Evaluate a level of groundmotion requires to know:

-the probability of occurrence of an earthquake at any
place

-the ground motion associated with this earthquake at a
given distance and the associated variability (emprical
information+simple functional forms)

Example share: peak acceleration associated for a
probability of 2% on a period of 50 years

50 years: lifetime of a building..
2%: acceptability (subjective)
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Earthquake statistics
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Earthquake statistics and Probabilistic Seismic
Hazard

Seismic gap theory and earthquake probability (with
and without memory)

Frequency-magnitude relationships « Gutenberg
Richter law » and earthquakes probabilities (without
memory).

Aftershocks

Probabilistic Seismic Hazard Assessment
Research needed ?

Exercices



Reid Model
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Is the reality so simple ?
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Scholz, 1989
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Figure 1.2-15: Paleoseismic time series for the San Andreas near
Pallett Creek.
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Gaussian (normal), log normal and Poisson statistics



Kramer, Geotechnical Earthquake Engineering, 1996

C.7.2 Normal Distribution

The most commonly used probability distribution in statistics is the normal distribution (or
Gaussian distribution). Its PDF, which plots as the familiar bell-shaped curve of Figure
C.6a, describes sets of data produced by a wide variety of physical processes. The normal
distribution is completely defined by two parameters: the mean and standard deviation.
Mathematically, the PDF of a normally distributed random variable X with mean X and
standard deviation G, is given by

fx(x) =

1 1{x—x\2
N/E;wxexp [—5(—{) } (C.18)

The PDF and CDF for a normal distribution are illustrated in Figure C.6. Examples of nor-
mal pdf’s for random variables with different means and standard deviations are shown in
Figure C.7.

Integration of the PDF of the normal distribution does not produce a simple expres-
sion for the CDF, so values of the normal CDF are usually expressed in tabular form. The

fx(x) Fx(x)
1.0
I
| 0.5
I
I
X
(a)

Figure C.6 Normal distribution: (a) probability density function; (b) cumulative
distribution function.

Kramer, 1996



Then
N P{200< X <240} = P[-1.75<Z<-0.75] = F, (-0.75) - F,(-1.75)
| ) N ' = 0.2266 ~0.0401 = 0.1865
)_: )_: ! TABLE C-1 Values of the CDF of the standard normal distribution, Fz(z} =1 - FA-2)
1 2 X3=Xy4
(a) (b) z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
i i -3. . . . . . 0. . . .0003 0.

F.lgure C.7 Normal distributions for (a) two random variables, X, and X,, with 34 000030 g?) 0 g:; 0.0003 ((: 0003 0003 g 0003 g 0003 ?) 000 xz
dxffer.ent means but the same standard deviation, and (b) two random variables, X; and —33 00005 00005 0.0005 0.0004 0004 0.0004 .0004 .0004 0004 0.0003
X,, with the same mean but different standard deviations. 32 00007 00007 00006 00006 00006 0.0006  0.0005 0.0005  0.0005  0.0005

31 00010 00009 00009 00009 00008 0.0008 0.0008 0.0008  0.0007  0.0007
30 00013 00013 00013 00012 00012 0.0011 0.0011 00011 00010 0.0010
29 00019 00018 00017 00017 00016  0.0016 0.0015 00015 00014  0.0014
28 00026 00025 00024 00023 00023  0.0022 0.0021 00021 00020 0.0019

nor.mal CDF is most efficiently expressed in terms of the standard normal variable, Z
which can be computed for any random variable, X, using the transformation

7= X=X (C.19) 27 00035 00034 00033 00032 00031 00030 00029 00028  0.0027 0.0026

Oy ) 26 00047 00045 00044 00043 00041 00040 00039 00038 00037  0.0036

Whenever X has a value, x, the corresponding value of Z is z = (x —% )/G,. Thus, the mean 25 00062 00060 00059 00057 00055 00054 00052 00051 00049 00048
value of Zis z = 0 and the standard deviation is ¢, = 1. Tabulated values o; the sta;ldard nor- 24 00082 00080 00078 00075 00073 00071 00069 0.0068 00066 - 0.00%4
mal CDF are presented in Table C-1. 23 00107 00104 00102 00099 00096 00094 00091 00089  0.0087  0.0084
Example C.5 22 00139 00136 00132 00129 00125 00122 00119 00116 00113 00110
Given a normally distributed random variable, X, with % =270 and o, = 40, compute the prob- 21 00179 00174 00170 00166 00162 00158 00154 00150 00146 0.0143
ability that (a) X < 300, (b) X > 350, and (c) 200 < X < 240. 20 00228 00222 00217 00212 00207 00202 00197 00192 00188 . 0.0183
Solution (a) For X = 300, _19 00287 00281 00274 00268 00262 00256 00250 00244  0.0239 0.0233
 X-x _ 300-270 _18 00359 00352 00344 0033 00329 00322 00314 00304 00301 0.0294

z= <. ST @ - 0.75 _17 00446 00436 00427 00418 00409 00401 00392 00384 00375  0.0367

Then _16 00548 00537 00526 00516 00505 00495 00485 00475 00465 00455

15 00668 00655 00643 00630 00618  0.0606 0.0594 0.0582 00571  0.0559

P = = -
[X<300] = P[Z<0.75] = F,(0.75) = 1-F,(-0.75) = 1-0.2266 = 0.7734 _14 00808 00793 00778 00764 00749 00735 00722 00708 00694 00681

(b) For X =350, _13 00968 00951 00934 00918 00901 00885 00859 00853 00838  0.0823
5 o X=% _ 350-270 _12 01151 01131 01112 01093 01075 0105  0.1038 01020 0.003  0.0985

= =T - 20 _11 01357 01335 01314 01292 01271 01251 0.230 01210 0.119  0.1170

Then -10 01587 01562 0.539 0515 0.1492 0.469  0.1446 0.1423  0.1401 01379
09 01841 01814 0.788 01762 0.73%6 0.1711 0.1685 0.1660 0.1635  0.1611

P[X>350] = P[Z>20] = 1-F,(20) = F,(-2.0) = 0.0228 08 02119 02090 02061 02033 02005 01977 01949 01922 01894  0.1867

(c) For X = 200, 07 02420 02389 02358 02327 02296 02266 02236  0.2206 02177 02148
;- X=x _200-270 06 02743 02709 02676 02643 02611 02578 02546 02514 02483 02451

= =T =17 05 03085 03050 03015 02081 02946 02912 02877 02843 02810 02776

For X = 240 04 03446 03409 03372 03336 03300 03264 03228 03192 03156 03121
’ 03 03821 03783 03745 03707 03669 ;. 03632 03594 03557 03520 03483

7= X-% _240-270 _ -5 02 04207 04168 04120 04090 04052 0013 03974 03936 03897 03859

O 40 01 04602 04562 04522 04483 04443 (ox%( 04365 04325 04286 ~ 0.4247

00 05000 04960 04920 04880 04840  0.480 1\ ® 04761 04721 04681  0.4641

Kramer, 1996



4.4.3.1 Poisson Model

The temporal occurrence of earthquakes is most commonly described by a Poisson
model. The Poisson model provides a simple framework for evaluating probabilities of
events that follow a Poisson process, one that yields values of a random variable describing
the number of occurrences of a particular event during a given time interval or in a specified
spatial region. Since PSHAs deal with temporal uncertainty, the spatial applications of the
Poisson model will not be considered further. Poisson processes possess the following
properties:

1. The number of occurrences in one time interval are independent of the number that
occur in any other time interval.

2. The probability of occurrence during a very short time interval is proportional to the
length of the time interval.

3. The probability of more than one occurrence during a very short time interval is
negligible.

These properties indicate that the events of a Poisson process occur randomly, with no
“memory” of the time, size, or location of any preceding event.

For a Poisson process, the probability of a random variable N, representing the num-
ber of occurrences of a particular event during a given time interval is given by

no—h
P[N=n] = P_ne' (4.14)
where i is the average number of occurrences of the event in that time interval. The time
between events in a Poisson process can be shown to be exponentially distributed. To char-
acterize the temporal distribution of earthquake recurrence for PSHA purposes, the Poisson
probability is usually expressed as
3 (x I)" e‘kt

PIN=n] = =5 (4.15)

where A is the average rate of occurrence of the event and ¢ is the time period of interest.
Note that the probability of occurrence of at least one event in a period of time ¢ is given by
P[N21) = P[N=1]+P[N=2]+P[N=3]+...
+P[N=o] = 1-P[N=0] = 1-e™

When the event of interest is the exceedance of a particular earthquake magnitude, the Pois-

son model can be combined with a suitable recurrence law to predict the probability of at
least one exceedance in a period of ¢ years by the expression

PIN21] = 1-¢™ @.17)

(4.16)

Kramer, p128



Using Bayes’ theorem:

Conditonal probability C(T,T,):
earthquake occuring between T
and T,

C(T,To)=(P(T)-P(T))/(1-P(Ty))

Gaussian vs
Poissonian

Figure 4.7-9: Earthquake probability estimate for the Pallett Creek segment
of the San Andreas fault.
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Gap theory

Provides a quantitative method to assess
the relative hazard of different major fault
segments.

This is near the state of the art in
earthquake prediction.

Uncertainties are high at present.



Figure 4.7-12: Conditional probabilities for various San Andreas fault segments.
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Figure 4.7-9: Earthquake probability estimate for the Pallett Creek segment
of the San Andreas faulit.
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EQ catalogues

* Time is in Grenwich Mean Time (GMT).
This is also called Universal Time. Since
earthquakes are recorded across many
time zones, it is essential for seismologists
to select a worldwide common time
standard.

 Convention is that north latitude is
positive, east longitude is positive.

Courtesy of F. Scherbaum



Figure 4.7-1: Frequency-magnitude plot for earthquakes during 1968-1997.
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Seismicity
Main shock - largest earthquake in a sequence.

Foreshocks - smaller earthquakes before the main
shock (but there is no reliable method to determine if an
event is a foreshock !!)

Aftershocks - smaller earthquakes that follow the main
shock

Swarm - sequence of earthquakes in which several of
the largest events are about the same size.



Figure 4.7-8: Aftershocks following the 1989 Loma Prieta earthquake.

Magnitude Number Effect
5 2 Damaging
4 20 Strong
3 65 Perceptible
2 384 Not felt
1 1855 Not felt
<1 2434 Not felt
Total 4760

4760 aftershocks of the Loma Prieta
earthquake had been recorded by noon
on November 7, 1989. The diminishing
number of aftershocks with time is
typical for large California earthquakes.
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Generally, use declustered
catalogs
« Raw seismic catalog is highly clustered.

Bulletin of the
Seismological Society of America

Vol. 64 October 1974 No. 5

[S THE SEQUENCE OF EARTHQUAKES IN SOUTHERN CALIFORNIA,
WITH AFTERSHOCKS REMOVED, POISSONIAN?

By J. K. GARDNER and L. KNOPOFF

ABSTRACT
Yes.

May 25, 2010 21



Probabilistic Seismic Hazard
Analysis (PSHA)

« Can be described as a combination of
many scenarios

* Procedure follows from elementary
probability theory

22



PGA with 2% in 50 year PE. BC rock. 2008 USGS
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PSHA through experiment

« Suppose one were to run a strong motion
accelerograph at a site for 10,000 years.

* From that data, we could determine the average
rate that any peak acceleration is equaled or

exceeded (provided it occurs at least once in
10,000 years).

* The result is called a hazard curve.

* A probabilistic seismic hazard analysis tries to
predict the outcome of this experiment.

Courtesy of . Anderson 24
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PSHA Methodology

Annual Exceedance Rate )LC(Y)
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| generate a hazard map.
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Y= Peak Acceleration (g) May 25, 2010, John 20

Source: USGS web site Anderson lecture



PSHA Methodology

General integral to calculate /IC(Y):

Ae (V)= || n(M.r,)®(y 2 Y 1Y (M 1,).0,)dMdr,,

n(Marﬂt)

Seismicity model

O(y=Y |Y(M t) O ) Ground motion prediction
eqn.

Courtesy of . Anderson



General integral to calculate Ac(Y) :

Ae (V)= || n(M.r,)®(y 2 Y 1Y (M 1,).0,)dMdr,,

A-(y=Y) * The expected (or mean)
number of events per year in
which the amplitude of a
measure of the ground motion
y exceeds a given threshold Y.

Courtesy of . Anderson



Courtesy of . Anderson

Defining equation for PSHA

Ae (V)= || n(M.r,)®(y 2 Y 1Y (M 1,).0,)dMdr,,

. Seismicity Model

* The seismicity model gives the number
of events per year, of magnitude M, and
in a location x. Note that ry=|x-Xx .|,
where the hazard curve is for the
location X ;..

* Models range from simple to complex.
* Only include main shocks in the model. =



May 25, 2010, John

PSHA Methodology
n(M,rg,)

Seismicity model

Large scale —
*should look about like the
seismicity map.

Fine scale —
*depends on details of fault
locations, magnitudes,
activity rates,
ecan be very difficult to
develop

Courtesy of . Anderson



PSHA Methodology

Annual Exceedance Rate )LC(Y)

Annual Exceedance Rate

Hazard curve

P(Y,T)=1-exp(-.(Y)T)

Y: amplitude of ground
motion (acceleration in this
case)

T. time interval

Contour these points to

f/ generate a hazard map.

— San Francisco B
| A suchthat P =2% for T = 50 years

Quality of hazard map
depends on quality of A.(Y)

107 107 10°

Peak Acceleration (Q)
Source: USGS web site

31



Defining equation for PSHA

A (V)= || n(M.r,)®(y 2 Y 1Y (M,1,,).0,)dMdr,,

Ground motion prediction equation —

* Iy is the distance from the source to the station.

. ®(e) gives a probability of exceeding Y conditional on M
and r. In other words, if the ground motion prediction
equation predicts a smaller ground motion, but still has a
dispersion about the mean prediction, then this must
calculate the probability of exceeding Y considering that
dispersion.

Courtesy of . Anderson



Ground motion evaluation

Source + Path + Site

0




A magnitude
M L= log Xg
A=A,10ML
. | Amplif:ude vs Distance
1 Richter's Magnitude 0 Magnitude 6, 4 and 0
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Figure 2-12. Amplitude versus distance for a My, 0 earthquake (left)
and for ML, 0, 4 and 6 earthquakes on the right. Note that magnitude

is given on a logarithmic scale. A change in magnitude is simply a
shift of the My, O curve.



Geometrical spreading
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- Amplitude Decrease: 1 / (R+7.5)
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Figure 2-25. Amplitude decay with distance of a body wave.



A(x, t) = Aoe_”fR/ vsQ(f) Anélastic attenuation

Attenuation vs Distance: Q=100 Attenuation vs Distance: Q=50
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Figure 2-26. Attenuation due to geometrical spreading and intrinsic
attenuation for two frequencies and for two values of Q. Geometrical
attenuation is dominant for distances less than 10 km for moderate
values of Q. Attenuation is strongly frequency dependent.
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Effet de site : séisme de
Mexico (1985)
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log(Y)=f(M,F,R,S) : simplest form ?

log(PSA(f))=la(f)-M|+p(f)- R~log(R){c(i, /)
Source ‘ ‘ Magnitude
Path ‘ ‘ Distance
Site ‘ Vs30 (S wave velocity in the

last 30 meters)




How are empirical models derived ?

e Choice of a functional form (choice of the
equation which describes the distance
and magnitude dependence of ground
motion)

e Choice of a database

* « Regression » : regression analysis 1s the
mathematical process used to determine the
coeffient in the equation in order to fit the
data



GMPE coefficients determined by regression analysis on recorded data
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log(Y)

0, residual
> log(Ypred)

? I > log(Y,,)




0 = lOg(Yobs) _ lOg(Ypred) = lOg(Yobs) _f (M9 R)

We introduce g, to represent the residuals normalized
by the standard deviation, e= 0/0

0.4 Probability of
: & Exceedance
0.3
2 0 50 %
§ 02 (median)
o 1 16 %
a 1 84
x (7
% X
0 3 2 1 0 1 2 3 2 2.3%
Epsilon, & 3 0.1%



Abrahamson & Silva (2005) PGA

The logarithmic
residuals are
generally found to
conform to a
normal (Gaussian)
distribution with
mean (0 and
standard deviation
W)

Observed Normalised Total Residual

4 -2 0 2 4

Standard Normal Quantile

The distribution of the ground-motion residuals can therefore
be completely characterized by the logarithmic standard
deviation, o




log(Y) = f(M, F,R,S) + 8 = (M, F,R,S) + £.6

log(Distance)
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Recordings of 1995 Kobe earthquake compared to the
Tanaka and Fukushima (1990) GMPE

T T T T T T ITTTT
predicted
IR bl S U S 0 U 5 AN G 38 S5 L standard
1000 2 : e |
« 8 s, b bt mweweeses |
Takarazuka. 1
akaton O Shin-ko SRY Ta X reclaimed |
5 TR 2 _ igashi Kpbe A A alluvium ||
cm/s KobeUniy PortJsland™ 1 - sk 8 A r% 3. ©  diluvium
B \ \A 0  Neogene |
fh‘ & oy O  bedrock
] OO — ‘\. = ) -_G
A S b S
.o h) ‘
— L K Co ME
o o 4
‘I O L
0.1 1 10 1000

~ Distance a la faille, km
Courtesy from Y. Fukushima



European
Commission

G5,

PGA
475 years

o1 10° 15

D. Giardini, J. Woessner, L. Danciu, H. Crowley, F. Cotton, G. Gruenthal, R. Pinho, G. Valensise, S. Akkar, R.
Arvidsson, R. Basili, T. Cameelbeck, A. Campos-Costa, J. Douglas, M. B. Demircioglu, M. Erdik, J. Fonseca, B.
Glavatovic, C. Lindholm, K. Makropoulos, F. Meletti, R. Musson, K. Pitilakis, K. Sesetyan, D. Stromeyer, M. Stucchi,

A. Rovida, Seismic Hazard Harmonization in Europe (SHARE): Online Data Resource, doi:
10.12686/SED-00000001-SHARE, 2013.




