S
FUNCTION RECONSTRUCTION

First of all, let us begin with a simple illustration of
Green’s function reconstruction by correlation of diffuse
waves. To simulate wave propagation in heterogeneous open
media, we have chosen to conduct two dimensional (2D)
numerical experiments of acoustic waves. 37 The wave equa-
tion is solved by a finite difference simulation (centered
scheme), with absorbing boundaries; the grid is 50X
X 50\, large with a \y/30 spatial pitch (N, is the principal
wavelength).

To mimic practical situations such as seismology, we
have to build an experimental configuration that provides
long records (long lasting coda), but presents feeble scatter-
ing attenuation between the receivers (labeled A and B)
where passive imaging is performed. This would mean a
very large grid with low concentrations of scatterers (say
k€*> 10, with k the wave number and €* the transport mean
free path). Since large grids are very time and resource con-
suming, we chose a configuration with a maximum of scat-
tering in a limited grid. To reduce the effect of scattering
attenuation within the array of receivers, we also removed
the scatterers from the central region, as can be noticed in
Fig. 1. This has the additional virtue of providing an easy to
interpret first arrival: the direct wave is simply a wave propa-
gating in a 2D homogeneous medium, whatever the amount
of surrounding scatterers (waves reflected on heterogeneities
arrive later).
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FIG. 1. (Color online) Distribution of the N=1800 sources (dots) and the
1120 scatterers (circles) in the 50Ny X 50\, grid. The number of scatterers
varies from 0 to 1200, but the number of sources is kept constant, along with
their positions.

A set of 1800 sources is randomly distributed over the
grid and is kept fixed throughout the experiments (see Fig.
1). The signal e(z) emitted by each source is a pulse with a
center frequency f, and a Gaussian envelope (100% band-
witdh at —6 dB). Waveforms s,(¢) and sg(r) are recorded at A
and B during 200 oscillations 7. The distance r between the
two receivers varies from 1\, to 10\,. Typical waveforms
e(r) and s(r) are plotted in Fig. 2. The long tail of the record
in Fig. 2(b), similar to the seismic coda, corresponds to
waves multiply scattered on the surrounding heterogeneities.
The exponential decay of the averaged intensity o2(¢) in Fig.
2(c) is clearly visible for times greater than 507),. The decay
time is determined by the scattering properties and the ab-
sorbing boundary conditions (open medium) and can be fit-
ted by o(t)=0ye™""o. The decay times 7, corresponding to
the different configurations are reported on Table 1. All dif-
ferent time notations are also recalled on Table II. The ve-
locity in the medium is c=\gf;. To test the effect of diffusion
on the correlations, we have conducted different sets of
simulations with different numbers of scatterers. Each set of
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FIG. 2. (Color online) Top left: source signal e(z). Top right: example of one

waveform s() received in the multiple scattering medium (experiment num-

ber 4, k€*=12). Bottom: intensity o> of the wavefield averaged over 1800
sources, for the three scattering media.
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TABLE 1. Physical parameters of the simulations (units in X, )\(2)/ Ty, and
To).

Configuration No. 1 2 3 4
Number of scat. 0 400 800 1200
€ © 5.7 2.8 1.9
k€* © 36 18 12
D ] 2.8 1.4 1
T 0 34 68 95
T, 110 240 400

o

simulation is composed of 1800 numerical runs, one for each
source (one source at a time). Note that this is different from
correlation of ambient vibriations, where sources are conti-
nously and simultaneously excited. The scatterers are empty
cavities of diameter \y/3 randomly distributed on the grid
(see Fig. 1). Their scattering cross section was numerically
estimated in average over the frequency band of interest: 3,
=1.6\,, along with their transport cross section: %*=1.1\,,.
Table I summarizes the physical properties of the simulated
media for the four numerical configurations. This includes
the number of scatterers (whose density is n), the transport
mean free path €*=1/n3*, the diffusion constant D=c€*/2,
and the Thouless time 7,=R?/4D (where R? is the average
of the square of the source-receiver distance). Note that these
quantities are evaluated under the “independent scattering
approximation.”

The averaged correlation is controlled by three addi-
tional independent parameters: the number of sources N, the
record duration 7, and the distance r between receivers A and
B. As an example, we plot in Fig. 3 the correlation averaged
over T=200 oscillations and 1800 sources for r=5\,. This
correlation is compared to the primitive of the impulse re-
sponse obtained if A is a source: e(r)®@e(f)® [ GAB(t)dt,23
where ® for convolution. We observe that the full waveform
is reconstructed by correlation [(a) and (c)]. Nevertheless, as
the averaging is not perfect, weak fluctuations (b) are also
visible, particularly around the direct wave (first arrival). The
purpose of the following sections is to estimate the level of
the reconstructed Green’s function (the signal) and the level
of fluctuation (the pseudonoise).

lll. AVERAGED CORRELATION: AMPLITUDE OF THE
SIGNAL

A. Theory

To start with, we consider that a source emits a broad-
band pulse e(r) that propagates in a heterogeneous and scat-

TABLE II. Time notations in the manuscript.

Notation Description

t Time (variable) in records s(z)

T, Central period of the records

T Record duration

T Time lag of the correlations

T, Decay time of records s(z)

T, Coherence time of the diffuse waves
7, Absorption time
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FIG. 3. (Color online) Comparison of the reference waveform (Green’s
function) with the averaged correlation C,p(7) for r=5\, and for k€*=12.
(a) denotes the direct wave; (b) the late arrivals corresponding to waves
scattered by surrounding heterogeneities. (c) Weak fluctuations are also
visible.

tering medium and is eventually collected at A and B. The
record s(7) can be modeled as a nonstationary random signal.
Its ensemble average (here, over all possible source posi-
tions) is zero, and (¢) denotes its variance. An estimate of
o>(t) can be obtained by averaging over a large number of
sources, as we did on Fig. 2. If T is the duration of s(z) (the
record length for instance), then o(t)=0 for r>T or 1<0.
Moreover, we assume that (), of characteristic decay time
T4, evolves slowly compared to the coherence time of the
diffuse waves 7, and the central period T,

Ty > T, 1.

It has been theoretically established that on average over
the source position, the correlation of two records yields
Green’s function between the receivers.'"> ™ If we note
E{ } the averaging over the source position we obtain

E{s(t1)sp(ty)} = op(t)) op(ty) plt, — 1))

® {f Ghp(ty—t)d(t, - 17)

_JG;B(IZ_tl)d(tz_tl):|’ (1)

where G* and G~ stand for the causal and anticausal Green’s
functions and p(7) the coherence of the diffuse waves. In the
simplest approach, s(7) is modeled as a shot noise, i.e., a
series of replica of the initial pulse e(¢) with random and
independent arrival times.2® In that case, it can be shown that

p(7) is simply

e(t)e(t+ 7)dt

J e*(t)dt

and its typical width 7.=[p*(f)dt is entirely determined by
the pulse shape. Nevertheless, depending on the scattering
and absorption properties of the medium, p(7) might be
slightly different. In particular, p(7) is spread when the cor-
relations of scatterers are observed in the medium.”’ This
latter point is discussed in Sec. IV A.

For clarity, we employ in the following the notation:
p(7)Q[fG*(nd7- G (7)d7]=[p® G](7). Due to the spatial
symmetry of the configuration and the homogeneity of the

p(7) = (2)
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source distribution, we have o,(f)=0y(t)=0(t). So far the
statistical averages we mentioned were relative to the source
position, while the scatterers positions were fixed. If we re-
place the source averaging by an average over the scatterers
positions (), we obtain a similar equation, except that
Green’s function (G),p is now the effective medium Green’s
function. Correlations would then read

(54(t1)sp(12)) = 04(t) op(ty) plt, — 1)

® {f (G)ap(ty—t)d(ty - 17)

—f<G>ZB(Z2—t1)d(Zz—t1) . (3)

This latter form will not be discussed in the present
manuscript, in the whole manuscript we do not employ any
averaging over disorder, but source and/or time averaging.
G* and G~ are therefore the exact Green’s functions.

In practical applications such as imaging, the repartition
of sources and scatterers is fixed. Green’s function between
two sensors A and B is estimated by a double averaging: over
a finite time 7 and over a finite amount of sources. This
estimate writes

- T
CAB<T>=%E f s4(0)sp(t + T)dt (4)
N 0

T
=J o(D)o(t + 7)dilp ® Gagl(7) + F(7). (5)
0

The ensemble average (over all possible sources posi-
tions) of this estimate is given by the left-hand side of Eq.
(5); it corresponds to the contribution that is useful for the
reconstruction of Green’s function. More quantitatively, it
predicts for all times 7 (including late and diffuse arrivals)
and distances r the amplitude of the signal part in the corre-
lation. The right-hand side of Eq. (5) corresponds to remnant
fluctuations F which are expected to tend to zero with in-
creasing time 7" and number of sources N. The amplitude of
this pseudonoise will be evaluated in Sec. I'V.

B. Numerical validation

To confirm quantitatively the level of signal in the cor-
relations [Eq. (5)], we plot in Fig. 4 the correlation C,gz(7)
(solid lines) obtained in the numerical simulations (average
over T=200 oscillations and 1800 sources) and the theoreti-
cal expectation [Jo(f)a(t+7)di[p® G,5)(7) (dotted lines) for
increasing distances r. For simplicity, we zoomed into early
times 7 where the direct wave is perfectly fitted. Note that
reflections arriving later (7= 14) are also reconstructed and
fitted with the proper amplitude, although they are not shown
here (see the reconstruction of early and late arrival ampli-
tude in Fig. 3). The agreement is perfect at all distances and
all times, meaning that we have a satisfactory theoretical
model for the signal level in the correlation.

To summarize, we have here proposed a model to predict
the amplitude of the signal in the correlation of diffuse
waves. From a practical point of view, in this paper, we are
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FIG. 4. Amplitude of the signal in the cross correlations of diffuse fields.
Theory from Eq. (5) (dotted line) perfectly fits the correlations (solid lines).
Plot r=5\ corresponds to Fig. 3.

interested at evaluating the SNR of the correlations around
the direct wave. Therefore, in the following, the signal level
will be defined as the maximum of the direct wave, which in
theory reads

T

Stheolr> 7) = max f o(t)o(t+ 1)dilp ® Gupl(7) . (6)
0

and in the simulated data,
Snum(r’ T) = maX{CAB(T)}’ (7)

with the maximum taken around the first arrival: 7*=r/c.
Note that these definitions can easily extend to any part of
Green’s function, including late reflections and coda waves.

IV. FLUCTUATION OF THE CORRELATIONS:
AMPLITUDE OF THE PSEUDONOISE

A. Theory

Fluctuations of the correlations are visible as long as the
averaging is imperfect and may blur the correlations if not
reduced enough. In most applications, we seek to get a fluc-
tuation level as low as possible, but in practice they are
rarely negligible. Knowing and predicting the level of fluc-
tuations will allow us to evaluate the relative error in arrival
time for application such as imaging. It will also allow us to
interpret more clearly weak oscillations in the correlations
that could either be reflections in the media (real signal) or
just remnant fluctuations (pseudonoise). The SNR will be
defined as the ratio between the amplitude of the averaged
correlations and the level of fluctuations. To begin, we chose
to define the pseudonoise in the correlations from their vari-
ance,
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var{Cap} = E{C15(1)?} - E{C15(D}, (8)

where the bar denotes finite source and time averaging, and
the estimate is obtained over source position averaging. The
theoretical derivation of the variance is given in Appendix A.
We assume that (1) A and B are distant by a few wave-
lengths, (2) as in Sec. II, the decay characteristic time of o is
much greater than the propagation time r/c, which is itself
greater than the diffuse wave coherence time 7. Then, in the
case of a single source, the variance simplifies as

T
Vale, = J (1) (t + 7)dt f p*(1)dr. 9)
0

The theoretical SNR for one source can be deduced from
above formulas [Egs. (5) and (9)],

[p ® Gupl(7)
VI pA(1)dt

[to(Da(t+ 1)dt
VIToX (1) (e + Ddt
(10)

SNRpeo(r, 7) =

This equation can be generalized to N uncorrelated
sources, we have

—
SNRtheo(N) = SNRtheo(N = 1)\”N- (1 1)

The \W dependency is expected even in the case of cor-
related sources, as long as the correlation is short range.
From this general form, it is interesting to note that the SNR
depends directly on Green’s function G,p, and that it is
hardly possible to predict the SNR without having an ap-
proximative idea of Green’s function. From Egs. (10) and
(11), we can also deduce the following.

(1) The convergence of the correlation strongly depends on
the envelope o(t) of the raw records s(z). Since diffusion
strengthens late arrivals, the stronger diffusion the better
the SNR. This is a central result of our paper.

(2) The SNR depends on the amplitude of the reference
Green’s function (G,p), so shorter distances AB and
shorter times 7 are more easily reconstructed.

(3) The broader the spectrum (the smaller 7..), the better the
SNR.

(4) The more sources, the better the SNR.

All these features have been observed in previous
expelriments.13’18’22’28 Moreover, these latter equations can be
simplified as follows. First, we assume that the coherence
time of the scattered waves 7.= [ p*(f)dt is simply determined
by the duration in the initial signal e(¢) (shot noise approach).
Second, we assume that the record time 7 is greater than or
of the order of 7, (the characteristic decay time of &), so that
o(t) takes the simple form of oye™"7o. The SNR for our simu-
lation configuration now rewrites

7oV

SNRtheo(r’ T) = [P ® GAB](T) (12)

A

This result holding for nonstationary wave fields com-
pares to previous results in the case of correlation of ambient
stationary noise (see, for instance, the statistical approach in
Refs. 17-19 and a geometrical approach in Refs. 29 and 30):
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FIG. 5. Numerical (stars) and theoretical (line) SNR vs the integration time
T for N=1 source and r=5\,. The more the diffusion, the faster the conver-
gence. Top: theory perfectly fits the data for k€*=36 (left), but slightly
differs from simulations for large record time and strong diffusion (7,
=0.44). Bottom: a better fit is obtained by adjusting the coherence time:
7,.=0.44, 0.50, and 0.61, respectively.

if we assume a stationary wave field [o(f)=0y] in a rather
homogeneous medium, and if we approximate the coherence
time by the inverse of the frequency content of the source
7,c1/Af, then we recover the previous prediction of the
SNR for the direct wave in 2D,

SNR o) TAJfC. (13)
r

Here follows a validation of our model with numerical simu-
lations in the case of nonstationary diffuse wave fields.

B. Numerical validation for N=1 source, T variable

For practical reasons, we chose to define the pseud-
onoise level as the average of the variance of the correlations
before the direct arrival, and where Green’s function is null.
This variance corresponds to the intensity of the fluctuations
around 7=0,

Varyun{ Cagl = Varyn{F} = Cip(1=0), (14)

with the time average performed over —r/c+7.<7<r/c
—7.. The SNR is eventually evaluated by the ratio between
the signal level of the correlation, and this averaged variance,

Slheo Snum
SNRthCO = /=’ SNRnum = ’/= . (15)
\Valiheo VVaryym

As a result, SNR=1 when fluctuations dominate, and
SNR>1 when correlations have converged to the reference
Green’s function. In Fig. 5, we compare the theoretical and
numerical SNR for N=1 source, for an increasing record
length T, and for three different scattering media. First of all,
the SNR increases with the record length 7. Moreover, the fit
between numerical simulations and theoretical SNR is satis-
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(b) @)

FIG. 6. Two possible configurations of paths that result in time correlation
in records s(z). The solid and dashed arrows stand for waves at different
times. (a) The same scatterer is excited several times. (b) Existence of re-
current scattering (double arrow and black scatterers).

fying for k€*=36. Nevertheless, for stronger diffusion (k€*
< 18) and for large record times (much greater than the scat-
tering mean free time), the prediction for the SNR is found to
be slightly inappropriate: the pseudonoise level around 7=0
is found to be stronger than expected. This is a clear evi-
dence that our naive model of shot noise for diffuse waves
cannot account for the complexity of the field after several
orders of scattering. In other words, we suspect that there
exists some remnant time correlations in s(¢) that appear
when scattering is increased (Fig. 6). This phenomenon was
observed in time-reversal experiments where a saturation of
the SNR was observed when scattering was strongly
increased.’! In our case, we imagine two possible interpreta-
tions for this phenomenon. First, the scattered wavefield can
excite the same scatterer placed perpendicularly with respect
to A and B several times, which results in coherent correla-
tions around 7=0. As the scattering medium does not move
(no averaging over disorder), this contribution hardly van-
ishes under time averaging. Second, there exist recurrent
scattering (closed loops) in the medium that can be excited
several times by the same source. Both interpretations mean
that s(¢) cannot be modeled as a shot noise with a constant
coherent time. Correlations between the arrival times (scat-
tering paths) induce an increase of duration of p(7), which

J. Appl. Phys. 103, 114907 (2008)
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FIG. 7. (Color online) SNR for r=5\ estimated for an increasing number N
of sources and for increasing scattering in the medium for various k€* rang-
ing from % (homogeneous medium) to 13 (strong multiple scattering). The
stronger the diffusion, the better the correlations. For N> 100, a discrepancy
is observed and might be due to long-range correlation in the disordered
medium.

also increases 7. Fits of the numerical result yield the fol-
lowing values: for k€*=18 the best fit is obtained for 7.
=0.50; and for k€*=12: 7.=0.61.

Moreover, we clearly see from Fig. 5 that the SNR for
one source and 200 oscillations is lower or of the order of 1,
which means that correlations have not (yet) converged: in
these conditions the direct wave between A and B for r
=5\, is hardly reconstructed. Additional averaging over
sources is needed. This is addressed in the next subsection.

C. Numerical validation for T=200 oscillations, N
variable

We now evaluate the effect of increasing the number of
sources on the SNR. In order to have comparable records
(with similar statistical content), (1) sources are placed at
random (the position of the sources are spatially uncorre-
lated); (2) each couple of record s, () originating from the
same source is normalized by the maximum of
{\/ I si(t)dt,\,/ I slzg(t)dt}. As diffuse waves have a coherence
length of the order of half the wavelength, assumption (1) is
likely to be slightly inappropriate here. The residual spatial
correlation between the sources’ positions has been evaluated
in Appendix C, and its effect is found to be small for the
1800 sources of our numerical experiments.

We plot in Fig. 7 the SNR versus the amount of sources
used in the averaging, for four different experimental con-
figurations (see Table I). After 1800 sources, we obtain a
satisfying SNR (=10) in all cases. Up to 100 sources, the
SNR grows like VN, which means that records can be con-
sidered as uncorrelated. As for one source, the SNR is always
better when scattering is stronger (shorter k€*). It is particu-
larly interesting to note that all scattering media provide bet-
ter SNR than the one obtained in the homogeneous one
(without scatterers). However, for more than 100 sources, the
SNR is no longer a power law. The rate of convergence with
the number of sources is slower than expected, which means
that the contributions from different sources are not totally
independent. As a simple picture, we can again invoke that
long range correlations might exist in the scattering media.
As a result, the SNR in homogeneous medium eventually
goes beyond the SNR with diffuse waves for more than 400-
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FIG. 8. Solid line: correlation without (top) and with (bottom) absorption.
Dotted line: theoretical decay. The upper plot is equivalent Fig. 3. Both
amplitude and phase are reconstructed, even when absorption is present.

900 sources, depending on the amount of scatterers. This is a
clear indication that the fluctuation-dissipation theorem does
not totally apply to the reconstruction of Green’s function by
correlation of diffuse waves. In other words, time averaging,
source averaging, or ensemble averaging cannot be simply
interchanged in the case of strong multiple scattering.

V. ROLE OF ABSORPTION

In practical applications, the medium is often (at least
slightly) absorbing. Several authors have worked out the ef-
fect of absorption in the correlation.”*># They proved that
in lossy environment, Green’s function (including absorp-
tion) is still retrieved by correlation. Nevertheless the role of
absorption on the convergence of correlations is not estab-
lished. We propose in the following to adapt the theory pre-
sented in previous sections to the case of weakly absorbing
media.

First of all, let us consider that Green’s function with
absorption G“ is simply connected to the lossless Green’s
function G as G4z(7)=Gp(7)e ™™ with 7, the absorption
time. In our simple model, absorption does not depend on the
frequency. The variance of the field is also affected: o,(r)
=o(t)e"". First we want to check that Green’s function G*
is actually retrieved by correlation in the numerical simula-
tions. To that end, the same numerical simulations presented
above are slightly modified to account for the absorption.
Data are processed again; an example of averaged correla-
tions is presented in Fig. 8. As expected, the reference
Green’s function [p® G“](7) is retrieved both in phase and
amplitude, meaning that the absorption is actually recon-
structed in the correlation. Nevertheless, fluctuations are now
stronger than in a medium free of absorption.

The effect of absorption on the level of fluctuations and
the SNR is quantified now. Theory from Eqgs. (10) and (11)
can be adapted to take absorption into account. For simplic-
ity, we assume that o,(f)=ope™V/70*1/7%) and again T> 7,
and 7,. Then

SNR, 7, y
= e, (16)
SNR Te+ T,
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FIG. 9. (Color online) SNR, to SNR ratio, evaluated for r=5\,, k€*=36,
and absorption time here is 7,=40.

This formulation contains two contribution. First, ab-
sorption reduces the effective length of the coda record. Sec-
ond, the direct wave is attenuated by a factor 7, As a
result, the SNR decreases with increasing absorption. In
other words, the stronger the absorption the lower the SNR.
In Fig. 9, we plot the ratio SNR,/SNR around the direct
wave versus the number of sources N, for the experimental
configuration number two (see Table I). For the physical val-
ues retained here (r=5\,, 7,=110, and 7,=40), theory from
Eq. (16) predicts a ratio of SNR of 45%, which is of the
order of experimental results (the average value is 60%). The
discrepancy comes from the fact that the actual form of o is
not a simple exponential decay.

VI. EXTRAPOLATION TO FULLY DIFFUSIVE MEDIA

All the above numerical results have been obtained in a
configuration where the direct wave within the array of re-
ceivers does not suffer from scattering attenuation: no scat-
terers were placed in the central area of the simulation. In
real experiments, scatterers are likely to be distributed every-
where in the medium. We propose in the following to extend
our model to this latter configuration, under the diffusion
approximation. In this case, the average envelope of the
wave field received at a distance R in an infinite medium is

[ 1
o(R,1) = Ee_RZMDt.

This model is particularly valid when sources are far away
from the receivers, meaning R> €. We additionally assume
that the distance r between A and B is much smaller than R
so that the envelope is the same for A and B. The effective
time length of one record is similar to the Thouless time,
R?

Tp="1,

P~ ap
therefore we would expect the SNR to grow like

N
SNR G 1 5(r, 1) \| —2.

Te

On the one hand, scattering increases the Thouless time
7p, thus increasing the SNR. On the other hand, the direct
wave is attenuated by scattering. These two effects are in
competition. For the direct wave, we can approximate the
attenuation by the product of the geometrical spreading and
the diffusion attenuation. For simplicity, we also assume that
{=€*. The corresponding SNR then writes
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which formally means that the SNR increases with increas-
ing scattering if r<<€*. Again, this formal result is a central
point of our article. Note that according to this equation, the
SNR saturates, then decreases for strong scattering or large
distances (r>€*). This is due to the scattering attenuation of
the reconstructed Green’s function (in the correlation). The
best SNR is therefore expected for r=€*.

VII. DISCUSSIONS AND AMPLITUDE
RECONSTRUCTION

In the present article, we correlated diffuse waves to re-
construct Green’s function between passive sensors. This
processing was carried out without any transformation of the
raw record s(¢). The only modification that we realized was
normalizing each couple {s4,sz} by the maximum of
{f si(t)dt, I s%(t)dt}. In particular, we did not change the fre-
quency content of the records (no whitening) nor change the
amplitudes of particular waveforms within s(z). This has the
virtue of reconstructing Green’s function both in phase and
amplitude. Practically speaking, this allowed us to retrieve
the geometrical spreading of the wave, along with the ab-
sorption, and confirms the possibility of mapping the attenu-
ation of the medium under investigation “without a source.”
Nevertheless, in most practical applications, the amplitude of
the raw records s(7) is strongly modified. Several nonlinear
transformations have been proposed in the literature: 1 bit
processing (retain only the sign),28 adaptive gain constant
(dynamic renormalization that compensate the coda decay),
clipping,33 to cite only a few. In our model, this would be
more or less equivalent to compensate the decay of o, thus
increasing the SNR. On the one hand, these latter processing
was shown to greatly improve the final tomographic images:
they are particularly adapted when the phase (arrival time) of
the wave transports the quantity of interest, like in tomogra-
phy. On the other hand, these processing are likely to de-
grade the reconstruction of the amplitude, as it was observed
in more recent experiments.3 35 We therefore strongly sug-
gest that preprocessing treatments such as 1 bit or whitening
be used only when the reconstruction of the phase is tar-
geted.

VIIl. CONCLUSION

To conclude this article, we have reported on the conver-
gence of correlations toward Green’s function in the case of
independent sources in a multiple scattering environment. In
Sec. II, we have presented numerical simulations and re-
trieved Green’s function (in phase and amplitude) between
passive sensors. As a simple model, we chose to describe the
coda as a superposition of waves arriving at random time.
This offers the opportunity to develop, in Secs. III and IV, a
simple estimation for the mean and the variance of the cor-
relations, from which a SNR is derived. This SNR quantifies
the convergence of the correlations toward Green’s function.
The SNR was found to increase like VN7p/ 7., where N is the
amount of sources, 7, is the effective duration of the coda
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(the Thouless time), and 7, represents the duration of the
source. A central point of our paper is that multiple scattering
(large 7, and 7)) provides a better SNR in the correlations.
This results in a fascinating observation: instead of blurring
the images as is the case in conventional techniques, disorder
here improves the quality of passive images. On the contrary,
absorption was found in Sec. V to reduce the SNR and, as
always, is a limiting factor. Our theoretical model for the
SNR was confronted to finite difference numerical simula-
tions. This model was found to be valid when scattering is
limited (k€*>18). Nevertheless, when scattering is in-
creased, our naive description of coda waves was found to be
slightly inappropriate: we point out short- and long-range
correlations of diffuse wave paths as a probable candidate to
explain the discrepancy between our theoretical model and
numerical simulations.
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APPENDIX A: VARIANCE OF THE CORRELATIONS
FOR ONE SOURCE

To evaluate the level of fluctuations in the correlations,
we evaluate the variance of the correlations for one source,
averaged over the source position. Let us start with a simple
calculation, assuming that s() is Gaussian and using the mo-
ment theorem,

E{CAB(T)2}=ffE{SA(91)SB(01+ 7)54(65)s5(6,

+7)}do,do, (A1)

=f f E{s,(0,)s5(0, + 7)}d 0, E{s,(6,)s5(6, + 7)}d 6,

(A2)

+f f E{s,(0,)54(6,)}E{s (6, + 7)s55(6, + 7)}d 60,d 0,

(A3)

+f f E{s,(0))s5(6, + 7)}E{s,(6,)s5(6, + 7)}d 6,d 6, .
(A4)

The first term is the intensity of the correlations. Once
eliminated, only the variance remains,

Vaf{CAB(T)}=JJ0'(91)0'(92)0(91+T)0'(92+T)[P

® Gaal(6, = 0)[p ® Gppl(6, — 6,)d6,d 6,
(A5)
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+ff0'(91)0'(91‘*‘7)0(92)0'(92"' 7lp ® Gupl(6, - 6,

+ ’T)[p ® GAB](92 - 01 + T)d02d01 . (A6)

We replace g by 6,-6,,

Var{CAB(T)}=ff0-(91)0'(01+Q)0-(01+7')0'(01+T+Q)

X[p ® Gaal(@)lp ® Gppl(q)dqdd, (A7)

+f f a(0,)0(60, + 7+ q)o(6; + q)o(0, + T)[p ® Gypl(7

+q)lp ® Gupl(7-q)dqdb,. (A8)

This central formula is similar to previous results by
Derode et al. in the case of time reversal (TR) (Ref. 26) and
by Sabra et al. in the case of stationary noise correlations.
Nevertheless, we can go beyond their work after a series of
additional reasonable assumptions. (1) In a dilute medium
(k€>1), [p®Gaul(g) and [p® Gppl(q) are constituted by
the source autocorrelation (a peak around ¢=0) followed by
rapidly decaying contributions (reflections from surrounding
heterogeneities). These contributions can be neglected: G(z)
~ &(1), which implies [p® G,,](¢)[p® Gppl(q) = p*(q). (2)
The variance o of the record evolves with a characteristic
time of 7, much greater than the diffuse wave coherence
time 7, (7.<7,), so that o(0+q)=o0(6) and o(O+q+7)
~a(6+7). (3) If A~-B>N\, then |G,p|<|Gp4l. These as-
sumptions greatly simplify the above equation that now
reads

- T
var{C,5(7)} = f (0 (0+ 1)do f p*(g)dq.
0

APPENDIX B: VARIANCE OF THE CORRELATIONS
FOR N SOURCES

We now take into account an averaging over N sources,
each source is labeled i or j,

iG5| [ ooz

+ 7)sp(6, + 7}d6,d 6, (B1)

+1%2 f J E{s',(6))s5(0, + 7)}E{s,(6,)s5(6,
ij

+ T)}d02d01 (BZ)

These summations can be split into two contributions i
=j and i#j. The first one yields (1/N)f{o*(6)o*(6
+7)d 6] p*(q)dq and directly derives from the above case N
=1. The term i+ exhibits cross correlations E{s,s’} and
E{s',s%}, which are neglected as long as the sources are dilute
enough. This term i # j contains short- and long-range corre-
lations. The short-range correlation in diffuse media takes the
usual form of sin c(kdij)e‘di./m, with d;; the distance between
sources 7 and j. This correlation ranges over one wavelength.
Its role is developed in the next section of the appendix and
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cannot account for the whole discrepancy between observed
and theoretical SNRs. When diffusion increases, there also
exists some long-range contributions. These latter phenom-
ena will be subject to further investigations.

APPENDIX C: SPATIAL CORRELATION OF SOURCES

We evaluate here the number of uncorrelated sources
when N sources are chosen at random but have are spatially
correlated over A/2, which is typically the case inside mul-
tiple scattering media (short-range correlation).27 We assume
that the choice of N locations is random over M sites. The
size of the site is deduced from the coherence length of a
diffuse field, which result in a coherence area of a source of
the form 7A\?/4. In the case of a SO\ X 50\ large grid, we get
M =3183 uncorrelated sites. The amount of uncorrelated
sources N, is therefore lower than N, as two sources can be
chosen at the same site. We start with N (1)=1. Then, we
iterate

M — N g(N)

Neff(N+1)=Neff(N)+ M

For the 3183 independent sites, we get N.;=1377 inde-
pendent sources, which result in lowering the SNR of 23%.
Short-range correlations can therefore not solely explain the
discrepancies between the theoretical SNR and the SNR
form numerical simulations.

'E. Akkermans and G. Montambausx, Mesoscopic Physics of Electrons and
Photons (Cambridge University Press, Cambridge, 2007).

M. P. Van Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985).
3p-E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696 (1985).

4A. Derode, P. Roux, and M. Fink, Phys. Rev. Lett. 75, 4206 (1995).

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, Phys. Rev.
Lett. 60, 1134 (1988).

M. L. Cowan, I. P. Jones, J. H. Page, and D. A. Weitz, Phys. Rev. E 65,
066605 (2002).

’G. Edelmann, H. Song, S. Kim, W. Hodgkiss, W. Kuperman, and T. Akal,
IEEE J. Ocean. Eng. 30, 852 (2005).
8E. Larose, L. Margerin, B. A. van Tiggelen, and M. Campillo, Phys. Rev.
Lett. 93, 043501 (2004).

L. Margerin, Introduction to radiative transfer of seismic waves in Seismic
Earth: Array Analysis of Broadband Seismograms, edited by A. Levander
and G. Nolet, Geophysical Monograph Series, Vol. 157, Ch. 14, pp. 229-
252 (AGU, Washington, 2005).

"R, Kubo, Rep. Prog. Phys. 29, 255 (1966).

"R. L. Weaver and O. I. Lobkis, Phys. Rev. Lett. 87, 134301 (2001).

120. 1. Lobkis and R. L. Weaver, J. Acoust. Soc. Am. 110, 3011 (2001).

M. Campillo and A. Paul, Science 299, 547 (2003).

BN, M. Shapiro, M. Campillo, L. Stehly, and M. H. Ritzwoller, Science
307, 1615 (2005).

'>N. M. Shapiro and M. Campillo, Geophys. Res. Lett. 31, L7614 (2004).

K. G. Sabra, P. Gerstoft, P. Roux, W. A. Kuperman, and M. C. Fehler,
Geophys. Res. Lett. 32, L03310 (2005).

L. Gizon and A. Birch, Astrophys. J. 614, 472 (2004).

18R. L. Weaver and O. I. Lobkis, J. Acoust. Soc. Am. 117, 3432 (2005).

K. G. Sabra, P. Roux, and W. A. Kuperman, J. Acoust. Soc. Am. 118, 3524
(2005).

2B. A. van Tiggelen, Phys. Rev. Lett. 91, 243904 (2003).

ZIA. E. Malcolm, J. A. Scales, and B. A. van Tiggelen, Phys. Rev. E 70,
015601 (2004).

25, Paul, M. Campillo, L. Margerin, E. Larose, and A. Derode, J. Geophys.
Res. 110, B08302 (2005).

Zp, Roux, K. G. Sabra, W. A. Kuperman, and A. Roux, J. Acoust. Soc. Am.
117, 79 (2005).

*K. Wapenaar, Phys. Rev. Lett. 93, 254301 (2004).

Y. Collin de Verdieres, e-print arXiv:math-ph/0610043v1 (2006).

Downloaded 11 Jun 2008 to 193.48.255.141. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp


http://dx.doi.org/10.1103/PhysRevLett.55.2692
http://dx.doi.org/10.1103/PhysRevLett.55.2696
http://dx.doi.org/10.1103/PhysRevLett.75.4206
http://dx.doi.org/10.1103/PhysRevLett.60.1134
http://dx.doi.org/10.1103/PhysRevLett.60.1134
http://dx.doi.org/10.1103/PhysRevE.65.066605
http://dx.doi.org/10.1109/JOE.2005.862137
http://dx.doi.org/10.1103/PhysRevLett.93.048501
http://dx.doi.org/10.1103/PhysRevLett.93.048501
http://dx.doi.org/10.1088/0034-4885/29/1/306
http://dx.doi.org/10.1103/PhysRevLett.87.134301
http://dx.doi.org/10.1121/1.1417528
http://dx.doi.org/10.1126/science.1078551
http://dx.doi.org/10.1126/science.1108339
http://dx.doi.org/10.1029/2004GL019491
http://dx.doi.org/10.1029/2004GL021862
http://dx.doi.org/10.1086/423367
http://dx.doi.org/10.1121/1.1898683
http://dx.doi.org/10.1121/1.2109059
http://dx.doi.org/10.1103/PhysRevLett.91.243904
http://dx.doi.org/10.1103/PhysRevE.70.015601
http://dx.doi.org/10.1029/2004JB003521
http://dx.doi.org/10.1029/2004JB003521
http://dx.doi.org/10.1121/1.1830673
http://dx.doi.org/10.1103/PhysRevLett.93.254301

114907-10 Larose et al. J. Appl. Phys. 103, 114907 (2008)

%°A. Derode, A. Tourin, and M. Fink, J. Appl. Phys. 85, 6343 (1999). (2005).
?R. Pnini and B. Shapiro, Phys. Rev. B 39, 6986 (1989). *E. Larose, P. Roux, and M. Campillo, J. Acoust. Soc. Am. 122, 3437
E. Larose, A. Derode, M. Campillo, and M. Fink, J. Appl. Phys. 95, 8393 (2007).

(2004). P, Gouedard, P. Roux, M. Campillo, and A. Verdel, Geophysics (unpub-
P Roux, W. Kuperman, and the NPAL Group, J. Acoust. Soc. Am. 116, lished).

1995 (2004). A, Derode, E. Larose, M. Tanter, J. de Rosny, A. Tourin, M. Campillo, and
0, Larose, Ann. Phys. Fr. 31, 1 (2006) (in English). M. Fink, J. Acoust. Soc. Am. 113, 2973 (2003).
A, Derode, A. Tourin, and M. Fink, J. Acoust. Soc. Am. 107, 2987 (2000). The code named ACEL has been developed by M. Tanter, Laboratory
32R. Snieder, J. Acoust. Soc. Am. 121, 2637 (2007). Ondes and Acoustique (Paris-France). More details on http:/
¥K. G. Sabra, P. Roux, and W. A. Kuperman, J. Acoust. Soc. Am. 117, 164 www.loa.espci.fr/_michael/fr/acel/aceltest.htm and in Ref. 36.

Downloaded 11 Jun 2008 to 193.48.255.141. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp


http://dx.doi.org/10.1063/1.370136
http://dx.doi.org/10.1103/PhysRevB.39.6986
http://dx.doi.org/10.1063/1.1739529
http://dx.doi.org/10.1121/1.1797754
http://dx.doi.org/10.1121/1.429328
http://dx.doi.org/10.1121/1.2713673
http://dx.doi.org/10.1121/1.1835507
http://dx.doi.org/10.1121/1.1570436

