QUANTIFICATION DES AMPLITUDES ET DES TAUX DE DEFORMATION

CONTEXTE DECROCHANT

Déplacement co-sismique simple et cumulé

Détermination du déplacement co-sismique de 1905 par analyse du décalage des rivières

Déplacement cumulé: 2 séismes

Mesure du décalage de l'incision affectant le cône alluvial (18 ± 0.5 m) divisée par l'âge d'exposition du cône (5.2 ± 0.3 ka):

Vitesse holocène de la faille: 3,5 ± 0,3 mm/an

Analyse des ruptures et datation d'horizons sismosédimentaires dans des tranchées paléosismologiques: Récurrence des séismes: 2000-3000 ans Décalage horizontal de rides, barres, talwegs, rivières...

Faille de Bogd, Mongolie

Déplacement cumulé (plusieurs séismes)

Contre-escarpements sur un versant : mouvement vertical apparent

Décalage d'apex de cônes alluviaux par rapport à leur exutoire d'origine

Gobi-Altay, Mongolie

Décalage d'apex de cônes alluviaux par rapport à leur exutoire d'origine

Gobi-Altay, Mongolie

Vitesse de déplacement de la faille au Pléistocène supérieur -Holocène

BV1

S0

Sud

Activité long terme: Vallées décalées

CONTEXTE EXTENSIF

Déplacement co-sismique cumulé pléisto-holocène

Faille de Tunka, Sibérie

Déplacement cumulé cénozoique: facettes triangulaires

N. Arzhannikova

Chaîne de Sayan, Sibérie

Rift du Lac Hovsgol, Mongolie

Failles inverses: déplacement co-sismique simple

Spitak, Arménie

Failles inverses: déplacement cumulé

Gobi-Altay, Mongolie

J-F. Ritz

Profils topographiques traversant l'escarpement de faille

Datation des cônes S1 et S2 par ¹⁰Be cosmogénique

Vitesse verticale de la faille:

Sur 130 ka: 0.13 ± 0.02 mm/an Sur 20 ka: 0.23 ± 0.05 mm/an

La vitesse a sensiblement augmenté sur les derniers 20 ka

Vassallo et al., 2005

Terrasses marqueurs du plissement

Activité long terme: Surrection de massifs

Ih Bogd, Gobi-Altay

Sutai Uul, Altay

Terrasses qui scellent le mouvement d'une faille active

Vignon et al., 2010

Terrasses marqueurs de la migration de la déformation

Chronologie et mode de formation de ces terrasses vis-à-vis de la surrection

Vassallo et al., 2007

INCISIONS

- ➤ Plus rapides que le taux de surrection
- Périodiques et localisées dans le temps
- > Se propagent vers l'amont en quelques ka

Evolution de la déformation à différentes échelles

Bassin versant

Massif

1-10 Ma

Chaîne de montagne 100 km 100 km 100 km 100 km

dans le Bassin Parisien

INCISIONS

- > Potentiel créé par le soulèvement régional
- > Timing contrôlé par le climat
- > Localisées au début des périodes froides

Soulèvement du Tibet et incision

Craddock et al., 2010

Surrection des chaînes de montagnes au NE du plateau tibétain : Miocène (14-8 Ma)

Début de l'incision du Fleuve Jaune sur le bord du plateau: Quaternaire (1.8 Ma)

Ligne de crête recule à une vitesse de 350 km/Ma

Forte augmentation (facteur 10) du taux d'incision tardiholocène indépendant de la vitesse de surrection (stable)

Soulèvement de l'Himalaya et incision

Marqueurs alluviaux abandonnés par l'incision de la même rivière dans le footwall et dans le hangingwall : Quantification de la surrection possible

Vignon et al., 2010

