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Sensitivity functions for static and dynamic mapping of
Earth’s heterogeneity

L. Margerin1 in collaboration with T. Planès2 J. Mayor1 M. Calvet1
E. Larose3 C. Sens-Schönfelder4 V. Rossetto5

1Institut de Recherche en Astrophysique et Planétologie, Toulouse, France
2University of Geneva, Switzerland

3ISTerre, Grenoble, France
4G.F.Z., Potsdam, Germany
5LPMMC, Grenoble, France

Passive imaging from seismology to ultrasound
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Content

1 Static and dynamic mapping of heterogeneity: Basic observations and principles

2 Sensitivity kernels for static/dynamic imaging
Spatial variation of absorption ∥ background velocity change
Spatial variation of scattering ∥ Temporal variation of scattering
Comparison of sensitivity kernels

3 Application to absorption mapping

4 Conclusion and future works
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Static imaging of small-scale heterogeneity

Spatial variation of attenuation in the Alps

Geological Map
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Jurassic

Triassic
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SEDIMENTARY UNITS

PROTEROZOIC

Energy Decay at 6 Hz

CODA

t
w

L
w

Qc

Qc ≈ 740 in crystalline massifs
Qc ≈ 430 in the Pô Plain
Clear lateral variations of propagation properties at 100kms scale
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Basic mechanisms of attenuation

Attenuation Q−1 = Absorption Q−1
i + Scattering Q−1

sc

Absorption = True Loss
Scattering = Apparent Loss
Attenuation of coherent wave
Generation of coda waves

Goal: Retrieve distribution of Q−1
sc , Q−1

i from envelopes characteristics
Needed: Quantify impact of scattering/absorption anomalies on energy envelopes?
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Dynamic imaging: coda wave interferometry

Repeatable source
Heterogeneous medium

Initial State

Heterogeneities

Source Receiver
Direct Waves

Coda Waves

Waveform
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Dynamic imaging: coda wave interferometry

Repeatable source
Heterogeneous medium

Final State

Heterogeneities

Source Receiver

Velocity Change

New

Coda Waves

Direct Waves

Scatterer

Waveform
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Quantification and interpretation of waveform changes

Travel time perturbation (Poupinet et al., 1984; Snieder et al., 2002, 2004)
Delay time as a function of lapse-time t : δt(t)

Weak velocity changes in the medium δc
c

Distortion of waveforms (Larose et al., 2010; Obermann et al., 2013; Planès et al., 2014)

Decorrelation coefficient : dc(t) = 1− ⟨u1u2⟩t√
⟨u2

1⟩t⟨u2
2⟩t

Addition of new scatterer

Goal of this talk:
Present sensitivity kernels for each observable valid in a broad range of regimes
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The random walk approach to travel-time and absorption
sensitivity functions
Idea: the sensitivity at time t in the coda is proportional to the time spent by the
waves in the volume where the change occurs. (Pacheco & Snieder, 2005)

ReceiverSource

Velocity Change

δV(X)

Velocity perturbation

δt(t)︸︷︷︸
Delay in the coda

= − δc
c (X)× T(δV(X), t)︸ ︷︷ ︸

Time spent in δV

Absorption perturbation
δI
I︸︷︷︸

Intensity P◦

= − ω︸︷︷︸
Freq.

δQ−1
i (ω,X)T(δV(X), t)

T(δV(X), t) = Ktt(X, t)︸ ︷︷ ︸
Sensitivity Kernel

×δV(X)
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Calculation of the sensitivity kernel
Application of Bayes Formula:

Ktt(X, t) =
∫ t

0

Probability to go
from Change to Receiver︷ ︸︸ ︷

P(R,X, t − t′)

Probability to go
from Source to Change︷ ︸︸ ︷

P(X,S, t′)
P(R,S, t)︸ ︷︷ ︸

Probability to go
from Source to Receiver

dt′

Fundamental Property of the Kernel:
∫

Full Space

Ktt(X, t)dV(X) = t

Diffusion Model for the Probability:

∂P(X,S, t)
∂t − D∇2P(X,S, t) = δ(X − S)δ(t)

D =
cl
d =

velocity × mean free path
space dimension
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Limitations of the diffusion approximation

Only diffuse waves. No ballistic waves.

Only valid for MFP ≪ propagation distance, i.e; l ≪ |SX|

Poor job at modeling scattering anisotropy

1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

Incident Wave k̂

Scattered Wave k̂
′

Isotropic

5 0 5 10 15 20

6

4

2

0

2

4

6

Incident Wave k̂

Scattered Wave k̂
′

Anisotropic

λ

Scatterer

λ

l →
Transport MFP︷︸︸︷

l∗ =
l

1− ⟨k̂ · k̂′︸ ︷︷ ︸⟩mean cosine of scattering angle

Can we extend the Pacheco & Snieder theory beyond diffusion?
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The Paasschen’s solution (Paasschens, 1997; Shang & Gao, 1988)

An exact solution of the isotropic random walk problem in 2-D

P(X,S, t) =

Ballistic Propagation︷ ︸︸ ︷
e−ct/l

2πSXδ(ct − SX)+

Diffuse Propagation︷ ︸︸ ︷
Causality︷ ︸︸ ︷

θ(ct − SX) e
√

c2t2 − SX2/l − ct/l

2πl
√

c2t2 − SX2
(1)

What if we substitute (1) into Pacheco &
Snieder Formula?

!!! ∫
Full Space

Ktt(X, t)dV(X) ̸= t !!!

Paasschens vs Diffusion

0 5 10 15 20 25
Time (s)

10-5

10-4

10-3

10-2

P
ro

b
a
b
ili

ty Exact

Diffusion

SR=l=20km c=3.5km/s

How to fix this problem?
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The radiative transfer approach to the travel time kernel

Coherent Propagation︷ ︸︸ ︷(
∂

∂t + ck̂ · ∇X +
c
l

)
P(X, k̂,S, t) =

Multiple Scattering Term︷ ︸︸ ︷
c
l

∮Scattering anisotropy︷ ︸︸ ︷
p(k̂, k̂′)P(X, k̂′,S, t)d2k̂′ +

Source term︷ ︸︸ ︷
δ(X − S)δ(t)

P(X, k̂,S, t): Probability that a random walker emitted at source S at time t = 0

be at position X and direction k̂ at time t

Ktt(X, t) =
∫ t

0

∮
Probability to go

from Change to Receiver︷ ︸︸ ︷
P(X,−k̂,R, t − t′)

Probability to go
from Source to Change︷ ︸︸ ︷

P(X, k̂,S, t′)∮
P(R, k̂,S, t)dk̂︸ ︷︷ ︸

Probability to go from Source to Receiver

d2k̂dt′

Diffusion Limit: l ≪ |SX| −→ Pacheco & Snieder, 2005

Single-scattering Limit: l ≫ |SX| −→ Pacheco & Snieder 2006
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Decorrelation and intensity scattering kernel
Idea: consider the new scattering paths created by the object

ReceiverSource

Scattering perturbation

Addition of an isotropic scatterer
σ at X
Local perturbation δQ−1

sc (X)

Decorrelation

dc ≈

Intensity of the field difference
= Intensity of scattered field︷ ︸︸ ︷

⟨(u2 − u1)
2⟩

2I1

dc ∝ Extra-scattered intensity

Intensity

δI
I ≈

Difference of the Intensity fields︷ ︸︸ ︷
⟨I2 − I1⟩

I1

δI
I ∝ Extra-scattered Intensity

− Extra scattering attenuation
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Decorrelation and intensity scattering kernel

DC due to addition of an isotropic scatterer σ at X
Change of I caused by δQ−1

sc in δV(X)

Decorrelation

dc(t) = cσ
2

Kdc(X, t)

Intensity

δI
I (t) = ωδQ−1

sc (X, ω) (Kdc(X, t)− Ktt(X, t)) δV

Kdc(X, t) =
∫ t

0

The probabilities are integrated over all k̂
for an isotropic scatterer︷ ︸︸ ︷

P(X,R, t − t′)P(X,S, t′)dt′

P(R,S, t) Formally Identical to Pacheco & Snieder !!!

To be compared with:

Ktt(X, t) =
∫ t

0

∮ P(X,−k̂,R, t − t′)P(X, k̂,S, t′)
P(R,S, t) d2k̂dt′
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Validation of the radiative transfer approach for Kdc

Numerical Simulation
Waves in Random and Complex Media 5

0 5 10 15 20
0
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10

15

20

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

(a)

(b)

Figure 1. Typical medium (a): the dots represent the point scatterers, the asterisk the source, and the
cross the receiver. The corresponding impulse response (b) shows a long tail (coda) constituted by
multiply scattered waves. The two vertical lines denote the position of the zooms in Figure 2.

The corresponding impulse response is also displayed in Figure 1(b). The impulse response
shows long-lasting wave trains constituted of multiply scattered waves.

2.2. Decorrelation of the diffuse field
To study the variations of the waveforms induced by a local change in the medium, we
compare impulse responses acquired before and after the change. Early and late time-
lapse zooms of the impulse response associated to the initial state are plotted in Figure
2(b) (solid line). To simulate a local structural change, we introduce a new scatterer in
the medium, either between the source and receiver or off the source-receiver axis (see
Figure 2(a)). In both cases, the final impulse responses are different from the initial one
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Waves in Random and Complex Media 17

Figure 6. Schematic representation of the source, receiver, and defect positions.

ulated waveforms with the theoretical predictions based on the sensitivity kernels developed
in Section 4. In the following tests, the source-receiver distance is fixed (R = 8ℓ⋆) and the
position of the new scatterer is defined by the variables d and h as illustrated in Figure 6.

The decorrelation is measured in a moving window of length T ≃ 50τ0 along the
time t in the coda. To reduce the fluctuations of the measurements, we also average each
decorrelation over 50 different realizations of the disorder (i.e. background distribution of
the scatterers in the medium). This operation also allows to estimate the standard deviation
of the measurements. We emphasize that we average these measurements only to help
us demonstrate the validity of our model. For imaging purposes, these operations are
not necessary and are compensated by the use of several sources and receivers in the
medium.

The theoretical decorrelation is computed both in the diffusion and radiative transfer
approximation. To take into account the effect of the reflective boundaries, we use the
method of images.[42] The total intensity is written as the sum of the intensity of the
real source in an infinite medium plus the contribution of the intensity of virtual mirror
images.

We choose to simulate reflective boundary conditions because they often correspond to
real life cases, in non-destructive testing of materials for instance. In the case of changes
occuring in infinite media, the expression of the decorrelation would be directly related to
the infinite medium kernels studied in Section 4.

We here consider the decorrelation induced by a point scatterer appearing at different
positions in the medium. This new scatterer is identical to the thousand ones already present
in the medium. Its scattering cross-section is known (σ ≃ 0.174λ0) and we thus compute
the theoretical decorrelation (19) without adjusting any parameter.

5.1. Distant change
In this first experiment, we place the defect far away from the source and receiver by
choosing d = 4ℓ⋆ (see Figure 6). We then study the influence of the distance h between the
defect and the source-receiver axis (from h = 0 to h = 8ℓ⋆). In any case, the propagation
distance is larger than a mean free path. The decorrelations measured as a function of the
time in the coda (and averaged over the disorder) are represented by crosses in Figure 7.
The diffusion-based decorrelations are represented by dotted lines and the radiative transfer-
based decorrelations by solid lines.

The measured decorrelation is well described by the two models, which rapidly converge
towards each other. However, at short times, we notice the slight inaccuracy of the diffusion-
based kernel which overestimates the decorrelation. This effect is due to the instantaneous
transport of the energy in the diffusion approximation (not limited by the wave velocity).
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Addition of a single isotropic scatterer

Numerics vs Theory18 T. Planès et al.

Figure 7. Decorrelation induced by a distant point defect: d = 4ℓ⋆ and h = 0, 4, 8ℓ⋆. We represent
the diffusion-based decorrelation (dots), the radiative transfer-based decorrelation (solid lines), and
the decorrelation measured from the simulations (crosses). The shaded areas delimit the ±1 standard
deviation uncertainties.

5.2. Close change
In a second set of experiments, we study the decorrelation induced by a scatterer appearing
close to the source (d = ℓ⋆/2, ℓ⋆/4). We place the defect on the source-receiver axis
(h = 0), and keep the source-receiver distance R = 8ℓ⋆ as before. The decorrelations
measured as a function of time in the coda (and averaged over the disorder) are represented
by crosses in Figure 8. The diffusion-based decorrelations are represented by dotted lines
and the radiative transfer-based decorrelations by solid lines.

In this case, the diffusion-based kernel is inaccurate whatever the time in the coda. This
systematic error is due to the omission of the coherent wave propagating from the source
to the defect. Indeed, when it is located at less than one mean free path from the source, a
non-negligible part of the decorrelation comes from the interaction of the coherent wave
with the defect. This contribution is well described by the kernel obtained in the radiative
transfer approximation.

To conclude, the diffusion-based kernel can only be used to describe the decorrelation
induced by defects appearing far away from the source and receiver (a few ℓ), and at large
times in the coda. The radiative transfer-based kernel seems much more robust and can
describe the decorrelation whatever the time in the coda and the position of the defect.

We here considered the case of isotropic scattering in the background medium, for
which the radiative transfer equation has an analytical solution (38). In the anisotropic
scattering case, one can use numerical solutions of the radiative transfer equation to build
the sensitivity kernel. As a proof of feasibility, we build a sensitivity kernel based on a
Monte-Carlo simulated solution of the radiative transfer equation (Figure 8). Even if we did
it within our isotropic scattering case, this example let us foresee the possibility to monitor
more general media.
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Good agreement between radiative transfer theory and wavefield simulations
(Planès et al., 2014)
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Validation of the radiative transfer approach for Kdc

Numerical Simulation
Waves in Random and Complex Media 5
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Figure 1. Typical medium (a): the dots represent the point scatterers, the asterisk the source, and the
cross the receiver. The corresponding impulse response (b) shows a long tail (coda) constituted by
multiply scattered waves. The two vertical lines denote the position of the zooms in Figure 2.

The corresponding impulse response is also displayed in Figure 1(b). The impulse response
shows long-lasting wave trains constituted of multiply scattered waves.

2.2. Decorrelation of the diffuse field
To study the variations of the waveforms induced by a local change in the medium, we
compare impulse responses acquired before and after the change. Early and late time-
lapse zooms of the impulse response associated to the initial state are plotted in Figure
2(b) (solid line). To simulate a local structural change, we introduce a new scatterer in
the medium, either between the source and receiver or off the source-receiver axis (see
Figure 2(a)). In both cases, the final impulse responses are different from the initial one
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Waves in Random and Complex Media 17

Figure 6. Schematic representation of the source, receiver, and defect positions.

ulated waveforms with the theoretical predictions based on the sensitivity kernels developed
in Section 4. In the following tests, the source-receiver distance is fixed (R = 8ℓ⋆) and the
position of the new scatterer is defined by the variables d and h as illustrated in Figure 6.

The decorrelation is measured in a moving window of length T ≃ 50τ0 along the
time t in the coda. To reduce the fluctuations of the measurements, we also average each
decorrelation over 50 different realizations of the disorder (i.e. background distribution of
the scatterers in the medium). This operation also allows to estimate the standard deviation
of the measurements. We emphasize that we average these measurements only to help
us demonstrate the validity of our model. For imaging purposes, these operations are
not necessary and are compensated by the use of several sources and receivers in the
medium.

The theoretical decorrelation is computed both in the diffusion and radiative transfer
approximation. To take into account the effect of the reflective boundaries, we use the
method of images.[42] The total intensity is written as the sum of the intensity of the
real source in an infinite medium plus the contribution of the intensity of virtual mirror
images.

We choose to simulate reflective boundary conditions because they often correspond to
real life cases, in non-destructive testing of materials for instance. In the case of changes
occuring in infinite media, the expression of the decorrelation would be directly related to
the infinite medium kernels studied in Section 4.

We here consider the decorrelation induced by a point scatterer appearing at different
positions in the medium. This new scatterer is identical to the thousand ones already present
in the medium. Its scattering cross-section is known (σ ≃ 0.174λ0) and we thus compute
the theoretical decorrelation (19) without adjusting any parameter.

5.1. Distant change
In this first experiment, we place the defect far away from the source and receiver by
choosing d = 4ℓ⋆ (see Figure 6). We then study the influence of the distance h between the
defect and the source-receiver axis (from h = 0 to h = 8ℓ⋆). In any case, the propagation
distance is larger than a mean free path. The decorrelations measured as a function of the
time in the coda (and averaged over the disorder) are represented by crosses in Figure 7.
The diffusion-based decorrelations are represented by dotted lines and the radiative transfer-
based decorrelations by solid lines.

The measured decorrelation is well described by the two models, which rapidly converge
towards each other. However, at short times, we notice the slight inaccuracy of the diffusion-
based kernel which overestimates the decorrelation. This effect is due to the instantaneous
transport of the energy in the diffusion approximation (not limited by the wave velocity).
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Figure 8. Decorrelation induced by a close point defect: d = 0.25, 0.5ℓ⋆ and h = 0. We represent the
diffusion-based decorrelation (dots), the exact radiative transfer-based decorrelation (solid lines), the
Monte-Carlo radiative transfer-based decorrelation (squares), and the decorrelation measured from
the simulations (crosses). The shaded areas delimit the ±1 standard deviation uncertainties.

We also restricted our numerical experiments to point-like changes. From a theoretical
point of view, the decorrelation induced by a finite-size scatterer has yet to be investigated.
The main issue comes from the expression of the T -matrix of a finite-size scatterer, which
is not diagonal. In simpler terms, that means that we have to take into account paths that
visit the new scatterer several times, at different locations. This complication is avoided in
the case of the extended velocity change because of the Born approximation applied to the
change. We remind that this approximation allows to replace the T -matrix of the change by
its potential, which is a diagonal operator.

6. Conclusion
We studied the decorrelation and phase-shift of coda waves induced by local changes in
heterogeneous media. Using the multiple scattering formalism, we derived an analytical
expression for the decorrelation induced by a point-like structural change (strong impedance
contrast). In the case of a slight velocity change (weak impedance contrast), we derived an
analytical expression for the phase-shift induced on coda waves. Contrary to the decorre-
lation, this time-lapse can be evaluated for a spatially extended change, and we recovered
analytically an expression that was previously introduced in a probabilistic sense.[24]

The expression of the decorrelation and time-shift are both related to a same sensitivity
kernel, based on the intensity transport in the medium. The kernel depends on the position of
the source and receiver, the position of the change, and the time in the coda. The decorrelation
also depends on the scattering cross-section of the change while the phase-shift depends on
the relative velocity variation of the change.

We derived these expressions within the diffusive regime, where the diffusion-based
sensitivity kernels have analytical forms in 2D and 3D infinite media. We also suppose that
the kernel formulation remains valid outside this regime, using the appropriate intensity
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Good agreement between radiative transfer theory and wavefield simulations
(Planès et al., 2014)
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Absorption quality factor at 1.5Hz in Metropolitan France

Principle of the mapping:
Q−1

c (R,S, t) ≈

t−1

∫
Q−1

i (X)Ktt(R,X,S; t)dV(X)

Discretization of the kernel on a grid:76 J. Mayor et al. / Earth and Planetary Science Letters 439 (2016) 71–80

Fig. 7. Absorption sensitivity kernels Ka computed for two typical values of the 
mean free path (ℓ = 250 km in the Alpine arc and ℓ = 50 km in the Apennines) 
at the lapse-time tw = 95 s, corresponding to the center of the coda window. The 
distance between the station (white triangle) and the source (white point) is the 
maximal epicentral distance of our dataset (" = 150 km). The sensitivity equals 
zero outside the single scattering ellipse (dotted lines). The grid lines (in black) are 
equidistant (40 km). (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)

Q −1
c (R,S) ≈

∫
ray Q −1

i (s)ds
∫

ray ds
, (3)

which represents an integral along the ray connecting the source 
S to the receiver R (s denotes the arc-length). Although we restrict 
our mapping to 2-D (only lateral variations), the possible depth-
dependence of the attenuation structure will be discussed later in 

the paper. The medium is first discretized on a grid of square pix-
els of side a = 40 km (Fig. 7). For the maximum epicentral distance 
" = 150 km, the sensitivity is largest on the ∼5–6 pixels located in 
between the source and station (even fewer pixels at shorter epi-
central distances). In practice, instead of implementing a linearized 
inversion scheme based on Eq. (3), we adopt the following simpli-
fied procedure which captures the gross features of the attenuation 
structure (see Calvet et al., 2013 for additional details). For each 
source station pair, the value of Q c(R, S) is stored in each pixel in-
tercepted by the ray connecting S to R. An average over all paths 
is then performed to obtain the local value of Q i(x). Only pixels 
crossed by more than five rays are retained. A spatial smoothing 
over an area covering a square of 3 × 3 pixels is subsequently ap-
plied. For realistic values of the crustal mean free path, the spatial 
resolution of the maps is thus mainly controlled by the maximum 
epicentral distance (" = 150 km) and is typically of the order of 2 
to 3 pixels (80–120 km). This is consistent with the typical width 
of the kernels shown in Fig. 7. To facilitate the interpretation of 
the results, the final maps show, in each frequency band, the spa-
tial dependence of Q i/Q m , where Q m denotes the spatial average 
of Q i over the studied area.

4. Results and discussion

Fig. 8 shows the maps of Q i normalized by Q m in five fre-
quency bands (1–2, 2–4, 4–8, 8–16, 16–32 Hz), as well as the ray 
path density in the 1–2 Hz band. The typical number of rays per 
pixel, and the associated uncertainty on Q i are of the order of 100 
and 10%, respectively, except at the borders of the area of study. 
The data coverage remains almost unchanged at other frequen-
cies. Notable exceptions are the Apennines and Pannonian regions 
where seismic records have locally sampling rates equal to 50 Hz, 
which limits the analysis to frequencies lower than 16 Hz. As ob-
served in other region of the world, Q m increases with frequency 

Fig. 8. Map of the regional variations of Q i normalized by its regional average (Q m) in each frequency band from 1–2 Hz (left-top) to 16–32 Hz (middle-bottom). The ray 
path density in the 1–2 Hz frequency band is shown on the right-bottom map and remains almost unchanged as function of frequency. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Sensitivity on pixels crossed by the ray

88000 Waveforms

major sedimentary deposit areas of Ceno-Mesozoic materials: the Aquitaine basin to the
southwest; the Southeast basin, the Rhône Valley and the Rhine Graben from southeast to
northeast; in the Center, the Parisian basin is prolonged towards the North by the Brabant
Massif (Belgium). Note that we also discern the western part of the Pô Plain (northern
Italy). Six main crystalline massifs can also be identified on the geological map: the
Armorican Massif in the West; the Central Massif; the Pyrenees in the extreme southwest;
the Alps and the Vosges in the east; and the Ardenne Massif in southern Belgium.
Hereafter we interpret and discuss the main crustal characteristics of the Qi maps as a
function of frequency.

At low frequency, our results are relatively consistent with the literature: the Central
Massif appears as a weak absorption region compared to either, the Pyrenees or the Alps.
By contrast, the southeast of France appears as a strong absorption region. At 1 Hz, we
observe a correlation between the geology (Fig. 6) and the absorption structures, as
highlighted by Mayor et al. (2016). In particular, a high-absorption signature clearly
identifies four of the main Ceno-Mesozoic basins indexed on Fig. 6: the Aquitaine basin,
the Southeast basin, the Pô Plain and the boarder of the Parisian basin. Some small-scale
and high-absorbing features can also be distinguished on the map, such as the Rhône
Valley and the Brabant Massif. On the contrary, crystalline massifs are characterized by
weak absorption. Interestingly, this signature seems to be more pronounced (increase of
Qi=Qm) when the geological structures are older, as it is the case for the inherited Her-
cynian structures (Armorican Massif, Central Massif, Ardenne Massif). At high frequency
([8 Hz), the high-absorption signature of Ceno-Mesozoic sediments disappears: the
Aquitaine basin has Qi values similar to Qm and the Rhône Valley is not visible on the map
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frequency bands from 1–2 Hz (top-left) to 16–32 Hz (middle-bottom).White lines enclose the portions of the
map where the number of Qc values per pixel is greater than 3. Light color corresponds to extrapolated data.
The ray path density in the 1–2 Hz frequency band is shown on the right-bottom map and remains almost
unchanged as a function of frequency
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major sedimentary deposit areas of Ceno-Mesozoic materials: the Aquitaine basin to the
southwest; the Southeast basin, the Rhône Valley and the Rhine Graben from southeast to
northeast; in the Center, the Parisian basin is prolonged towards the North by the Brabant
Massif (Belgium). Note that we also discern the western part of the Pô Plain (northern
Italy). Six main crystalline massifs can also be identified on the geological map: the
Armorican Massif in the West; the Central Massif; the Pyrenees in the extreme southwest;
the Alps and the Vosges in the east; and the Ardenne Massif in southern Belgium.
Hereafter we interpret and discuss the main crustal characteristics of the Qi maps as a
function of frequency.

At low frequency, our results are relatively consistent with the literature: the Central
Massif appears as a weak absorption region compared to either, the Pyrenees or the Alps.
By contrast, the southeast of France appears as a strong absorption region. At 1 Hz, we
observe a correlation between the geology (Fig. 6) and the absorption structures, as
highlighted by Mayor et al. (2016). In particular, a high-absorption signature clearly
identifies four of the main Ceno-Mesozoic basins indexed on Fig. 6: the Aquitaine basin,
the Southeast basin, the Pô Plain and the boarder of the Parisian basin. Some small-scale
and high-absorbing features can also be distinguished on the map, such as the Rhône
Valley and the Brabant Massif. On the contrary, crystalline massifs are characterized by
weak absorption. Interestingly, this signature seems to be more pronounced (increase of
Qi=Qm) when the geological structures are older, as it is the case for the inherited Her-
cynian structures (Armorican Massif, Central Massif, Ardenne Massif). At high frequency
([8 Hz), the high-absorption signature of Ceno-Mesozoic sediments disappears: the
Aquitaine basin has Qi values similar to Qm and the Rhône Valley is not visible on the map
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frequency bands from 1–2 Hz (top-left) to 16–32 Hz (middle-bottom).White lines enclose the portions of the
map where the number of Qc values per pixel is greater than 3. Light color corresponds to extrapolated data.
The ray path density in the 1–2 Hz frequency band is shown on the right-bottom map and remains almost
unchanged as a function of frequency
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(Mayor et al., Bull..Earthquake Eng, 2017)
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Absorption quality factor mapping at 1.5Hz in the Alps

40000 waveforms
Sensitivity ∼ Direct ray
Qm ≈ 200

Correlation with surface
geology
1: Molasse Basin; 2: Pannonian
Basin; 3: Pô Plain; 4: Southeast
France Basin; 5: Rhône Valley; 6:
Rhine Graben

H1: Adamello intrusive complex;
H2: Pohorje Pluton

44°

48°

4°

4°

8°

8°

12°

12°

16°

16°

44°

48°

100 km

1

2

3

4

5

6

D
inarides

Vosges

Jura

Apennines

Massif

 Central

Alpine Arc
H1

H2

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Q
i
/Q

m

(Mayor et al., E.P.S.L., 2016)

L. Margerin (IRAP-CNRS) Coda Wave Interferometry Cargèse 2017 17 / 18



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusions

Kdc(X, t) ̸=Ktt(X, t)
Kabs(X, t) =Ktt(X, t)
Ksc(X, t) =Kdc(X, t)− Ktt(X, t)

Anisotropic scattering can strongly influence the sensitivity
Implications for monitoring remain to be determined
Attenuation structure is important for seismic hazard assessment
Future works: extension to 3-D, elastic, sensitivity with depth (ongoing)
Further details:
Planès et al., Waves in random and complex media, 24, 99-125, 2014.

Validation of the DC sensitivity kernel with full waveform simulations
Margerin et al., Geophysical Journal International, 204, 650-666, 2016.

Numerical calculation of the kernels
Mayor et al., Earth and Planetary Science Letters, 439, 71-80, 2016;

Attenuation structure of the Alps
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