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Wepropose a kineticmodel that statistically describes the growth by decompression, exsolution and coalescence
of a polydisperse population of gas bubbles in a silicate melt. The model is homogeneous in space and its main
variable is a distribution function representing the probability to find a bubble of volume v and massm at time
t. The volume and mass growth rates are described by a simplification of the classical monodisperse bubble
growthmodel. This simplification, which shortens computational time, removes the coupling betweenmass evo-
lution and an advection–diffusion equation describing the behavior of the volatile concentration in themelt. We
formulate three coalescence mechanisms: thinning of the inter-bubble planar films, film deformation by differ-
ential bubble pressure, and buoyancy-driven collision. Numerical simulations based on a semi-implicit numerical
scheme show a good agreement between the coalescence-free runs and the monodisperse runs. When coales-
cence is introduced, numerical results show that coalescence kernels based on different physical mechanisms
yield distinct evolutions of the size distributions. A preliminary comparison between runs and experimental
data suggests a qualitative match of two out of the three proposed kernels. This kinetic model is thus a powerful
tool that can help in assessing how bubble growth and coalescence occur in magmas.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The remarkable link between the microphysics ruling gas bubbles
that develop in magmas when they ascend in volcanic conduits and
the large-scale dynamics of the resulting eruption is now firmly
established. Bubble growth in viscous magmas is governed by decom-
pression and exsolution of volatiles (mainly water) from the silicate
melt into the bubbles themselves. This phenomena was first modeled
by considering that the bubbles contained in a small volume of ascend-
ing magma are monodisperse, i.e. they all evolve in the same way and
have the same radius, volume, mass, and pressure (Sparks, 1978). The
most common model used since consists of a system of two ordinary
differential equations describing the time evolution of the radius and
mass of a single bubble that is coupled with an advection–diffusion
equation modeling the space–time evolution of the volatile concentra-
tion in the melt surrounding the bubble (e.g., Toramaru, 1989,
1995; Proussevitch et al., 1993a; Proussevitch and Sahagian, 1998;
Lyakhovsky et al., 1996; Navon et al., 1998; Lensky et al., 2001, 2004;
ourget du Lac, France. Tel.: +33

gisser).
Nishimura, 2004; Chouet et al., 2006; Ichihara, 2008; Forestier-Coste
et al., 2012; Chernov et al., 2014).

Although this monodisperse bubble population model predicts
porosities and bubble sizes that match well with experimental data
(e.g., Lyakhovsky et al., 1996; Forestier-Coste et al., 2012), it assumes
that bubbles are isolated and therefore does not take into account
their interactions, such as the coalescence of two (or more) bubbles.
The polydisperse nature of a bubble population causes differential
growth (e.g., Larsen and Gardner, 2000; Gardner, 2009), which can
enhance coalescence (Castro et al., 2012). Neglecting coalescence is a se-
vere limitation because of its large impact on the bubble size distribution
(e.g., Larsen et al., 2004; Burgisser and Gardner, 2005; Iacono Marziano
et al., 2007;Martel and Iacono-Marziano, 2015) and because coalescence
can create an interconnected network of bubbles fromwhich the gas can
escape (e.g., Saar and Manga, 1999; Burgisser and Gardner, 2005;
Takeuchi et al., 2005; Gardner, 2007; Rust and Cashman, 2011; Bai
et al., 2010). Gas escape from magma is arguably the most important
consequence of bubble coalescence because it has long been recognized
as a main control of the transition between effusive and explosive erup-
tions (e.g., Eichelberger et al., 1986; Jaupart and Allègre, 1991; Woods
and Koyaguchi, 1994; Degruyter et al., 2012).

There have been efforts to overcome the monodisperse assumption
in models. A first category of studies comprises phenomenological
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Fig. 1. Schematics of polydisperse arrangements of gas bubbles of radius R and mass M
(white) with their surrounding melt shell of radius S (gray) that slightly overlap. Primes
indicate the second bubble in a bubble pair considered by coalescence mechanisms, and
z1 is the distance between two bubbles in a pair. A) 50 vol.% porosity (α). B) 90 vol.%
porosity (α). Drawings are scaled so as to represent 2D illustrations, albeit the models
consider 3D spherical bubbles. Porosity is thus equal to R2/S2 (R3/S3 in 3D) and
B) represents the maximum packing situation occurring at ~90 vol.% (60–70 vol.% in 3D,
see Appendix B).
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models that were aimed at reproducing natural size distributions
(e.g., Blower, 2001; Blower et al., 2001; Gaonac'h et al., 1996, 2003,
2007). Very few studies populate the second category, which is com-
posed of physical models (Lovejoy et al., 2004; L'Heureux, 2007).
These physical models present a significant increment in complexity
compared to monodisperse models. The model of L'Heureux (2007)
considers the nucleation and growth of a polydisperse population of
randomly located bubbles. The kineticmodel of Lovejoy et al. (2004) de-
scribes the evolution of the distribution function of a set of bubbles that
grow by decompression and coalescence. The distribution function rep-
resents the probability to find a bubble of a given volume at a specific
time. The model is homogeneous in space. The volume growth rate is
broadly defined as time dependent, and bubble coalescence is described
by a Smoluchowski-type operator. Although it does not contain a nu-
merical resolution of the full equation set, this work poses solid theoret-
ical foundations to develop the next generation of model by providing
solutions of simplified cases.

We propose a general kinetic model describing the evolution of a
bubble population with vanishing velocities relative to the surrounding
melt (i.e. valid in small magma volume where the population can be
treated in a Lagrangian way). It is an extension of the kinetic model of
Lovejoy et al. (2004) that includes growthmechanisms from themono-
disperse model of Lensky et al. (2004) as formalized by Forestier-Coste
et al. (2012) and coalescencemechanisms from Castro et al. (2012) and
Lovejoy et al. (2004). The Methods and initial model section summa-
rizes the monodisperse model that gives volume and mass evolution
of each bubble class. The first section of the Results offers a simplifica-
tion of this monodisperse model that avoids the coupling with the
advection–diffusion equation and diminishes computational costs. A
numerical study quantifies the error introduced by this simplification
and the reader is referred to the Supplementary data to find B-growth,
an open-source implementation of the monodisperse bubble growth
model. We then propose suitable formulations of three coalescence op-
erators. Since they depend on both the volume and themass of the bub-
bles, these operators are best expressed in a two-dimensional form. Due
to their complexity, two-dimensional coalescence operators have rarely
been studied (Qamar andWarnecke, 2007a; Kumar et al., 2011). The ab-
stract writing of the kinetic model follows in a rather classical way by
means of Liouville's theorem and is in some sense a direct generaliza-
tion of the Lovejoy et al. (2004) model. A summary of the discretization
scheme is in Appendix A, and we use the numerical scheme developed
in Forestier-Coste and Mancini (2012) for the coalescence kernel.
Finally, we illustrate model capabilities by using a set of experimental
data from Burgisser and Gardner (2005) and Castro et al. (2012).

2. Methods and initial model

2.1. Bubble size distributions of experimental samples

Numerical results are compared to four experimental samples de-
scribed in Burgisser and Gardner (2005). The 2D analysis on thin sec-
tions reported in Burgisser and Gardner (2005) yielded a very small
(~10) number of bubbles due to the restricted size of the 2D sections.
Castro et al. (2012) re-analyzed someof these samples byComputed To-
mography to increase the number of measured bubbles and improve
the size distributions. We used the 3D reconstructed volume of sample
PPE4 as described in Castro et al. (2012) and scanned samples PPE7,
PPE10, and PPE11 using the same methodology so as to obtain 3D vol-
umes of the samples with bubbles and melt separated in a binary fash-
ion. De-coalescing was done by successively eroding the bubble
network of one voxel-thick layer at a time with the ImageJ software
(v. 1.47). De-coalesced bubble sizeswere obtained by using the “Particle
Analyzer” plugin of the BoneJ (version 1.3.11) bundle (Doube et al.,
2010), fromwhich equivalent diameters corrected for erosion numbers
were calculated. The correctionmethod used themeasured surface area
of each bubble multiplied by the number of erosions (generally 3). The
size distribution of PPE4 obtained using this methodwas very similar to
that obtained bymanually separating bubbleswith the Blob3D software
(Castro et al., 2012).

2.2. Monodisperse population modeling

In a viscous, crystal-freemagma, the growth of a pre-existingmono-
disperse population of bubbles, i.e. of a set of bubbles of identical size at
any given time and not interacting, can be described by giving the time,
t, evolution of the radius, R, and mass, M, of one single bubble and
assuming that it is surrounded by a spherical influence domain
(i.e. the region of melt exchanging water with the bubble) of radius S
(Proussevitch et al., 1993a; Fig. 1). Variables are summarized in
Table 1. Subscripts 0 indicate initial values, diacritic dot indicates time
differentiation. Diacritic tilde marks dimensional variables while its
absence indicates dimensionless variables (hence t, R, M, and S are di-
mensionless). All the equations listed in the main text are given in di-
mensionless form, and Table S1 in the Supplementary data lists their
dimensional counterparts. We use the mathematical formulation by
Forestier-Coste et al. (2012) of the physical model proposed by Lensky
et al. (2004). Briefly, theseworks describe the evolution of bubble radius
and mass as a function of decompression and exsolution by the follow-
ing dimensionless system of ordinary differential equations:

_R ¼ R
ηΘV

P � Pa � Σ
R

� �
ð1Þ
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Table 1
Variable list. Symbols in parenthesis are initial values.

Dimensionless symbol Dimensional symbol Conversion Variable

a (a0) ã (ã0)a ã = aR̃0 Interbubble film radius (m)
A Scaling constant
c c̃ a c̃ = cR̃0ΔP̃/P̃0 Average bubble growth rate (m/s)
C (C0) Melt water concentration

CH K̃H CH ¼ KeH ffiffiffiffiffiffi
Pe0q

Solubility constant (Pa−1/2)

CT Total water concentration (weight fraction)
D D̃ (D̃0) D̃ = DD̃0 Water diffusivity in melt (m2/s)
D Discrete, non-normalized, volume and mass distribution
f fe f ¼ feVe0Me0 Size and mass distribution of bubbles (kg−1 m−3)
F F̃ a F̃ = FR̃0D̃0 Water flux at bubble boundary (m3/s)
H H̃a H̃ = HΔP̃/P̃0 Coalescence kernel (1/s)
Hc H̃c

a H̃c = HcΔP̃/P̃0 Collision coalescence kernel (1/s)
Hf H̃f

a H̃f = HfΔP̃/P̃0 Planar-film coalescence kernel (1/s)
Hp H̃p

a H̃p = HpΔP̃/P̃0 Differential-pressure coalescence kernel (1/s)
l Convex factor in pressures addition
m m̃a m̃ = mM̃0 Bubble mass classes (kg)
mm m̃m

a m̃m = mmM̃0 Mass of bubble melt film (kg)
M M̃ (M̃0)a M̃= Mρ̃g0R̃0

3 = MM̃0 Scaled single bubble mass (kg), single bubble mass is 4πM ̃/3

Ṁ _Me a _Me ¼ _MMe0ΔPe=Pe0 Rate of bubble mass change (kg/s)

M Me a Me ¼ MMe 0 Diffusion-related equilibrium manifold (kg)

M Me a Me ¼ MMe0 Total mass of bubbles (kg)
N Total number of bubbles
Nm Nema Nem ¼ NmMe 0 Marginal mass distribution

N v Neva Nev ¼ N vVe0 Marginal volume distribution
P P̃ P̃= PP̃0 Bubble pressure (Pa)

P Pea Pe ¼ PPe0 Pressure-related equilibrium manifold (Pa)
Pa P̃a (P̃0)a P̃a = Pa P̃0 Ambient pressure (Pa)
Q Q̃a Qe ¼ QVe0Me0ΔPe=Pe0 Coalescence operator (kg m3 s−1)

Q− Q̃−
a Qe� ¼ Q�Ve0Me 0ΔPe=Pe0 Negative coalescence operator (kg m3 s−1)

Q+ Q̃+
a Qeþ ¼ QþVe0Me0ΔPe=Pe0 Positive coalescence operator (kg m3 s−1)

r r̃ a r̃ = rR̃0 Distance from bubble center (m)
R R̃ (R̃0) R̃ = RR̃0 Single bubble radius (m)
_R _Rea _Re ¼ _RRe0ΔPe=Pe0 Single bubble growth rate (m/s)

S (S0) S̃ (S̃0)a S̃ = SR̃0 Influence zone radius (m)
t t̃ a t̃ = tP̃0/ΔP̃ Time (s)
tf t̃ f

a t̃ f = tf P̃0/ΔP̃ Timescale for inter-bubble film rupture (s)
tp t̃ p

a t̃ p = tp P̃0/ΔP̃ Timescale for inter-bubble film deformation (s)
v Ṽ a Ṽ = vṼ0 Bubble volume classes (m3)
V Ṽ (Ṽ0) Ṽ = V Ṽ0 Single bubble volume (m3)

V̇ _Ve a _Ve ¼ _VVe0ΔPe=Pe0 Rate of bubble volume change (m3/s)

V ðV0Þ Ve ðVe0Þa Ve ¼ VVe0 Total bubble volume (m3)
w w̃ a w̃ = wṼ0 Influence zone volume classes (m3)
W ðW0Þ We ðWe0Þa We ¼ WVe0 Total melt volume (m3)
Y Factor in Eq. (16)
z z̃a z̃= zR̃0 Inter-bubble distance (m)
z1 z̃1

a z̃1 = z1R̃0 Estimate 1 of inter-bubble distance (m)
z2 z̃2

a z̃2 = z2R̃0 Estimate 2 of inter-bubble distance (m)
zf z̃ f z̃f = zf R̃0 Critical inter-bubble distance (m)
α (α0) Porosity (volume fraction)
β Scaling exponent
Γ Γea Γe ¼ ΓVe0ΔPe=Pe0 Volume growth rate (m3/s)
δm δm̃ δm̃ = δmM̃0 Bubble mass increment (m)
δv δṽ δṽ= δvṼ0 Bubble volume increment (m)
ε Scaling constant
η ῆ a ῆ = ηῆm0 Effective magma viscosity (Pa s)
ηm ῆm (ῆm0) ῆm = ηmῆm0 Melt viscosity (Pa s)
ΘD Diffusion parameter
ΘV Viscous parameter

Λij Λe ij
a Λe ij ¼ ΛijVe i

0Me j
0

Moments of the distribution

ρg ρ̃g (ρ̃g0) ρ̃g = ρg ρ̃g0 Gas density (kg/m3)
ρm ρ̃m ρ̃m = ρm ρ̃g0 Melt density (kg/m3)
Σ Σ̃ Σ̃ = ΣR̃0P̃0/2 Surface tension (N m)
τ τea τe ¼ τPe0=ΔPe Time from t to tf (s)

Ψ Ψe a Ψe ¼ ΨMe0ΔPe=Pe0 Mass growth rate (kg/s)

Ω Dirac mass
g̃ Gravity acceleration (9.81 m/s2)
G̃1

a H2O molar mass (1.8 × 10−3 kg/mol)
G̃2

a Universal gas constant (8.3144 J/mol/K)
T̃a Temperature (K)
δR̃ Bubble radius increment (m)
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Table 1 (continued)

Dimensionless symbol Dimensional symbol Conversion Variable

ΔP̃ Decompression rate (Pa/s)

Sub/superscripts
′ Second bubble in coalescence relationships
^ Bubble resulting from a coalescence event
i,j Indices

a Only used in Table S1.
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_M ¼ 3ρm

ΘD
F t;Rð Þ ð2Þ

ΘV ¼ 4~ηm0Δ~P
~P
2
0

and ΘD ¼ Δ~P~R
2
0

~D0
~P0

ð3Þ

Pa tð Þ ¼ 1� t ð4Þ

P ¼ M=R3 ð5Þ

F t;Rð Þ ¼ r2D
∂C
∂r

� �
r¼R

ð6Þ

∂C
∂t

þ R2 _R
r2

∂C
∂r

¼ 1
ΘDr2

∂
∂r

r2D
∂C
∂r

� �
ð7Þ

C t;Rð Þ ¼ CH

ffiffiffi
P

p
and

∂C
∂r

� �
r¼s

¼ 0 ð8Þ

S3 ¼ R3 þ S30 ð9Þ

CT ¼ M þ C0S
3
0ρm

M þ S30ρm

ð10Þ

α tð Þ ¼ R=Sð Þ3 ð11Þ

η ¼ ηm Rð Þ 1� ηm Sð Þ
ηm Rð Þα � R3

ηm Rð Þ ∫
S
R
dηm rð Þ
dr

1
r3

dr

" #
ð12Þ

where ρm is the melt density, Σ is the surface tension between the gas
and the melt, P = P(t) is the bubble pressure as a function of time,
Pa(t) is the ambient (melt) pressure, F is the volatile flux between
melt and bubble, C= C(r,t) is the volatile concentration in themelt sur-
rounding the bubble, C0 is the initial melt water content, CT is the total
water content, r is the distance from the bubble center, D is the H2O dif-
fusivity in themelt, S03 is the volume occupied by themelt surrounding a
bubble of radius zero, α is the bubble volume fraction, η is the effective
magma viscosity, and ηm = ηm(C(r,t)) (shortened to ηm(r)) is the melt
viscosity, which depends on melt composition, temperature, and melt
water content at each radial position. The two relaxation parameters
ΘV and ΘD are imposed by the scaling and respectively account for vis-
cosity and diffusion. They depend on the dimensional initial values of
melt viscosity, ηem0 (Pa s), ambient pressure, P̃0 (Pa), bubble radius, R̃0

(m), H2O diffusivity in melt, De0 (m2 s−1), and on the constant decom-

pression rate, ΔP̃ (Pa s−1). Finally, CH ¼ KeH ffiffiffiffiffiffi
Pe0q

is a dimensionless sol-
ubility factor, where K̃H (Pa−1/2) is the dimensional Henrian constant.

Physically, Eq. (1) states that the time evolution of a bubble radius
(or volume V= R3) is governed by the difference between the gas pres-
sure and the melt pressure corrected by surface tension. Eq. (2) is the
differential version of mass conservation, which states that the change
in bubble mass is equal to the mass of volatile diffusing between the
melt and the bubble. The relaxation parameters ΘV and ΘD (Eq. (3))
can vary by several orders of magnitude and quantify viscous
(ΘD≪ΘV), diffusive (ΘV≪ΘD), or equilibrium (ΘD~ΘV) growth regimes
(Lensky et al., 2004). In the viscous regime the bubble–melt system is
at the chemical equilibrium when ΘD≪1; in the diffusion regime the
system is at themechanical equilibriumwhenΘV≪1; and in the equilib-
rium regime the system is at the thermodynamical equilibrium when
ΘD≪1 and ΘV≪1. It has been numerically shown that computational
times are very long when both relaxation parameters converge to zero
(Forestier-Coste et al., 2012).

Eq. (4) states that the ambient pressure is linearly decreasing and
eventually reaches a final value. Themain volatile is water and, because
the ideal gas law is assumed (Eq. (5)), the ambient pressure should re-
main between atmospheric and ~200 MPa. In Eq. (6) the flux F(t,R) is
defined by means of the volatile concentration in the melt surrounding
the bubble, C= C(r,t), which is given by the advection–diffusion Eq. (7).
The left-hand side of Eq. (7) is an advection term that takes into
account the fact that the bubble edge moves with a radial velocity
given by _RR2=r2 because of melt incompressibility. The right-hand
side describes the radial diffusion of dissolved water in the melt shell.
The diffusion coefficient, D, is a function of melt composition, melt
water content, ambient pressure, and temperature (e.g., Ni and Zhang,
2008). The left boundary condition in Eq. (8) asserts that thewater con-
tent at the bubble edge is given by the solubility law and the right
boundary condition in Eq. (8) states that at the outer edge (r = S) of
the melt shell the concentration flux is null. Eq. (9) stipulates that the
volume of the influence region, S3, is constant in time and Eq. (10) en-
sures the conservation of the total water content, CT. Eq. (11) gives
the magma porosity, which is the fraction of volume occupied by the
bubbles with respect to the total volume. Finally, Eq. (12) formulates
the effective viscous resistance that themagmapresents to a single bub-
ble, which is a function of the proximity of the other bubbles and of the
melt viscosity. Melt viscosity, ηm, depends on melt composition, tem-
perature, and melt water content, C (e.g., Hess and Dingwell, 1996). It
follows the variation of C from the inner to the outer part of the melt
shell (Lensky et al., 2001).

The temperature, which enters into the ideal gas law (Eq. (5)), is as-
sumed constant. Generalization to variable temperature is possible, but
goes beyond the aim of this work. Bothmonodisperse and polydisperse
numerical resolutions presented herein are thus isothermal, although
we note that slow changes could be approximated by updating the tem-
perature value at each simulated time step without changing the other
aspects of the numerical resolutions. Finally, the kinetics of nucleation
are not taken into account because the bubble population is assumed
to pre-exist (i.e. there is an initial bubble radius R̃0).

3. Results

3.1. Improvements on the monodisperse model

In order to diminish computational costs, we want to avoid the cou-
pling with the advection–diffusion Eq. (7) in Eq. (2). We first note that
Eq. (1) can be written in the form:

_R ¼ R
ηΘV

P � P
� � ð13Þ
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Fig. 2. Schematics of two coalescing bubbles of volume V and V′. A) Two configurations of
bubble pairs: overlapping melt shells (left), and touching melt shells (right). Overlapping
shells correspond to the arrangement depicted in Fig. 1, with z1 being the inter-bubble
distance. Touching melt shells yield Eq. (17) for the inter-bubble distance z2.
A) Coalescence by planar film thinning. Inter-bubble film has radius a0 and thickness z.
B) Coalescence by differential bubble pressure (P–P′). Inter-bubble film has radius a0
and thickness z. C) Coalescence by bubble collision. Gray regions in A) and B) is where
melt mass is conserved until film breakup and arrows indicate the main direction of
motion of the considered feature.
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where the equilibriummanifold P ¼ Pðt;RÞ is given by:

P t;Rð Þ ¼ Pa tð Þ þ Σ
R

ð14Þ

which corresponds to the mechanical equilibrium ΘV → 0.
By analogy with the radius growth, Eq. (2) is replaced by:

_M ¼ A
D
ΘD

M �M
� � ð15Þ

where A is a scaling variable andM ¼ MðRÞ is the equilibrium manifold
defined by the chemical equilibrium case, that is whenΘD→ 0 (Eq. 43 in
Forestier-Coste et al., 2012):

M Rð Þ ¼
�YCH þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2C2

H þ 4R3YCT

q� �2

4R3 ð16Þ

where Y=ρmS03 and CT is the total dimensionless volatile concentration
when the bubble radius is zero (Eq. 10). The accuracy of this simplifica-
tion for different values of the relaxation parameters is shown in
Section 3.4. These numerical comparisons indicate that the choice
A = 1 yields excellent results. An implementation of this simplified
flux is available in the software B-Growth, which is included as Supple-
mentary data. B-Growth is a C++, open-source code that solves the full
monodisperse system of Eqs. (1) to (12) following Forestier-Coste et al.
(2012), and allows the user to select various simplifications of the full
system, including Eqs. (15) to (16).

3.2. Coalescence kernels

Modeling a polydisperse bubble population opens the possibility of
taking their interactions into account. In the case of gas bubbles in
magmas, these interactions are driven by coalescence, which is the ag-
gregation of two or more bubbles into a single larger bubble. Here we
consider only instantaneous binary coalescence, which means that in-
teractions take place only between two bubbles at a time, and the
time needed for the created bubble to get back to a spherical geometry
is instantaneous (i.e. the relaxation time is null). We thus neglect the
formation of chains of coalescing bubbles, although this is an important
and observed behavior (e.g., Burgisser and Gardner, 2005). Multiple co-
alescence and bubble chains may be studied using the framework we
propose in a later time by considering for instance a new parameter
characterizing the shape of the created bubble.

In order to mathematically describe the merging of bubbles, a coa-
lescence kernel, H, has to be defined. Bubble dimensions are character-
ized by their volume, V= R3, andmass,M. The kernel H corresponds to
the rate of interaction between bubbles; hence it depends on time and
on the bubble dimensions. It must be positive, H = H(t,V,M,V′,M′) ≥ 0,
and symmetric, H(t,V,M,V′,M′) = H(t,V′,M′,V,M), which means that the
interaction of a bubble of dimensions (V,M) with a bubble (V′,M′)
must give the same result than the interaction of a bubble (V′,M′)
with a bubble (V,M). We consider here three coalescence kernels. The
first two are based on coalescence mechanisms proposed in Castro
et al. (2012) for high-viscosity magmas where bubbles have vanishing
relative velocities. The third one is based on a mechanism proposed in
Lovejoy et al. (2004) for low-viscositymagmaswhere buoyancy confers
relative velocities to neighboring bubbles of different sizes.

The two first mechanisms are functions of the distance between two
neighboring bubbles. The monodisperse formulation approximately di-
vides the melt into spherical melt shells that overlap in a way that the
overlaps compensate the gaps (a.k.a. plateau borders, Proussevitch
et al., 1993b) left between the shells (Proussevitch and Sahagian,
1998; Lensky et al., 2004). We use in Fig. 1 the same approximation
for polydisperse systems. Both coalescence mechanisms assume that
not only melt shells but also bubbles are overlapping pairwise
(Fig. 2B–C). Even if the thickness of the melt film trapped between the
deformed bubble pair can be calculated by using the reasonable approx-
imation that the melt shell thickness, S–R, is preserved all around the
deformed bubble, the geometric configurations of Fig. 2B–C cannot be
depicted rigorously in the kinetic model because the kinetic framework
is based on a non-local, statistical description of the bubble size and
mass distribution. Since this issue is linked to the broader, much more
complex topic of maximum packing in polydisperse suspensions
(e.g., Baranau and Tallarek, 2014), we present two simple solutions to
calculate the inter-bubble distance, z. The most accurate one, z= z1, es-
timates the inter-bubble distance while preserving melt shell overlap
and a finite maximum packing. It is presented in Appendix B because
of its lengthy algebraic formulation. A simpler form, z = z2, can be
expressed in the dimensionless terms of bubble volumes and magma
porosity, Eq. (11), by:

z2 ¼ V1=3 þ V 01=3
� �

α�1=3 � 1
� �

: ð17Þ

This assumes that melt shells are touching so that z2= S+ S′− R−
R′ (Fig. 2A). It does not represent overlapping shells (Fig. 2A) and

Image of Fig. 2
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overestimates z (i.e. maximumpacking, z1→ 0, occurs when α→ 1), but
does not contain assumptions on the degree of polydispersity of the sys-
tem (Appendix B).

The configuration of bubbles affected by the first mechanism,
planar-film coalescence, is depicted in Fig. 2B. Planar-film coalescence
was first described by Castro et al. (2012) for bubbles growing at iden-
tical rates. We release here this assumption as the growth rates of
both bubbles are known. Assuming that the cylindrical shape of the
melt film contained in the flat plane between two merging bubbles is
conserved during the growth process just prior to coalescence, one
can write in dimensionless form (Castro et al., 2012):

mm τð Þ ¼ ρmπz τð Þa2 τð Þ ð18Þ

where τ is the time from the considered time, t, and the time at which
coalescence occurs, tf,mm(τ) is themass of themelt film, z(τ) is the dis-
tance between the bubbles, and a(τ) corresponds to the radius of the
disc of the flat section of the bubbles, which is assumed to be the
same for each of the two bubbles (Fig. 2). Assuming that the radius
a(τ) can be approximated by a linear growth from the considered
time until coalescence, a(τ)=a0+cτ, where a0 is the initial radius
given by:

a0 ¼ ϵ Rþ R0� �
=2 ð19Þ

where 0 b ε b 1 is the ratio between bubble size andfilm size, and c is the
rate at which the film thins off, which is given by themean between the
two growth rates: c ¼ ð _Rþ _R0Þ=2.

Assuming thatmm is constant from t until tf because of the highmelt
viscosity, solving mm(τ)=mm(tf), where tf is the final time at breakage
when the film thickness reaches the critical value zf, it is possible to cal-
culate the time needed to reach the film breaking distance (Castro et al.,
2012). The planar-film coalescence kernel, Hf(V,M,V′,M′),is the rate of
coalescence of the merging bubble couple, which we define as the in-
verse of tf:

Hf V ;M;V
0
;M

0� �
¼

V�2=3 _V þ V 0�2=3 _V 0
� �
3ε V1=3 þ V 01=3
� � ffiffiffiffiffi

z f
pffiffiffi
z

p � ffiffiffiffiffi
z f

p : ð20Þ

The factor ε and thefinal distance at breakage, zf, are constants deter-
mined by the physical characteristics of the melt and by experimental
measurements. The distance between the two bubbles, z, is equal to ei-
ther z1 or z2. Since all kernels must be ≥0, one has to ensure that Hf

does not yield negative values. This can occur when at least one
bubble shrinks, in which case Hf is set to zero during the numerical res-
olution. Another possibility is that the porosity is so large that z b zf, in
which case Hf is set to an arbitrary large value during the numerical
resolution.

The configuration of bubbles affected by the second mechanism,
differential-pressure coalescence, is depicted in Fig. 2B. Following
Castro et al. (2012), the corresponding kernel is defined in dimension-
less form as the inverse of the characteristic time for film deformation
by stretching, tp:

1
tp

¼ 8a0 P � P0		 		
ΘV zη

ð21Þ

where a0 and z are defined as for the planar-film kernel and |P-P'| is the
difference of pressure between the two merging bubbles, which can be
computed thanks to the dimensionless ideal gas law (P=M/V). The
differential-pressure kernel is thus:

Hp V ;M;V
0
;M

0� �
¼

4ε V1=3 þ V 01=3
� �

ηΘVz
M
V

�M0

V 0

				 				: ð22Þ
The third mechanism is the coalescence caused by bubble collision
because of their relative velocities, which was proposed by Lovejoy
et al. (2004) and is illustrated in Fig. 2D. Since their kernel is based on
a probability distribution function of bubble per unit volume, we need
to divide it (in dimensional form) by the initial volume, Ṽ0 = 4πR̃03/3,
to make it compatible with our definition of the distribution function f
(see Section 3.3). Using their Eqs. 9–11, setting their γ coefficient to
−2/3, their efficiency coefficient to 1 (e.g., Berry, 1967), and using the
Stokes terminal rise velocity of bubbles of size R̃0 as the initial velocity,
the dimensionless collision kernel, Hc(V,V′), becomes:

Hc V ;V
0� �

¼ 2geρeg0Re0
3πPe0 ρm � 1ð Þ

ηΘV
V1=3 þ V 01=3
� �2

V�2=3 � V 0�2=3
			 			 ð23Þ

where the fraction on the left-hand side regroups the dimensional pa-
rameters, which include the constant of the acceleration of gravity, g̃.

To conclude the description of the coalescence phenomena, the rules
linking the dimensions (V,M) and (V′,M′) of two coalescing bubbles to

those ðV̂ ; M̂Þ of the created bubble must be determined. It is physically
natural to assume that masses sum up, but this is not the case for
volumes. Unlike modeling usually done when considering polymers,
for which mass and volume are equivalent (e.g., Escobedo et al.,
2004; Carrillo et al., 2008), in our model these two variables are
independent. Since volumes combine as a complex function of pressure
re-equilibration after coalescence, we assume, as a first approach,

that they actually sum up. Thus volumes and masses verify V̂ ¼ V þ V 0

and M̂ ¼ M þM0 . As a consequence of the ideal gas law holding in

each bubble, the pressure P̂ in the created bubble is given by a convex

combination of the pressures in the two coalescing bubbles P and P′: P̂ ¼
lP þ ð1� lÞP0 with l=V/(V+V').

3.3. The kinetic model

We describe the evolution of a polydisperse population of gas bub-
bles in magma growing by decompression, exsolution, and coalescence
at a statistical level by themeans of a kinetic, Smoluchowski-type equa-
tion. Considering the monodisperse model described in Section 2, we
define that each bubble of the polydisperse suspension has three char-
acteristic variables: the volume, v, the mass, m, and the volume of the
melt shell,w. Instead of Eq. (11) the porosity α should be computed by:

α tð Þ ¼ V
V þW ð24Þ

whereV ¼ VðtÞ is the total volume occupied by the bubbles andW is the
volume occupied by themelt. Knowing the initial porosity,α0, the initial
bubble volume,V0, and under the assumption that the volume ofmelt is
constant, as follows from Eq. (24), W ¼ W0 withW0 given by:

W0 ¼ 1� α0

α0
V0: ð25Þ

In analogy with Eq. (25), w is linked to the porosity, α, and to the
bubble volume by:

w ¼ α�1 � 1
� �

v: ð26Þ

Therefore, the number of variables in the distribution function f is re-
duced from four to three: f= f(t,v,m). Froma physical point of view, def-
inition (26) says that bubbles occupying the same volume v have the
same influence region w. This assumption may be relaxed at a heavy
computational cost because the numerical resolution of the time evolu-
tion of fwould involve four variables and coalescence kernels would in-
volve three variables instead of two. Note also that by Eq. (9), the
growth rate of the influence region volume is zero. Since bubbles
grow by expansion and coalescence and since the volumes of the
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influence region are constant, the distribution function f(t,v,m) must
satisfy the following kind of kinetic equation:

∂ f
∂t

þ ∂
∂v

Γ fð Þ þ ∂
∂m

Ψ fð Þ ¼ Q fð Þ: ð27Þ

The left-hand side in Eq. (27) is a conservative equation that de-
scribes the evolution bydecompression and exsolution of the set of bub-
bles, where the two growth rates for volumes and masses are
respectively defined by the non-linear functions Γ = Γ(t,v,m) and
Ψ = Ψ(t,v,m):

Γ t; v;mð Þ ¼ 3
ηΘV

m� 1� tð Þv� Σv2=3
� �

ð28Þ

Ψ t; v;mð Þ ¼ D
ΘD

�CHρmwþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
Hρ2

mw2 þ 4ρmvwCT

q� �2

4v
�m

0BBB@
1CCCA ð29Þ

wherew is defined by Eq. (26) and CH, ρm, Σ, CT, D,ΘV andΘD have been
introduced in Section 2. Note that Eqs. (28) and (29) are deduced from
Eqs. (13) and (15), respectively.

The right-hand side in Eq. (27) describes bubbles coalescence by
means of the Smoluchowski continuous coalescence operator:

Q fð Þ t; v;mð Þ ¼ Qþ � Q�

Qþ ¼ 1
2
∫m0 ∫

v
0H t;v 0;m 0;v� v0;m�m 0

�
f t;v 0;m 0

�
f t;v� v 0;m�m 0

�
dv

0
dm

0
���

Q� ¼ f t; v;mð Þ∫∞0 ∫∞0H t;v 0;m 0;v;mÞ f t;v 0;m 0Þdv 0dm 0ðð ð30Þ

where H is the coalescence kernel defined by Eqs. (20), (22), or (23),
and v and m are integration variables. The Q+ term is the gain that
counts the bubbles created by the coalescence of a bubble of dimensions
ðv;mÞ and one of dimensions ðv0;m0Þ. The Q− term is the loss that
counts the bubbles of dimensions ðv;mÞ disappearing by coalescence
with bubbles of any other dimensions.

Nucleation is not taken into account in the kineticmodel, so Eq. (27)
is fed by an initial condition f0= f0(0,v,m) ≥ 0 describing the distribution
of bubbles at the initial time t = 0 in the phase space Π
[0,Vmax] × [0,Mmax]. Note that the initial condition f0 given by the exper-
imentalmeasures is formally defined as a sum of Diracmasses although
it is measured as a discrete size distribution. In other words, ifDi; j is the
initial number of bubbles measured per class of volume and mass (i.e.
D2;3 ¼ 4 means that there are 4 bubbles of mass v2 and mass m3),
then f 0;i; j ¼ ðDi; jΩi; jÞ=ðδviδmj∑l;kDk;lÞ , where Ωi,j is the Dirac mass
such thatΩi,j=1 if i= j and zero otherwise, δvi and δmj are the respec-
tive dimensionless volume and mass bin sizes, and ∑l;kDk;l is the total
number of bubbles before normalization. Using dimensional volume
and mass classes, ṽ and m̃, f 0;i; j ¼ ðDi; jΩi; jVe0Me0Þ=ðδveiδme j∑l;kDk;lÞ. The
numerical phase space domain is bounded both in v andm, and we im-
pose no flux conditions for the larger values of v and m. On the other
hand, for v = 0 or m= 0 we note that the respective drifts are coming
into the domain (see Eqs. (13) and (15)), so it suffices to set the initial
condition f0 = 0 for v = 0 or m = 0.

The moments of the distribution function f(t,v,m) yield dimension-
lessmacroscopic quantities of physical interest such as the total number
of bubbles, NðtÞ, the total (normalized) volume of bubbles, VðtÞ, the
mass of bubbles, MðtÞ, and the porosity, α(t), by applying Eq. (24). Let
i and j be two integers, then the moments Λi,j = Λi,j(t) of order i + j of
f are given by:

Λi; j ¼ ∫∞0 ∫
∞
0v

im j f t;v;mÞdv dm:ð ð31Þ
The zeroth order moment is the total number of bubbles:

N tð Þ ¼ Λ0;0 ¼ ∫∞0 ∫
∞
0 f t;v;mÞ dv dm:ð ð32Þ

The first order moment for i = 1 and j = 0 is the total bubble
volume:

V tð Þ ¼ Λ1;0 ¼ ∫∞0 ∫
∞
0v f t;v;mÞ dv dm:ð ð33Þ

The first order moment for i=0 and j= 1 is the total bubble mass:

M tð Þ ¼ Λ0;1 ¼ ∫∞0 ∫
∞
0m f t;v;mÞ dv dm:ð ð34Þ

Since the left-hand side of Eq. (27) is a conservation equation, the
number of bubbles must be conserved when neglecting coalescence,
that is NðtÞ ¼ N ð0Þ. This can be proved by integrating Eqs. (27) and
(32) over the interval [0,t]. On the other hand, the first-order moments,
Λ1,0 and Λ0,1, must be conserved when neglecting the expansion terms
in Eq. (27), which means that bubble volumes and masses are
conserved: VðtÞ ¼ Vð0Þ and MðtÞ ¼ Mð0Þ (Lovejoy et al., 2004). For
some kernels H, this occurs only for a finite time, a phenomenon called
gelation (e.g., Filbet and Laurençot, 2004; Forestier-Coste and Mancini,
2012). If the first-order moments are constant in time, then any linear
combination of them will be constant in time, too. Since the first-order
moments are conserved by the coalescence operator, the porosity may
change only by the influence of the left-hand side of Eq. (27). This im-
plies that the numerical comparison of the porosity computed by the
monodisperse model and that computed by the kinetic equation must
be identical, unless gelation occurs. Note that at a discrete level it will
not be possible to conserve both first-order moments (Forestier-Coste
and Mancini, 2012; Appendix A).

For practical and comparison purposes, it is convenient to report size
distributions by collapsing one of the dimensions. The dimensionless,
marginal distributions in volume, N v, and mass, Nm, are given by:

N v t; vð Þ ¼ ∫∞0 f t;v;mÞ dmð ð35Þ

Nm t;mð Þ ¼ ∫∞0 f t;v;mÞ dvð ð36Þ

3.4. Application to decompressing rhyolite

Weuse data from isothermal decompression experiments of rhyolit-
ic melt (Burgisser and Gardner, 2005). Briefly, these experiments
consisted in placing various samples of the starting natural rhyolite in
sealed capsuleswithwater, heating themunder high pressure for sever-
al days in order to ensure water saturation. Samples were then
quenched and removed from the pressure vessel. Capsuleswere opened
to extract the hydrated samples, which were reloaded into capsules
without water, but with either silicate glass powder or MgO powder
to serve as a sink for expelled water during decompression, allowing
open-degassing conditions. Each capsule was then re-pressurized and
reheated at the hydration conditions for a few minutes before an ap-
plied sudden decompression at constant temperature nucleated small
bubbles (mean radius ≪ 10 μm). The sample was maintained at that
pressure until bubbles reach thermodynamical equilibrium. Then sever-
al decompression steps are applied rhythmically until a final pressure is
reached, which approximates a constant decompression rate. The sam-
ple is rapidly cooled down when the final pressure is reached so as to
quench the bubbles.

At the end of the experiment, samples were cut and analyzed in thin
section tomeasure the number and sizes of the created bubbles.We use
here bubble size distributions separated in regular classes of radius.
An experimental series is defined by several samples quenched at pro-
gressively lower final pressures under identical starting conditions
and decompression rate. The nucleation step, however, cannot be
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reproduced exactly from an experiment to another. As a result, samples
have slightly different initial bubble size distributions. These differences,
although visible on the tabulated data, are smaller than the changes in-
duced by coalescence and growth.

In a first approach coalescence is neglected, only the expansion
model is considered. The validation is carried out by comparing the out-
puts of 77 different computations (Fig. 3). Eleven initial conditions (ΘV
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Fig. 3. Comparison between solutions of the monodisperse model and the kinetic polydisperse
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and ΘD pairs) were explored by varying the decompression rate from
104 to 10−4 MPa/s and setting the temperature to either 750 or 850 °C
(Fig. 3A). Other initial conditions are as follows: the porosity is α0 =
10%, the volatile concentration is C0 = 3.44 wt%, the initial pressure

is P̃0 = 100 MPa, the surface tension is Σe= 0.1 N m, the melt density
is ρem = 2400 kg m−3, the solubility constant is K̃H =
3.44 × 10−6 Pa−1/2, the melt viscosity ηem follows the Hess and
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Dingwell (1996) relationship, water diffusivity, De, follows the Ni and
Zhang (2008), Eq. (13) relationship, and the scaling value R̃0 = 10 μm
is defined as themean bubble radius over all themeasured radii at initial
time. The initial distribution of the kinetic model reads f0ijδviδmj=
Ω41 41 where Ωi j is a Dirac mass such that Ωi j = 1 if i = 41 and j =
41, zero otherwise. This function corresponds to an initial population
of bubbles with all the same radius and mass. We choose N = 150
discretization points for the numerical mesh in v andm and the uniform
radius step is δR̃=0.25 μm starting at 0 μm (see Appendix A). Calcula-
tions stopped when either atmospheric pressure or 75 vol% porosity
was reached. These initial conditions approach those at the start of the
decompression experiments in Burgisser and Gardner (2005) when
10−2 b ΘD b 10 and 10−7 b ΘV b 10−3. The other values of ΘD and ΘV

cover a range broader than that expected for the shallow ascent of a rhy-
olitic melt (Burgisser and Degruyter, 2015), which confers a general
character to this validation.

Each set of initial conditionswas runwith 6 versions of themonodis-
persemodel and one version of the polydisperse model. Each monodis-
perse version has different build-in assumptions on the behavior of the
effective viscosity and water diffusivity. The reference version uses the
full monodisperse equation system (1–12) with variable effective vis-
cosity and diffusivity across the melt shell (Forestier-Coste et al.,
2012). Two versions solve the same full system but assume that the dif-
fusivity remains at its initial value and either that effective viscosity re-
mains at its initial value, or that effective viscosity is calculated using the
value of melt water content given by Eq. (10) with C = C0 (i.e. C=
CT+M(CT-1)/(S03ρm)). This simplification of the effective viscosity has
for effect to ignore the last term in brackets in Eq. (12). The fourth ver-
sion solves the same system but calculates both diffusivity and effective
viscosity using only the value of melt water content at the bubble edge.
The two last versions use the simplified flux developed herein (i.e. re-
placing Eqs. (2) and (6)–(8) by Eqs. (15)–(16) and assume either that
diffusivity and effective viscosity remain at their initial values, or that
they are calculated using the value of melt water content at each pres-
sure step given by Eq. (10) with C = C0. The various assumptions of
these six versions can all be selected in the software B-Growth (Supple-
mentary Data), which was used to produce the resulting 66 monodis-
perse runs.

Fig. 3B shows the difference in bubble radius between the reference
version and the other monodisperse versions as a function of ΘD. For
each value of ΘD, the corresponding value of ΘV can be read on Fig. 3A.
In other words, the succession of points along a given curve of Fig. 3B
corresponds to that along the ΘD axis of Fig. 3A. Differences are for
each run themaximum value over the whole course of the run. Overall,
differences are b3% if ΘD b 10−2 and ΘD N 103 while differences reach
20% in the intermediate range. The larger differences do not arise with
the most restrictive set of assumptions (D and η constant). Chernov
et al. (2014) proposed a simple parameter, ð

ffiffiffi
P

p
� ffiffiffiffiffi

Pa
p ÞCHρm=ρg , that

quantifies the degree of super-saturation of the melt. If this parameter
is N~10−2, steady-state simplifications of Eq. (8) have a low degree of
accuracy. Figure S1 suggests this happens for the second half of the de-
compression of runswithΘD N 1. Fig. 3B, however, suggests that the var-
ious approximations become more accurate as ΘD increases despite
larger degrees of super-saturation. This situation arises because, as ex-
plored in more details by Proussevitch and Sahagian (1998), the com-
bined effect of each simplification is quite complex. They can be
understood by focusing on a case with large differences between the
runs (ΘD = 0.4 at 850 °C, circle on Fig. 3A). Fig. 3C and D show respec-
tively the evolution of radius difference and η with ambient pressure
for that case. The reference version shows that the effective viscosity in-
creases by a factor 3 during the run because of the combined effects of
decreasing diffusivity and higher melt viscosity near the bubble edge
(Lensky et al., 2001). Ignoring variable viscosity in themelt shell slightly
underestimates the effective viscosity but does not affect the estimation
of bubble radius (thick, black, dashed curves in Fig. 3C and D). At large
ΘD, melt water content remains high during decompression, such that
η is mostly affected by porosity increase. When diffusivity decreases
during decompression, this phenomenon is accentuated and η can de-
crease at low pressure, such aswith the simplified-fluxmodel with var-
iable η and D (thin continuous curves in Fig. 3C and D). Overall, these
competing effects interact in such a way that assuming constant η and
D in the full system leads to radius differences of at most ~20%. Fig. 3B
also suggests that the simplification of the flux with constant η and D
is acceptable as it brings these differences to a maximum of ~10%.

Considering the results of Fig. 3 for the monodisperse model, the
polydisperse model was run in a version that assumes Q = 0, constant
initial diffusivity, and constant effective viscosity. For comparison pur-
poses, the evolution of the size and mass distribution, f, is represented
in Fig. 3 by the median bubble radius. The polydisperse runs and the
simplified-flux runs with constant D and η yield similar radius evolu-
tions with a slight (~1.25%), nearly constant difference over all values
of ΘD (Fig. 3B). This is due to the discrete nature of the bins in the poly-
disperse model. It corresponds to half the bin size and could be made
negligible by selecting bins limits that exactly frame the value of the ini-
tial 10 μm radius, that is bins R̃= (.., 9.875, 10.125, 10.375,..) instead of
R̃ = (.., 9.75, 10, 10.25,..). Such binning was not attempted as it
would make both monodisperse and polydisperse model curves
undistinguishable at the scale of Fig. 3, thereby weakening its clarity.

The numerical solution of the kineticmodel with constant diffusivity
and effective viscosity is now compared with experimental data
that features both growth and coalescence (Burgisser and Gardner,
2005; Castro et al., 2012). The initial size distribution from sample
PPE4 contains 220 bubbles, which were sampled in regular
intervals of δR̃ = 2.5 μm. The corresponding initial condition reads
in the kinetic framework: f 0ijδviδmj ¼ DiΩij=220 where Di =
(1,2,7,8,8,12,15,14,23,25,21,25,21,15,12,5,5,0,0,1) and Ωij are Dirac
masses such thatΩij=1 if i= j and zero otherwise. The decompression
rate is Δ P̃ = 0.025 MPa s−1, the viscosity is ηem0 = 1.5 × 106 Pa s, the

temperature is 825 °C, the surface tension isΣe=0.1 Nm, themelt den-

sity is ρem = 2354 kg m−3, the diffusion coefficient is De0 =
6.95 × 10−12 m2 s−1. Initial values specific to PPE4 are: the volatile con-
centration is C0 = 1.92855 wt.% (a high precision limits initial radii
oscillations), the porosity is α0 = 31.43%, the ambient pressure is
P̃0 = 40 MPa, the solubility constant is K̃H = 3.44 × 10−6 Pa−1/2, and
the scaling radius is R̃0 = 38.5 μm. Simulations kept the same sampling
interval as that of the initial conditions with N between 150 and 300
discretization points. Experiments PPE7, PPE10, and PPE11, to which
simulations runs are compared, were quenched at ambient pressures
of 34, 28, and 24 MPa, which correspond to dimensionless times t =
0.15, 0.3, and 0.4, respectively.

The distributions of PPE7 and PPE10 contain respectively 48 and 60
bubbles, whereas PPE11 contains 209 bubbles. These small numbers
(b100) are caused by coalescence, which creates bubbles of a size com-
parable to that of the sample. This situation has two consequences. First,
we found preferable to resample both the simulations results and the
experimental data to intervals of 12.5 μm for comparison. Second, it pre-
cludes the comparison between experimental and simulated porosities.
Coalescence led some large bubbles to connect with the sample outer
surface, thereby leaving the sample and causing the porosity measure
to be underestimated and unreliable. Sample PPE10, for instance, as a
measured porosity of 30.6%, which is below the starting porosity of
PPE4 (31.4%), and hence also below that of predicted by the three sim-
ulations (∼61%).

A short while into the simulations (around t ∼ 0.1), time steps be-
came vanishingly small (b10−10), which caused prohibitively long cal-
culation times (on the order of several months). These small time steps
are due to numerical diffusion from bubble-bearing bins, f(t,v,m) ≫ 0,
into near-zero bins (in practice between machine precision and
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10−20). A limiting condition so that f(t,v,m) ≥ 10−20 was thus added at
the end of each iteration. This kept the time steps above 10−5 and
total simulation times between 1 and 10h on an ordinary PC, depending
on the coalescence kernel. We tested the accuracy loss by graphically
superimposing the solutions with and without the limiting condition
and found it to be negligible. A more rigorous estimate is hindered by
the fact that time steps are not identical between these test runs. It
can nevertheless be stated that the percent differences on the marginal
with respect to the volume caused by this rounding are of the same
order (10−6 − 10−7%) as those caused by unequal time steps.

Fig. 4 shows the 2D distribution function in v and m for the initial
data (sample PPE4) and the final time t = 0.4 in the case of planar-
film, Hf, and differential-pressure coalescence, Hp. Since no initial distri-
bution inmwas available fromexperimental data, an approached distri-
bution ignoring the contribution of surface tension, m = v, was used
instead for t = 0. The resulting initial distribution (Fig. 4A) is thus
shifted from the equilibriummanifold defined by the chemical andme-
chanical equilibria and given by m=(1- t)v+Σv2/3 (Forestier-Coste
et al., 2012). The distribution functions at t = 0.4 (Fig. 4B–C) both
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concentrate on the equilibrium manifold, which is consistent with the
growth regime prevailing during this experimental set (ΘV =
9.4 × 10−5 and ΘD = 1.3 × 10−1).

Fig. 5 shows the size distributions from six simulations compared to
the experimental data. The first run has no coalescence (H=0, Fig. 5A)
and the second run assumes collision coalescence (H = Hc, Fig. 5B). In
the third and fourth runs, coalescence occurs by planar-film thinning,
Hf, with either z = z1 (Fig. 5C), or z = z2 (Fig. 5D). In the fifth and
sixth runs, coalescence occurs by differential bubble pressure, Hp, with
either z= z1 (Fig. 5E), or z= z2 (Fig. 5F). The vertical axis is the cumu-
lated volume fraction of each class size (i.e. the bubble volume times the
number of bubbles in the marginal distribution with respect to the vol-
ume,N v � v, Eq. (35)). The jagged appearance of the experimental dis-
tributions is due to the fact that intervals contain a discrete number of
bubbles.

As expected, the high melt viscosity hinders collisions in such a way
that the run with Hc is undistinguishable from the one without coales-
cence. The two other coalescence kernels, on the contrary, visibly affect
the size distributions, yielding various levels of overlap between exper-
imental distributions and model outputs. Overall, planar-film coales-
cence is less efficient than differential-pressure coalescence, and z1
slightly enhances coalescence efficiency compared to z2. The match be-
tween planar-film coalescence and experimental data is qualitatively
the best at higher pressure (or earlier simulation times), whereas the
match between differential-pressure coalescence and experimental
data is qualitatively better at lower pressure (or later simulation
times).Whether coalescence occurred in these experiments by a combi-
nation of the two mechanisms, however, needs to be confirmed on the
other series of Burgisser and Gardner (2005). It can nonetheless be con-
cluded from this proof of principle that the implementation of kernelsH
based on different physical mechanisms yields distinct evolutions of the
size distributions. Our kineticmodel is thus a powerful tool that can help
assessing how bubble coalescence occurs in magmas.
4. Discussion

A limitation of our model is that bubble nucleation is ignored. New
bubbles could appear under the form of a source term on the right-
hand side of Eq. (27), alongside the coalescence kernel terms. Such an
extension could be possible without changing the basic form of our ki-
netic model. Another limitation is that bubble coalescence is assumed
to be instantaneous, that is the created bubble is instantly spherical.
This approach ignores the time taken by the two merging bubbles to
relax into a sphere, which can be significant at high melt viscosity
(Navon and Lyakhovsky, 1998; Gardner, 2007; Rust et al., 2003; Castro
et al., 2012). If the relaxation time is large, the formation of bubble
chain is common (Castro et al., 2012).While the development of bubble
chains by successive additions of smaller bubbles can still be considered
as binary coalescence, their growth by diffusion and decompression can
no longer be approximated by a 1D spherical geometry. Another limit-
ing simplification is the assumption that the volume of the melt shell
around the bubbles is constant. Complex interactions are expected be-
tween shells as coalescence modifies the shape of the influence zones
(i.e. the region where dissolved water is drained into a given bubble).
Such heterogeneous spatial distribution of bubbles has been shown to
influence nucleation rates (Kedrinskiy, 2009) and growth rates
(Gardner et al., 1999). Finally, the addition (initially or by precipitation)
of crystals into the melt might influence coalescence, although this ef-
fect seems limited when crystals are equant (Okumura et al., 2012).

The planar-film coalescence kernel lacks the scaling symmetry prop-
erty assumed in the Lovejoy et al. (2004) model. Both the differential-
pressure and collision kernels possess this propertywith a scaling expo-
nent β = 0 because Hp(λV,λM,λV',λM')=λ0Hp(V,M,V',M') and
Hc(λV,λV')=λ0Hc(V,V') with λ ∈R (deduced from Eqs. (22) and (23),
respectively). Focusing on the collision kernel because it is independent
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Fig. 5. Comparison between numerical runs and experimental data from Burgisser and Gardner (2005). The initial distributions (long-dashed black curve) correspond to sample PPE4 and
to the initial conditions of the runs at t = 0 and P̃0 = 40 MPa. Experimental data quenched at successive times (0.15, 0.3, and 0.4) during the linear decompression (gray curves) are
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of bubble mass, it is straightforward to test whether the long-term evo-
lution of any initial size distribution yields a power law with exponent
of β-1 =−1 (Lovejoy et al., 2004). We chose an initial size distribution
with a constant number of bubbles from 3.3 μm to 692 μm, which reads
in the kinetic framework: f 0ijδviδmj ¼ DiΩij=57 where Di ¼ 1 and i =
4...60. Intervals δR̃ started at 2.5 μmand increased of 10% at each succes-
sive intervals until N = 300 discretization points were created, which
yielded a maximum bubble size of 5.95 × 106 m. This large upper
bound ensured that all bubbles remained in the simulation domain.
Physical values are identical to those of the PPE experimental series
(Fig. 4), except the decompression rate, Δ P̃ = 0.0025 MPa s−1, and
the viscosity,ηem0 = 0.1 Pa s. Both of these low values ensure that the ef-
fect of coalescence ismaximized during the decompressionwhile calcu-
lation time is less than a couple of days.

Fig. 6 shows the evolution of the number density of bubbles with re-
spect to total volume, N v=ðW0 þ VðtÞÞ, for three different times. The
power-law behavior is visible in all three runs, albeit it is restricted to
a small part of the size distribution. As explained in Lovejoy et al.
(2004), this is due to the truncated nature of the initial distribution,
which causes deviations from the power-law behavior. This example
suggests that our model gives results consistent with that of Lovejoy
et al. (2004). It also suggests that a slow decompression (t = 1 corre-
sponds to 4.4 h) of a low-viscositymagmawith initial bubble sizes span-
ning two orders of magnitude is unlikely to generate clearly defined
power-law size distributions by collision coalescence because of trunca-
tion effects.

Finally, from amathematical and numerical modeling point of view,
it may be of interest to study the convergence of this kinetic model to-
wards simplified systems of equations. It has been for instance shown
that when the relaxation parameters ΘV and ΘD converge to zero or in-
finity, simultaneously or not, several limit situations can be deduced
(Barclay et al., 1995; Lyakhovsky et al., 1996; Navon et al., 1998;
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Lensky et al., 2004; Forestier-Coste et al., 2012). Performing an asymp-
totic analysis on the proposed kinetic model could give simplified equa-
tions corresponding to the above limits cases, which would lead to
shorter computational times.

5. Conclusions

Starting from the analysis of a monodisperse bubble population
done in Lensky et al. (2004) and Forestier-Coste et al. (2012), we pro-
pose a simplification of the bubble growthmodel that removes the cou-
pling between mass evolution and an advection–diffusion equation
describing the behavior of the volatile concentration in the melt. We
consider instead amass growth rate converging towards chemical equi-
librium for small values of the relaxation parameter ΘD. If the effective
viscosity and water diffusivity are assumed constant during the decom-
pression,monodisperse numerical runs show that this simplification in-
troduces errors of at most 10% on the bubble radius. These differences
become negligible when ΘD b 10−2 or ΘD N 103. This simplification as
well as the original implementation of the monodisperse model pro-
posed by Forestier-Coste et al. (2012) is included into the open-source
software B-Growth that is available as Supplementary data.

In order to simulate both bubble growth and coalescence, we build a
kinetic model statistically describing the growth by decompression, ex-
solution and coalescence of a polydisperse bubble population. The
proposed model is homogeneous in space and the distribution
function represents the probability to find a bubble of volume v and
mass m at time t. The volume and mass growth rates are described by
our volatile diffusion simplification of the original monodisperse
model. Coalescence is two-dimensional in the kinetic model because
its rate involves both the volumes and themasses of the coalescing bub-
bles.We formulate three coalescencemechanisms based on Castro et al.
(2012) and Lovejoy et al. (2004). Numerical simulations based on a
semi-implicit numerical scheme show excellent agreement between
the coalescence-free runs and the monodisperse runs. When coales-
cence is introduced, numerical results show that coalescence kernels
based on different physical mechanisms yield distinct evolutions of
the size distributions. A preliminary comparison between runs and ex-
perimental data suggests a qualitativematch of two out of the three pro-
posed kernels. This kinetic model is thus a powerful tool that can help
assessing how bubble growth and coalescence occur in magmas.
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Appendix A. Numerical resolution

The numerical resolution of Eq. (27) consists in a time splitting. At
each time step our algorithm first solves explicitly in time the coales-
cence term (right-hand side of Eq. (27)), and then it solves implicitly
in time the expansion term (left-hand side of Eq. (27)). This is equiva-
lent to solve thewhole Eq. (27) in a single time step. Forn ∈N, let us de-
note the discrete times by tn, the time steps by δtn = tn + 1 − tn and the
time discretization of the distribution function by fn= f(tn,v,m). The ex-
plicit discretization of the coalescence step reads:

f̂
nþ1 ¼ f n þ δtnQ f n

� � ðA1Þ

where f̂
nþ1

denotes the value of the numerical solution after the coales-
cence step and has to be used to compute the expansion term. The im-
plicit discretization of the expansion term is given by:

f nþ1 þ δtn
∂
∂v

Γnþ1 f nþ1
� �

þ ∂
∂m

Ψnþ1 f nþ1
� �
 �

¼ f̂
nþ1

: ðA2Þ

Combining the two discretizations, the full, semi-implicit, time
discretization of Eq. (27) reads:

f nþ1� f n

δtn
þ ∂
∂v

Γnþ1 f nþ1
� �

þ ∂
∂m

Ψnþ1 f nþ1
� �

¼ Q f n
� �

: ðA3Þ

The discretization of the coalescence term has been the subject of
Forestier-Coste and Mancini (2012), where a multi-dimensional nu-
merical scheme defined on non-uniform meshes and conserving the
first-order moment is described and hence will not be detailed here.
In the multi-dimensional framework, one must choose which first mo-
ment to conserve because it is numerically impossible to conserve si-
multaneously all the first moments. Since the coalescence process
conserves mass, we choose to conserve the moment representing the
totalmass ofwater MðtÞ ¼ Λ0;1ðtÞ. Thismodel is among the few consid-
ering two-dimensional coalescence; numerical schemes for this kind of
problem have not yet been widely studied (Qamar and Warnecke,
2007a, 2007b; Qamar et al., 2009).

The scheme solving the expansion term is implicit in time because
we want to avoid a stability condition (CFL) for this time discretization.
Solving explicitly the expansion term would imply a CFL condition on
the time step δtn, which is bounded by the minimum of the relaxation
parameters ΘV and ΘD. This causes very long computational times, in
particular when considering the chemical and/or mechanical equilibri-
um (ΘV≪1 and/or ΘD≪1). By using instead an implicit scheme, the
time step is fixed by the positivity condition on the coalescence term,
which is only bounded by ΘV (Forestier-Coste and Mancini, 2012).

The experimentalmeasurements are usually defined by bubble radii
on a uniformmesh, which conditions the discretization in v andm. This
distribution of initial radii is chosen as the basis towrite the gridmesh in
volume and mass while assuming that measurements are done at the
thermodynamical equilibrium. Hence, fixing N grid points, we have for
i = 1…N the following definitions for the mesh points in v and m:

vi−1=2 ¼
~Rmin þ iδ~R

~R0

 !3

;mi−1=2 ¼ vi−1=2 þ
X

v2=3i−1=2 ðA4Þ

Image of Fig. 6


z1

R

S
e

R’

S’

e

d

Fig. B1. Detail of the geometrical configuration of a bubble pair in Fig. 1.

56 S. Mancini et al. / Journal of Volcanology and Geothermal Research 313 (2016) 44–58
where R̃0 is the mean dimensional radius of the initial data (used also
for the scaling), R̃min is the minimum dimensional radius considered
in the simulation, and δR̃ is the dimensional step of the uniform grid de-
fining the initial data. The space mesh sizes are then defined as δvi=
vi+1/2-vi-1/2 and δmi=mi+1/2-mi-1/2. Middle grid points are defined
as vi=(vi+1/2+vi-1/2)/2 andmi=(mi+1/2+mi-1/2)/2.

Forn ∈Nand i, j=1…N, we can nowdefine the discrete distribution
function fij

n, which is an approximation of f(tn,vi,mj), and the discrete
marginal distribution with respect to volume, N n

v :

N n
v við Þ ¼ ∑N

j¼1 f
n
ijδmj ðA5Þ

The numerical resolution of the expansion part is split in two:
first the discretization implicit in time of the term ∂

∂vðΓ f Þ then that of ∂
∂m

ðΨ f Þ. This is equivalent to a directional splitting, solving first:

∂ f
∂t

þ ∂
∂v

Γ fð Þ ¼ 0 ðA6Þ

and then:

∂ f
∂t

þ ∂
∂m

Ψ fð Þ ¼ 0: ðA7Þ

Since the resolution of both equations is similar, we only report the
implicit, finite difference scheme for Eq. (A6). Let j be fixed, i = 1…N,
and define:

Γnij ¼
3

ηΘV
mj � vi 1� tð Þ � Σv2=3i

� �
ðA8Þ

and its positive and negative parts: (Γ+)ijn=max(0,Γijn), (Γ-)ijn=min(0,-
Γijn). Eq. (A6) is then discretized implicitly in time by:

1þ δt
δvi

vnþ1
ij

			 			� �
f nþ1
ij � δt

δvi
Γþ f
� �nþ1

i�1; j þ Γ� fð Þnþ1
iþ1; j

h i
¼ f nij: ðA9Þ

To solve this implicit bi-dimensional scheme we transform it by
writing the unknown square matrix fnij of size N × N, in a vector Xnh of
size N2. For each time step n and index j = 1…N, we define h =
i + (j − 1)N for i = 1…N and Xnh = fnij, that is:

Xn ¼ f n1;1; f
n
2;1; f

n
3;1;…; f nN�2;N ; f

n
N�1;N ; f

n
N;N

� �T
ðA10Þ

Vectors an and cn of size N2 − 1 are defined for j = 1…N by:

anh ¼ −
δt
δvi

Γ−ð Þniþ1; j; i ¼ 1…N−1

0; i ¼ N

8<: ðA11Þ

cnh ¼ −
δt
δvi

Γþ
� �n

i−1; j; i ¼ 2…N

0; i ¼ 1

8<: ðA12Þ

The vector bn of size N2 for i,j = 1…N is:

bnh ¼ 1þ δt
δvi

Γnij
			 			 ðA13Þ

and the hth line of the tridiagonal matrix Bn reads Bn
h ¼ ð0…0 cnhb

n
ha

n
h

0…0Þ. The discrete Eq. (A9) then reads:

Bnþ1
h;h−1X

nþ1
h−1 þ Bnþ1

h;h Xnþ1
h þ Bnþ1

h;hþ1X
nþ1
hþ1 ¼ Xn

h ðA14Þ

which is solved by a LU decomposition. At each time step n the whole
algorithm for the expansion term involves the successive resolution of
Eqs. (A6) and (A7) before returning to the resolution of the coalescence
part.

Appendix B. Alternate inter-bubble distance formulation

A formulation of the inter-bubble distance, z1, taking into account
melt shell overlap can be found using the geometry depicted in
Fig. B1. If e is the thickest part of the lens created by the overlap of the
melt shells (light gray region in Fig. B1) and d is the distance between
the two bubble centers, it follows that z1 = S + S′ − R − R′ − e =
d − R − R′. The volume of the lens is given by πe2[d2 + 2d(S + S′) −
3(S − S′)2]/(12d). One way that all the melt shells approximately fill
the entire space available is to enforce that the volumeof the lens equals
that of the small volumewedged between themelt shells (plateau bor-
der, dark gray region in Fig. B1). This is an approximation as the full vol-
umedistribution, and not just a bubble pair, controls howwell the space
is filled.We note, however, that evenwith full distribution known, find-
ing an optimal spatial arrangement is challenging (e.g., Baranau and
Tallarek, 2014). Here we restrict the reasoning to bubble pairs, and we
ensure that the bubble network fulfills the criterion of maximum pack-
ing (see below). We further assume that the volume wedged between
the melt shells is equal to ke3, where k is a proportionality constant to
be determined.

The inter-bubble distance can be calculated by equating lens and
wedge volumes, which leads to a second order equation on z1:

z1 ¼
−u2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
2−4u1u3

q
2u1

u1 ¼ 1þ 12k=π
R 1þ oð Þ

u2 ¼ 2þ 2α−1=3 þ 12k 2−α−1=3
� �

=π

u3 ¼ R 1þ oð Þ

� 1−3α−2=3 1−o
1þ o

� �2

þ 2α−1=3 þ 12k 1−α−1=3
� �

=π

" #
ðB1Þ

where o = R′/R. The value of k can be set for the whole distribution by
defining the conditions of maximum packing. It occurs at a critical vol-
ume fraction αp and implies that z1 = 0. Setting these conditions in
Eq. (B1) yields a relationship between k, αp, and o:

k ¼ π

12 α−1=3
p −1

� � 1þ 2α−1=3
p −3α−2=3

p
1−o
1þ o

� �2
" #

: ðB2Þ
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There is no general law to find αp in polydisperse distributions, the
value of which starts at the random packing for monodisperse spheres,
~0.63, and increases with the spread of the size distribution (Farr and
Groot, 2009; Baranau and Tallarek, 2014). The bubble size distributions
in the experiments of Burgisser and Gardner (2005) mostly remain
within a factor 2 of the median bubble size. Following Farr and Groot
(2009), this constraint yields αp ≃ 0.67. The ratio o, which is not
known a priori, strongly controls k (Fig. B2A). The same constraint,
0.5 b o b 2, however, suggests that it is possible to use one representative
value, k ≃ 5, for the whole distribution. Fig. B2B shows a simple compar-
ison between z1 and z2 for bubble radius R̃0 = 10 μm, k=5, and o vary-
ing from 0.5 to 2. As expected, z1 yields distances that vanish around αp.
They are shorter than z2 at high porosity and low values of o but higher
otherwise; using z1 thus tends to slowdown coalescence compared to z2
at high α and for bubbles of similar sizes.

Appendix C. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jvolgeores.2016.01.016.
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