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S U M M A R Y
We present core flows constructed from high resolution secular variation (SV) models for the
epochs 2001, 2002.5 and 2004, assuming that these flows are quasi-geostrophic in the core
interior and that they do not cross the axial cylindrical surface tangent to the inner core. A
large jet encircling the inner core and carrying a significant part of the core angular momentum
and axial vortices of ∼700 km diameter mainly clustering around the cylinder tangent to the
solid inner core, are inferred from geomagnetic SV. New regularizations are suggested from
dynamic considerations. It is found that medium and small-scale velocity fields contribute
significantly to the large-scale SV. Accordingly, final models of core flows are calculated after
an iterative process, whereby the magnetic field variation produced by small-scale stochastic
magnetic fields and medium to small-scale computed velocity fields are incorporated into the
inversion itself as modelling errors. This study represents a significant step in an effort to join
geomagnetic observations and the fluid core dynamics on short timescales.

Key words: Inverse theory; Earth rotation variations; Dynamo: theories and simulations;
Rapid time variations; Satellite magnetics.

1 I N T RO D U C T I O N

Recent years have seen rapid advances in the understanding of the

Earth’s fluid core dynamics, especially since fully 3-D dynamo nu-

merical models produced their first results (Glatzmaier & Roberts

1995). One surprising outcome of these complex numerical cal-

culations is that, in many cases, the well-known dynamic rigidity

parallel to the direction of rotation, characteristic of motions in a

rapidly rotating system, is still present in spite of convection and

magnetohydrodynamic effects (see e.g. Olson et al. 1999). Dur-

ing the same time, particularly for the last 7 yr, the three satellites

Ørsted, SAC-C and CHAMP have been providing geomagnetic data,

in such a way that the overall database covers a 6.5 yr period con-

tinuously (Maus et al. 2006; Olsen et al. 2006; Thomson & Lesur

2007). Never before had the geomagnetic field been monitored with,

simultaneously, such accuracy of individual measurements, global

density of observation points and long duration. It is expected that

these conditions add up to produce models of the Earth’s core secular

variation (SV) with unprecedented resolution of intermediate tem-

poral and spatial scales. Therefore, this seems to be the right time

to put together dynamic results and observations and try to compute

core–mantle boundary (CMB) flow models that are compatible with

both theoretical and observational constraints.

Experimental and numerical studies of fluid dynamics in rapidly

rotating spherical shells are a central issue for the understanding of

planetary and astrophysical systems in general, and the Earth’s core

in particular (Busse 1976). Columnar flows aligned with the rotation

axis, z, have often been seen to emerge in laboratory experiments,

as preferred self-organized structures (e.g. Cardin & Olson 1994;

Aubert et al. 2001; Gillet et al. 2007). Columnar axial vortices are

the expression of Proudman–Taylor theorem, which applies when

the main force balance is dominated by the Coriolis and pressure

forces and implies a kind of dynamic rigidity on the fluid parallel

to the rotation axis, known as geostrophy (e.g. Tritton 1988). As a

result, a purely geostrophic flow is 2-D in the plane perpendicular

to the rotation axis. Inside a spherical shell, it corresponds to cylin-

drical flows, coaxial with the rotation axis, since any z-invariant

radial component would violate the impenetrability condition on

the boundary. Spherical sloping impenetrable boundaries do im-

pose compression of fluid columns that move radially outward from

the rotation axis, and stretching of inward moving columns, thus

inducing an ageostrophic (i.e. z-dependent) axial flow component.

This geometrical boundary effect is known as topographic β-effect

(e.g. Busse 2002) and the resulting flow is quasi-geostrophic (QG).

For studying the dynamics of the Earth’s liquid outer core, buoyancy

and magnetic forces have necessarily to be included (e.g. Gubbins

& Roberts 1987). These forces can induce radial flows, liable to

be affected by the topographic β-effect, and an ageostrophic flow

component can be expected. Yet, a number of analytical, numer-

ical and experimental studies on thermal, non-magnetic, rotating

convection, have shown that flows driven by a realistic tempera-

ture or compositional gradient are almost 2-D, with convective cells

aligned with the rotation axis (see Jones 2007, for a review and

Zhang et al. 2007 for a re-appraisal from the viewpoint of QG in-

ertial waves). Magnetoconvection numerical studies consider the

impact of an imposed magnetic field on convection of an electrical
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conducting fluid. In most of these studies, the columnar convection

still dominates, though rolls become thicker as the magnetic field ef-

fect increases (e.g. Jones et al. 2003). Convection-driven numerical

dynamos allow for the modification of the ambient magnetic field by

the backreaction of the convective flow. There, also, strongly colum-

nar regimes have been observed, associated to dipole-dominated ex-

ternal fields of the Earth’s type (Olson et al. 1999; Christensen &

Aubert 2006). The mechanism by which convective rolls generate

magnetic field by dynamo action, is discussed with detail in Olson

et al. (1999).

One of us (Jault, 2008) has recently attempted to put these results

in a general framework. The study is motivated by the observation

that the timescale of interest for SV studies from satellite data is of

the order 1–10 yr. It relies on a numerical calculation with imposed

axial symmetry. It is found that the relevant parameter for emergence

of geostrophic cylinders when viscous and magnetic diffusive ef-

fects can be neglected is the ratio, λ, between the periods of inertial

and Alfvén waves in a rotating system permeated by a magnetic

field instead of the Elsasser number �. Then, it is remarked that

magnetoconvection and dynamo studies showing columnar flows

aligned parallel to the axis of rotation are all associated to values of

λ much smaller than unity λ < 3. × 10−2. Hence, it is suggested that

λ is the appropriate parameter to measure the relative importance of

magnetic and Coriolis forces, even for non-axisymmetric systems.

For the Earth’s core, λ ∼ 10−4, suggesting a dominance of rotation

upon magnetic effects.

QG flows have to be distinguished from tangentially geostrophic

surface flows (Le Mouël et al. 1985; Jackson 1997; Chulliat &

Hulot 2000; Pais et al. 2004). The former affect the entire fluid

volume where they obey an equation for axial vorticity while the

latter are restricted to the core surface where they are constrained by

a radial vorticity equation compatible, for example, with a thermal

wind balance. Calculations of tangentially geostrophic flows have

been justified by the locally small value of the Elsasser number

�. Acknowledging that λ is more appropriate than � to measure

Coriolis forces against magnetic forces when magnetic diffusion is

negligible, brings out the relevance of QG flows on short timescales.

For CMB flow inversion, the QG assumption has the advantage

of eliminating the well-known non-uniqueness of solutions (Backus

1968) by providing new constraints supported by dynamics. Indeed,

the most obvious implication of the underlying dynamics for the

kinematics of CMB flows is the equatorial mirror symmetry. It has

also been frequently noted in dynamo calculations (Olson et al.
1999; Christensen & Aubert 2006; Sreenivasan & Jones 2006), a

decoupling of the flow inside and outside the cylinder coaxial with

the rotation axis and which touches the inner core equator, usually

called the tangent cylinder (TC). This result can be explained in the

light of a dynamic regime controlled by rotation, by stressing that

the rapid change in length of columns that cross the TC requires

a strongly ageostrophic motion of which there would be no source

mechanism (Jones 2007). A further implication is that length scales

associated to columnar flows are expected to be smaller than those

dominating standard CMB inverted flows, because tall thin columns

minimize the violation to the impenetrability condition at the spher-

ical core surface and, accordingly, the departure from geostrophy

induced by the boundaries (e.g. Busse 1970). As a summing up, we

can say that dynamic arguments favour (i) equatorial mirror sym-

metry; (ii) minimum fluid transfer through the TC and (iii) relatively

short length scales for the flow.

A review of core–mantle flow modelling from inversion of geo-

magnetic data, with discussion of the main aspects related to this

procedure, is given by Whaler & Davis (1997) for the classical spec-

tral approach. We elaborate now on points (i), (ii) and (iii) referred

above, where our inversions differ from the usual procedure.

Early core flow studies, using magnetic observatory data, first

identified equatorially asymmetric features in the computed flows,

such as the strong westward drift under Africa and under the South

Atlantic and the gyratory flow below the Indian ocean (e.g. Bloxham

1989). Hulot et al. (1990), however, computed a tangentially

geostrophic CMB flow for epoch 1980, imposing symmetry about

the centre of the Earth and plane reflexion symmetry (or mirror

symmetry) about the equatorial plane. They could resolve two vor-

tices, each one spreading over 180◦ longitude, which they interpreted

as the surface expression of columnar flows. Since then, different

authors have kept examining the equatorial symmetry of the flow

from more and more accurate SV models without reaching a firm

conclusion. Using models derived from satellite data, Hulot et al.
(2002) inverted a mean MF/SV model over the 20 yr period that

separated Magsat from Ørsted satellite missions and reported a

medium to high-latitude ring of vortices, approximately symmet-

rical with respect to the equator. Holme (2007), however, in the

course of a review on core flow calculations opined that many of

these vortices are not required by observations, because they pro-

duce no secular variation. Amit & Olson (2004) found indeed that

their core flows, also inferred from the variation of the magnetic

field between the epochs of Magsat and Ørsted show little evidence

of non-axisymmetric Taylor columns. Amit & Olson (2004, 2006)

relied on studies of other geophysical flows to suggest new ways to

invert for core flows. Their helical and columnar flows hypotheses

are used only to infer certain conditions on the CMB flow that elim-

inate the associated non-uniqueness. The flows are defined at the

core surface alone and no symmetry with respect to the equator is

imposed. Holme & Olsen (2006) searched also for possible equato-

rial symmetry in flows inverted from the CO2003 geomagnetic field

model, determined from Ørsted and CHAMP satellite data covering

a 4.5 yr period. They related symmetrical features present in some

of their flows to the convective rolls described by Busse (1970) but

were unable to conclude unambiguously on the equatorial symme-

try of core flows. Finally, Rau et al. (2000) inverted the SV from

numerical dynamo models and compared the inverted flows to flows

extracted from the numerical model, below the outer Ekman bound-

ary layer. They pointed out that the usual pattern seen in standard

inverted flows, namely strong westward currents within 30◦ latitude

and large gyres that do not close locally into complete vortices, may

well be a spurious effect of limited resolution of the MF and SV,

blurring an underlying equatorial symmetric, columnar flow.

To our knowledge, the TC has not yet been explicitly introduced in

core flow inversions. However, a possible influence of that imaginary

cylinder on core flows has been sought, either by direct inspection

of core flow maps (Pais & Hulot 2000; Hulot et al. 2002; Holme

& Olsen 2006), or by examination of high latitude distribution of

magnetic field time variations (Olson & Aurnou 1999). All these

studies found evidence for a large polar vortex at the North pole.

Another polar vortex with possibly a weaker amplitude has also

been tentatively inferred at the South Pole from plots of the zonal

toroidal velocity component as a function of latitude. Finally, the

high latitude ring of vortices of Hulot et al. (2002) clusters around

the TC.

Hulot et al. (2002) have been the first to use high precision satel-

lite data to inspect intermediate to small length scales of the CMB

flow. The smallest high latitude vortices obtained by these authors

from inversion of Magsat to Ørsted field changes in the Atlantic

hemisphere, have a diameter of about 1000 km. Holme & Olsen

(2006) inverted the CO2003 model truncated at degree 14 for more
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detailed flow images at the CMB. Their computed flows show much

more small-scale structure than previously published flows. The two

studies didn’t show a clear convergence at the truncation degrees 13

(Hulot et al. 2002; Eymin & Hulot 2005) nor 14 (Holme & Olsen

2006), suggesting that a higher truncation degree should be used.

When trying to assess smaller scale flows, as pointed out by Eymin

& Hulot (2005), we are confronted with a crucial limitation of the

inversion model, as we have to deal with only a partial knowledge

of the main field. This discussion is expanded in Section 3.

The aim of this paper is to investigate the possibility that SV,

continuously monitored by satellites since only a few years ago,

is due to advection of the geomagnetic field by QG vortices. The

features of our method that are in common use are expounded in

Section 2, together with a discussion of available data. In Section 3,

we explain how we estimate modelling errors to invert for flows in a

self-consistent way. In Section 4, we describe the kinematics of a QG

flow model inside the core, and derive the expressions to describe its

core surface signature. In Section 5, we present the different kinds

of constraints used in the inversion. Section 6 is for the presentation

of results, conclusions and discussion are presented in Section 7.

2 I N V E R S I O N O F G E O M A G N E T I C

DATA

2.1 Data

Recent models for the near-Earth magnetic field, such as CHAOS

(Olsen et al. 2006) and POMME3 (Maus et al. 2006), have been de-

rived using high-precision satellite data from Ørsted, CHAMP and

SAC-C satellites in the former case, and only CHAMP satellite in

the latter case. A special emphasis has been given to the fact that

a precise monitoring of geomagnetic field variations during a 6.5-

and a 5-yr time periods, respectively, might translate into resolu-

tion of small time and spatial scales with unprecedented accuracy.

Although CHAOS SV model is considered reliable up to spherical

harmonic degree 15 (Olsen et al. 2006), a relatively flat tendency

in the corresponding Mauersberger–Lowes spectrum curve can be

easily identified above degree 13 (fig. 2 from Olsen et al. 2006). This

flat tendency is usually associated to the emergence of the noise level

(see e.g. Maus et al. 2006) and the reason why it is absent from the

POMME3 SV model is the imposed damping of degrees n ≥ 14.

Finally, we note that presently available main field models derived

from satellite data significantly underfit the field variations as it has

just been shown for the CHAOS model by Olsen & Mandea (2007)

(see their fig. 3). As to the main core field, it is well-known that,

while dominating at long wavelengths, it is masked by the crustal

field above spherical harmonic degree 14 (e.g. Langel & Estes 1982).

Global crustal magnetic field models computed from satellite mag-

netic measurements rely on data subtracted from an internal field

model up to degree 14 or 15 (Maus et al. 2006), and will inevitably

also include the short length scales of the core field. Accordingly,

and at the present stage, they can’t be used to extract the crustal field

from the total geomagnetic field data.

In our study we use CHAOS as MF and SV models, both trun-

cated to degree 13, and concentrate on the equally spaced epochs

2001.0, 2002.5 and 2004.0, avoiding the edges of the model time

interval, where spurious effects coming from the time regulariza-

tion can show up. We also consider SV models from POMME3 as

alternative realizations to CHAOS SV models for corresponding

epochs. We then use as a conservative estimate of the SV error the

differences between CHAOS and POMME3 which we subsequently

refer to as the ‘pessimistic’ SV uncertainties. As another possible

estimate of the SV error, though probably too optimistic, we use

the noise level of 0.02 nT2 yr−2 appearing in the SV spectrum for

CHAOS, at the model middle epoch 2002.5 (Olsen et al. 2006),

hereinafter referred to as the ‘optimistic’ SV uncertainties.

2.2 The regularized least-squares approach

The formalism and notation is the same as in Pais et al. (2004) and

is rather standard in conventional flow inversion spectral methods

(see Whaler & Davis 1997, for a review). The Helmholtz represen-

tation of the tangential velocity uH in terms of poloidal S(θ, φ) and

toroidal T (θ, φ) components is:

uH (θ, φ) = rc∇HS − rc r̂ ∧ ∇HT , (1)

where r c is the core radius, (r , θ , φ) are spherical angular coordi-

nates and ∇H = ∇ − r̂∂/∂r is the horizontal gradient operator on a

spherical surface. We use (sm,c
n , sm,s

n ) and (tm,c
n , tm,s

n ) for the degree n,

order m poloidal and toroidal spherical harmonic coefficients of the

flow under the Schmidt semi-normalization of the associated Leg-

endre functions. Using the same normalization, the main magnetic

field B and its SV are described in terms of the spherical harmonic

coefficients (gm
n , hm

n ) and (ġm
n , ḣm

n ), respectively.

Truncating the main field and the SV at n = L B and n = L y ,

respectively, and the flow at n = L x and substituting into the frozen-

flux radial induction equation at the core surface,

∂

∂t
Br = −∇H · (uH Br ) , (2)

gives the linear equation

Ax = y, (3)

where y is the vector of the (ġm
n , ḣm

n ) SV Gauss coefficients, x is

the vector of the tm,c(s)
n and sm,c(s)

n flow coefficients, and A is the

interaction matrix whose elements account for the importance of

each elementary flow in generating each coefficient of the SV.

The method used in this study relies on the regularized least-

squares (RLS) criterion, where an estimate x̂ is sought that mini-

mizes the objective function

�(x) = (Ax − y)T C−1
y (Ax − y) +

∑
i

λi xT C−1
i x. (4)

In the expression above, the first term on the right-hand side is a least-

squares discrepancy between data and model estimation, normalized

by the covariance matrix for the SV, Cy . The terms xT C−1
i x are

the regularization norms and λi are the corresponding penalization

parameters. This method is suitable to accommodate the a priori on

the core flow that are discussed in Section 5.

3 TA K I N G I N T O A C C O U N T

U N D E R PA R A M E T R I Z AT I O N

O F T H E M F A N D O F T H E F L O W

3.1 Effect of MF small scales

There is no point in trying to achieve a very small misfit M =√
(Ax − y)T (Ax − y) when inverting for CMB flows, since it is

well known that (i) errors in SV coefficients due to observational

and modelling limitations (e.g. Pais & Hulot 2000); (ii) under-

parametrization of the MF and of the inverted flows related to the

use of truncated series (Hulot et al. 1992; Celaya & Wahr 1996; Rau

et al. 2000; Eymin & Hulot 2005) and (iii) inability of the model
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to treat the effects of diffusion (Holme & Olsen 2006), are to be

expected. Nevertheless, it is possible to estimate the effects due to

each one of these unavoidable error sources, and simply accept that

the inverted flow solutions can explain the observed SV only up

to the uncertainty level of the estimated errors. This amounts to

tuning the penalizing parameters λi in (4) in such a a way that

χ =
√

(Ax − y)T C−1
y (Ax − y)

Ny
∼ 1 (5)

where χ is the normalized weighted misfit, N y is the number of

spherical harmonic coefficients used to describe the SV and Cy

is the covariance matrix, properly modified to a form which more

accurately accounts for all error sources and, in particular, unsolved-

for parameters.

Though this has been the usual approach when dealing with SV

errors (item i), see for example, Pais & Hulot (2000), it is not usually

done for the other two error sources in CMB flow computations. In

this study, we focus on error source (ii) and follow Holme & Olsen

(2006) in assessing error source (iii).

Hulot et al. (1992) estimated the contribution of high degree

terms of the MF and of the flow to the observed large scales of

SV, in the frozen-flux approximation. Critical to their study are the

assumptions made on the statistical properties of the flow, which

require that the spectrum of the flow decays with n−2. Celaya &

Wahr (1996) considered the problem of spatial but also temporal

underparametrization of the flow in frozen-flux core–surface flow

inversions. They tested synthetic flows with different energy spec-

tra and different time variations, to finally conclude that only if the

spectra fall off as n−2 or faster, and the steady-motion constraint

is relaxed, can underparametrization effects (aliasing) be neglected.

Whether these conditions are satisfied or not by CMB real flows is,

of course, a completely different issue. Rau et al. (2000) and recently

Amit et al. (2007), could test different inversion assumptions using

core flows taken from self-consistent 3-D dynamos calculated for

high values of the Ekman number (compared to what is presently

achievable) and producing dipole-dominated fields. They identified

as a main problem that, in case the numerical model core flow con-

tains substantial energy at intermediate scales, the resolution below

degree 14 of the magnetic field would produce serious artefacts of

the computed flows. These artefacts would be seen even at long flow

wavelengths. Eymin & Hulot (2005) estimated the SV induced by

unresolved small-scale flows interacting with both the known and

the unknown scales of the MF and by large-scale flows interact-

ing with the unknown small-scale magnetic field, which they called

non-modelled SV. They tested different a priori extrapolations of the

flow spectra and used a reasonable extrapolation for the MF spectra.

They also identified as the main source of non-modelled SV, the

lack of knowledge of the small scales of the MF (components above

degree 14).

The MF spectrum at a certain distance r from the Earth’s cen-

tre, in a region where the field is irrotational, is given by R(n) =
(n + 1)(a/r )2n+4

∑n
m=0[(gm

n )2 + (hm
n )2], where a is the Earth’s refer-

ence radius, taken as 6371.2 km. Following Langel & Estes (1982)

and Eymin & Hulot (2005), we use as a model for the non-dipole

observational MF spectrum at the Earth’s surface the simple formula

R∗(n) = R0

(
r ′

a

)2n+4

, (6)

corresponding to a straight line in a semilogarithmic graph, with

R0 in nT2 yr−2 and r′ in km. We derive the two parameters (R0,

r ′) from all the MF coefficients from n = 2 to n = 13, by using a

least-square procedure, for epochs 2001.0, 2002.5 and 2004.0. The

values (14 × 109, 3.39 × 103) apply for the whole time interval. The

extrapolation of the MF spectrum to degree L B = 30 assumes that

model R∗(n) describing the behaviour of the MF that can be known,

remains valid for degrees larger than 13. We adopt an isotropic

statistical model for the non-dipole field, where the set {gm
n , hm

n } of

non-dipole coefficients are treated as independent Gaussian centred

variables (e.g. Eymin & Hulot 2005). We thus use a zero mean

Gaussian random generator, with the variance σ 2
n associated to each

degree n > 13 coefficient given by

σ 2
n = R∗(n)

(n + 1)(2n + 1)
.

With this statistical model for the small-scale magnetic field (BS),

we can gauge the SV produced by BS interacting with a core surface

flow model, as done by Eymin & Hulot (2005). In all computations,

we use truncation of flow scalar series at the maximum degree,

L x = 26, that can be constrained (even if only slightly) by the first

13 spherical harmonic (SH) degrees of the MF and of the SV, on ac-

count of the triangle rule applying for the interaction integrals used to

compute the elements of matrix A (e.g. Hulot et al. 1992). Figs 1(a)

and (b) refer to a tangentially geostrophic flow, x̂1, computed in a

standard way (e.g. Pais et al. 2004) for 2001.0, using as data only

the first 8 SH degrees of CHAOS SV model (Fig. 1a, solid line). The

variance attributed to these SV coefficients conforms to the ‘pes-

simistic’ perspective (Fig. 1a, circle-dashed line) and the standard

strong regularization of Bloxham (1988) was used, in order to ease

the comparison with other studies. Only the large scale and known

magnetic field (BL) contributes to the elements of the interaction

matrix A. The choice of the attenuation parameter λ (the Lagrangian

multiplier applied to the regularization norm, see eq. 4) was deter-

mined by χ = 1.0. As we can see in Fig. 1(b), where the mean

energy per degree of poloidal (grey diamonds) and toroidal (black

circles) coefficients is represented, only the first 10 or 11 SH de-

grees of the inverted flow are constrained by the SV coefficients, the

knee in the spectrum showing the degree above which the solution

is constrained by the regularization alone. Fig. 1(a) shows that the

misfit errors (star-dashed line) are in accordance with the precision

attributed to the data. However Fig. 1(a) also shows that the SV pro-

duced by this flow interacting with BS (dot–dashed line) is much a

more important signal. The situation is even more critical if we com-

pute a flow that explains the SV model up to degree 13, attributing the

same ‘pessimistic’ uncertainty to the CHAOS model coefficients.

Then, as shown in Fig. 1(d), smaller flow scales are required, up to

about degree 16, and only for higher degrees does regularization

effects prevail. By advecting BS, such flow can produce a SV signal

much higher than the uncertainty attributed to the model coefficients.

These results unveil an internal inconsistency that we propose to

eliminate.

3.2 Iterative estimation of the modelling error

Using two different sets of damping parameters λi (see eq. 4), we

compute two different flow solutions, (1) and (2), truncated at the

same degree, that both account well for the observed SV. These

are (1) flow x̂1, obtained using the known MF up to degree 13 and

(2) flow x̂2, obtained using the observed MF up to degree 13 and

an extrapolated BS from degree 14 to degree 30. We use the two

solutions (1) and (2) to iteratively calculate x̂1, as we explain in

the following (see also the chart displayed in Fig. 2). We start with

the covariance matrix Cy
(0), defined with diagonal elements given
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Figure 1. Results from a single inversion of the first 8 degrees (a) and (b) and the first 13 degrees (c) and (d) of CHAOS model at epoch 2001.0, for a tangentially

geostrophic CMB flow, using a strong surface regularization. (a) and (c): Power spectra, at the Earth’s surface, of the observed (solid) and the estimated (dashed)

SV field, the SV uncertainties used in Cy
(0) (dash–circle), the final differences from the input model (dash–star) and the signal due to advection of BS by the

estimated flow x̂1 (dot–dashed). (b) and (d): Mean energy per degree, for toroidal (black circles) and poloidal (grey diamonds) SH components of the CMB

flow.

by an estimation of SV observational errors. Let y(0)
1 = A1x̂(0)

1 be

the SV induced by flow (1) advecting the MF up to degree 13 and

y(0)
2 = A2x̂(0)

2 be the SV induced by flow (2) advecting the known

MF but also the extrapolated smaller scales up to degree 30. The

SV recovered from the two flows are similar, y(0)
1 ∼ y(0)

2 , within the

uncertainty expressed by the covariance matrix C(0)
y . Let us now

compute the SV induced by advection of the known part of the

MF by x̂(0)
2 , that is, y′(0)

2 = A1 x̂(0)
2 . At this point, we have a guess

of how different from A1x̂(0)
1 can be the SV signal resulting from

interaction of the flow with the (known) large-scale MF, when our

model incorporates more information on the MF small scales. The

difference

y(0)
1 − y′(0)

2 (7)

gives us an estimate of the error on SV due to our ignorance of

the small MF scales (BS). We fit an exponential function to the

mean difference per degree (a straight line in a semilog graph), and

use this as an estimate of the modelling errors in SV due to under-

parametrization of the MF, assumed isotropic. We compare these

modelling errors with the corresponding diagonal elements of C(0)
y ,

and construct a modified C(1)
y with the highest of corresponding er-

rors. Note that we use the same covariance matrix C(1)
y to calculate

the flows x̂(1)
1 and x̂(1)

2 so that the calculated modelling error obtained

from the difference between the recovered secular variation signals

y1
(1) and y2

(1) would be zero for vanishing small-scale magnetic

field. The new covariance matrix is used in the next iteration, and all

the process repeated, until C(i)
y does not change from one iteration

to the other. At this stage, say iteration i = k, the computation has

converged for flow solutions x̂(k)
1 and x̂(k)

2 , which are both consistent

with the SV errors represented by C(k)
y . The reasoning we rely on as-

sumes that the essential features of small MF scales can be assessed

with the MF truncated at degree 30.

In Figs 3 and 4, we show how this procedure modifies the flow

solutions previously shown in Fig. 1. First, in Fig. 3, we show that

the prediction from converged flows (1) and (2) are close to each

other, but at a distance to the CHAOS model clearly higher than the

initial error. The difference between the signal produced by flow (1)

and flow (2) advecting BL, is A1x̂1 −A1x̂2, very similar to the signal
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1 =

[
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1 , BL

]
SV

(i)
2 =

[
x̂

(i)
2 , (BL + BS)

]

C(i+1)
y =

[
x̂

(i)
1 , BL

]
−

[
x̂

(i)
2 , BL

]

∼

inversion

SV estimation

modelling error

to
iteration

i
+

1

Figure 2. Flow chart illustrating the iterative method whereby the modelling error due to the interaction between velocity models and the small scale magnetic

field is estimated. Here, [x̂, B] denotes advection of the main field B by the flow x̂.

0 2 4 6 8 10 12 14
Degree, n

10
-2

10
0

10
2

10
4

S
u
r
f
a
c
e
 
m
e
a
n
 
s
q
u
a
r
e
 
 
(
n
T
2
y
r
-
2
) SV CHAOS-model

A
1
X
1

A
2
X
2

A
1
X
1
 - A

1
X
2

(A
2
 - A

1
)X

2

Modelling error

Initial error

Figure 3. Iterative inversion of the first 13 degrees of CHAOS model at epoch 2001.0, for a tangentially geostrophic flow using strong surface regularization.

SV power spectra at the Earth’s surface of starting model (solid line), prediction from inverted flow x̂1 (dashed line) and prediction from inverted flow x̂2

(dot–dot–dashed line). Also represented, the SV uncertainties (black circles), the modelling error estimated at the first iteration (triangles and diamonds) and

the converged modelling error (dot–dashed line).

due to flow (2) advecting BS, computed from (A2 − A1)x̂2. Either

one can be used to estimate the modelling error, that is also shown.

In Fig. 4, we show how the inconsistency appearing in Fig. 1 was

corrected. Small flow scales were iteratively constrained to produce

a lower large-scale SV signal. From comparison of the spectra ob-

tained before and after iterative estimation of the modelling error

(continuous lines and circles/diamonds, respectively, in Figs 4b and

d), we can describe the effect of this procedure on the final flow

as a small shift to lower degrees of the regularization effect, while

the spectra are slightly reshaped. Now, the misfit obtained with the

converged flow (1) is consistent with the modelling error used as an

estimation for the distance of prediction to data.

Two important results can be outlined. First, the slope changes

in the spectra (see Figs 4b and d) mark the degree up to which the

flow model coefficients are constrained by the data. It stands out

that SV model coefficients between degrees 8 and 13 require more
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Figure 4. Results from the iterative inversion of the first 8 degrees (a) and (b) and the first 13 degrees (c) and (d) of CHAOS model at epoch 2001.0, for a

tangentially geostrophic CMB flow, using a strong surface regularization. (a) and (c): Power spectra, at the Earth’s surface, of the observed (solid) and the

estimated (dashed) SV field, the SV uncertainties used in Cy
(0) (dash–circle), the final differences from the input model (dash–star) and the converged modelling

error (dot–dashed). (b) and (d): Mean energy per degree, for toroidal (black circles) and poloidal (grey diamonds) SH components of the CMB flow, and the

corresponding values shown in Figs 1 (b) and (d) (solid curves), obtained without taking into account modelling errors.

small scales than below degree 8. Second, the iterative procedure

deteriorates significantly the misfit to the SV model. This is the

price to pay to compute flows in a model space limited by our actual

knowledge of the MF (flows 1), which are nevertheless consistent

with flows computed in a larger, reasonably extrapolated, model

space (flows 2).

3.3 Effect of regularization and initial errors

on the converged flow

To further illustrate the method using standard regularizations,

we consider the computation of tangentially geostrophic flows for

2001.0 when minimizing the kinetic energy of the surface flow (weak

regularization) or the second derivatives of the surface flow (strong

regularization) (see e.g. Pais et al. 2004). In this case, a single λ

value is to be considered for each inversion (1) and (2), which is

chosen to guarantee that the converged x̂1 and x̂2 give a χ value of

1.0. The evolution, during the iterative process, of the straight line

fitted to the mean modelling SV error per degree, is represented in

Fig. 5. The black circles correspond to the initial errors in the diago-

nal of C(0)
y , the dashed line to the first iteration errors in the diagonal

of C(1)
y and the solid line to the converged errors in the last iteration

matrix C(k)
y . In Fig. 5, we also show the effect of regularization and

of the initial errors specified for each SV harmonic degree: while the

left-hand column refers to results obtained when using the strong

regularization, the right-hand column shows results when using the

weak regularization; the first line is for computations starting from

‘pessimistic’ and the second line from ‘optimistic’ initial SV error

estimations. As we can tell from Fig. 5, small-scale flows advect-

ing BS do contribute significantly to large-scale SV, thus increasing

the intercept of the final modelling error straight line (solid black

lines). As might be expected, the weak regularization amplifies this

effect by allowing smaller flow scales to appear. Using very small

values for the initial specified SV errors has an analogous, though

more tenuous, effect. It suggests that trying to explain the SV data

very closely from the beginning requires an important contribution

from small flow scales, and that these are kept in all the following

iterations.
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Figure 5. Mean SV errors per degree, at the Earth’s surface, in an iterative inversion for tangentially geostrophic flows, using a ‘strong-norm’ regularization

(a) and (c) or the minimization of the kinetic energy of the surface flow (b) and (d). Shown, are the truncation modelling errors in the first (dashed) and last

(solid) iterations, the initially specified SV uncertainties (black circles), ‘pessimistic’ in (a) and (b) and ‘optimistic’ in (c) and (d) and the diffusion modelling

errors (white squares) from free decay modes.

Following Holme & Olsen (2006), we also represent in Fig. 5 the

estimate of diffusion effects based on the free-decay modes of the

conducting core, assumed spherical and surrounded by an insulating

mantle (e.g. Roberts & Gubbins 1987). This diffusion contribution

to SV modelling errors depends on the degree n and also on the

decay-mode order, l, according to:

�ġm,l
di f f n

= −(
kl

n

)2 η

r 2
c

gm
n , (8)

where η = 5 × 105 Sm−1 is the core magnetic diffusivity and kl
n is

the lth zero of the spherical Bessel function of order n. Supposing,

as suggested by Holme & Olsen (2006), similar values for the radial

and lateral length scales of the poloidal component of the MF, we

represent in Fig. 5 the estimate of diffusive effects based on the l =
n decay-modes.

4 Q UA S I - G E O S T RO P H I C M O D E L L I N G

In this section, we outline the QG approach on which we rely. It

amounts to stating that the vorticity of the flow is predominantly

axial and independent of the height z above the equatorial plane.

Discussion of QG modelling in deep spherical shells and reports of

numerical simulations using this approximation—outside the tan-

gent cylinder—can be found in, for example, Busse (1970), Cardin

& Olson (1994), Aubert et al. (2003), Gillet & Jones (2006) and

Gillet et al. (2007).

The model considered for the Earth’s core is that of a spherical

shell container, rotating at angular velocity  = ẑ. A cylindrical

polar system of coordinates (s,φ, z) with the rotation axis as the polar

axis is convenient to study rotation effects, where s is the distance to

the axis, φ is the azimuthal angle and z is the height above the equa-

torial plane. The outer boundary corresponds to the core mantle in-

terface, with shape defined by z = H c(s) and z = −H c(s) for the top

and bottom boundary functions, where Hc(s) = √
r 2

c − s2. In the

same way, the inner boundary corresponds to the inner core surface,

with shape defined by z = ±H i (s), where Hi (s) = √
r 2

i − s2 and

r i is the inner core radius. At the core surface, the rim of the TC is

defined by the polar angle θ = θ 0, such that r i/r c = sin θ 0.

The two vectors normal to the top and the bottom external bound-

aries of the liquid core are, respectively,

r̂|±Hc = ±ẑ − dHc(s)

ds
ŝ. (9)

We note ηc(s) the slope |dH c(s)/ds| = s/H c of the outer boundary.

A related parameter, widely used because of its equivalence to the
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latitudinal variation of the Coriolis parameter that enters the β-plane

equations is

β(s) = ηc

Hc
. (10)

Likewise, we note η i (s) the slope |dH i (s)/ds| = s/H i of the inner

core boundary.

4.1 The classical expansion of the solution in powers of ηc

Let us first consider the region outside the TC. We follow the discus-

sion by Busse (1970) of instabilities in systems of slightly changing

depths. Consider an expansion in powers of ηc(s) for the velocity

field. At the lowest order, the flow is assumed to be geostrophic,

2ρ ẑ × u0 = −∇ p0, (11)

where ρ is the fluid density, and obeys the Taylor–Proudman con-

straint (ẑ·∇)u 0 = 0. The solution (11) is completed by an expression

for u0
z ,

u0
z = 0, (12)

which corresponds to the no-penetration condition at the lowest

order ηc(s) = 0, that is, for constant depth. The solution of eq. (11)

can be written, in cylindrical coordinates (s, φ, z):

u0(s, φ) = −ẑ ∧ ∇�(s, φ) ⇔
{

u0
s (s, φ) = 1

s
∂�(s,φ)

∂φ

u0
φ(s, φ) = − ∂�(s,φ)

∂s ,
(13)

where � = −p0/(2ρ) is the streamfunction describing the 0th-

order flow. Taking into account the variation of H c with s, the so-

lution (11) does not satisfy the no-penetration condition u0 · r̂ = 0

at the boundaries. As a result, the term u0
r has to be added to the

boundary condition for the flow at the next order.

The momentum equation, at the next order, gives us additional

information on u0:

2ρ ẑ × u1 + ∇ p1 = −ρ
∂u0

∂t
− ρu0.∇u0 + j × B. (14)

Eq. (14), where the viscous term is neglected, reflects our choice

to emphasize a possible effect of the magnetic force on the core

flow. We focus our attention on this term, and use (14) as a guide

to derive regularization matrices for the flow inversion, because (i)

magnetic energy probably exceeds kinetic energy in the Earth’s core

(ii) direct observations of the magnetic field changes point at the

work of magnetic forces. Note that the importance of the buoyancy

force, which is not included above, on the SV timescale is a very

open question. Using the continuity equation ∇ · u1 = 0, eq. (14)

can be readily transformed into an equation for the axial vorticity,

where u1 enters only through ∂u1
z/∂z. Assuming that this latter term

is z-independent, it can be derived from the boundary condition on

u1. Using (9), the no-penetration boundary condition yields:

u · r̂|±Hc = 0 ⇔ u1
z

∣∣
±Hc

= ∓ ηc u0
s (s, φ). (15)

Finally, we obtain

u1
z (s, φ, z) = − ηc u0

s (s, φ)
z

Hc
= − sz

H 2
c

u0
s (s, φ). (16)

From (14), (16) and (10), the vorticity equation averaged over the

axial direction reduces to:

dζ

dt
+ 2βu0

s = 1

ρ

1

2Hc

∫ Hc

−Hc

ẑ · ∇ ∧ (j ∧ B) dz, (17)

where ζ is the axial vorticity of the flow:

ζ = −∇2
E�(s, φ, t), with ∇2

E = 1

s

∂

∂s

(
s

∂

∂s

)
+ 1

s2

∂2

∂φ2
.

(18)

The terms omitted assuming ηc � 1 have been shown to be

not very important even when ηc is O(1) in many instances (Jones

2007). A necessary condition for the z-independent axial vorticity

to dominate over other vorticity terms is

ηc � Hc

l
, (19)

where l is a length scale in the equatorial plane. Finally, there is

also a contribution to the stretching of vertical fluid lines, which

is due to the pumping induced by mass conservation in the Ekman

layer just below the CMB. This effect is negligible compared to the

effect of impenetrable boundaries and it won’t be considered here

(see e.g. Schaeffer & Cardin 2005 for details or Olson et al. 2002

for a discussion in the context of core flow calculations).

4.2 The solution inside the tangent cylinder

It is well known (Heimpel et al. 2005) that the tangent cylinder cor-

responds to an important discontinuity for turbulent flows in rapidly

rotating spherical shells. Some numerical studies show that convec-

tion may be organized differently, respectively, inside and outside

the TC (e.g. Sreenivasan & Jones 2006). ‘Thermal’ winds, possibly

driven by composition gradients and modified by the magnetic field,

may prevail within the TC. On the other hand, it has been shown in a

study of the motions spawned by an impulse of the solid inner core,

that propagation of geostrophic shear inside the TC is also possible

for Earth-like values of the parameter λ (see the Introduction) and

of the Lundquist number, measuring magnetic dissipation (Jault,

2008).

Here, we consider, for want of anything better, that the main force

balance there remains the same as outside the TC, and accordingly

z-invariance of the equatorial flow in each hemisphere, separately,

can still be foreseen.

Inside the TC, fluid columns extend from the inner core to the

outer core boundaries and must adjust to the two impenetrable sur-

faces. The two boundary conditions u · r̂|r=rc = 0 and u · r̂|r=ri = 0

give for the u1
z component inside the TC:

u1
z
±

(s, φ, z) = ηi u0
s
±

[
z ∓ (Hi + Hc)

Hc

]

= s [z ∓ (Hi + Hc)]

Hi Hc
u0

s
±

(s, φ), (20)

where the plus and minus signs as superscripts in u1
z and u0

s re-

fer to the northern and southern hemispheres, respectively. u0±
s =

s−1∂�±(s, φ)/∂φ is the northern and southern geostrophic radial

component inside the TC. For a core interior point inside this re-

gion, both the external and the internal liquid core solid boundaries

contribute to determine the axial flow and, near the TC, it’s the inner

core slope which is crucial. Note that eq. (17) remains valid with β

defined as:

β(s) = s

Hi Hc
. (21)
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4.3 Application to the calculation of the flows inside the

fluid outer core responsible for the observed SV

The neat expansion in powers of ηc(s), η i (s), outlined above, has

to be modified in order to be coupled with eq. (2). Indeed, this

equation has been written using u · r̂ = 0, which is not valid at the

lowest order. Thus, it is necessary to add to the lowest order flow u0

some part of the first order flow u1.

The minimal modification consists in adding to u0 the term u1
z ẑ,

with u1
z given by the expressions (16) and (20):

uQG = −ẑ ∧ ∇�(s, φ) + u1
z (s, φ, z) ẑ. (22)

Outside the TC, u1
z is of the order ηc and the whole flow depends

on a single scalar streamfunction �(s, φ). Inside the TC, u1
z is of

the order η i (the main slope effect) and two scalar functions �+(s,

φ) and �−(s, φ) are required due to the decoupling of northern and

southern hemispheres.

From eqs (13) and (16), putting s = r c sin θ , z = ±H c and taking

into account that ∂/∂s|rc = (rc cos θ )−1∂/∂θ we can write for the

trace of QG columns at the core surface, just below the Ekman layer

and outside the TC:

uθ (θ, φ) = (
u0

s ŝ + u1
z ẑ

) · θ̂ = 1

rc sin θ cos θ

∂

∂φ
�(θ, φ)

uφ(θ, φ) = u0
φ = − 1

rc cos θ

∂

∂θ
�(θ, φ),

which in condensed vectorial form yields

uH = − 1

cos θ
r̂ ∧ ∇H �(θ, φ). (23)

In the same way, from (13) with �± instead of � and from (20), the

flow at the top of the core and inside the TC is:

u±
H = − 1

cos θ
r̂ ∧ ∇H �±(θ, φ). (24)

The non-penetration condition on the velocity imposes that, at

the intersection of the inner core and outer core boundaries with the

Earth’s equatorial plane, u0
s (s = r i ) = u0

s (s = r c) = 0. From (13)

this gives:

�(s = ri , φ) = const.,

�(s = rc, φ) = const. (25)

It is readily apparent that the definition (22) of uQG implies

∇H · (uQG,H cos θ ) = 0, (26)

at the core surface. This condition is well-known as describing a

core surface flow which is compatible with a force balance dom-

inated by the horizontal components of the Coriolis and pressure

gradient forces as, for instance, the thermal wind balance. Such a

flow, known as tangentially geostrophic, is also described in terms

of a streamfunction linearly related to the pressure, just as in (23).

Here, the above condition is much more restrictive since the under-

lying streamfunction � is defined in the whole core and not only at

the core surface. As a result of the z-invariance of �, uH must also

be equatorially symmetric outside the TC.

5 S P E C I F Y I N G T H E

R E G U L A R I Z AT I O N T E R M S

5.1 Geometrical constraints directly derived

from the physical model

The penalizing terms we use are consistent with the underlying dy-

namics. Accordingly, purely geometrical constraints typical of QG

vortices led to constrain the surface flow to be equatorially symmet-

ric, not to cross the surface trace of the TC and to be tangentially

geostrophic.

5.1.1 Tangential geostrophy

As discussed above, tangential geostrophy of the surface QG flow

results from adopting the simplest modification of the leading order

flow in order to meet the impermeability condition at the CMB and

at the ICB. Yet, other choices could be made. For their definition of

‘columnar flows’ Amit & Olson (2004) chose instead the first-order

modification to the geostrophic flow u0 so that it is divergence-free.

In Appendix A, we show that the difference between divergence-

free and non-divergence-free QG flows can be expressed by the

two different relations ∇ H · uH = tan θ u θ /r c and ∇ H · uH =
2tan θ u θ /r c, respectively, to apply at the core surface outside the

rim of the TC. The factor 2 in the latter works essentially to increase

by the same amount the weight of the core surface poloidal compo-

nent relative to the toroidal one. However, since the toroidal compo-

nent becomes increasingly dominant for large degree n, with tm
n ∼

n2sm
n (Gire & Le Mouël 1990), the factor 2 makes no difference for

small scales, which more closely verify the condition ∇ H · uH =
0. We can then envisage that, for flows with length scale l in di-

rections perpendicular to the rotation axis small enough to satisfy

the condition of validity of quasi-geostrophy ηcl/H c � 1, the dis-

tinction between divergence-free and non-divergence-free QG flows

vanishes. Both the Amit & Olson (2004) columnar flow and quasi-

geostrophy approaches are less well grounded for the largest scales

of the core flow. It is thus fortunate that the QG approach blends at the

core surface with the tangential geostrophy approach. Furthermore

Gubbins (1991) and Jackson (1996) have shown that the radial vor-

ticity equation at the core surface yields, under quite general hy-

potheses, a finite set of constraints that are obeyed by tangentially

geostrophic flows. Using divergence-free QG flows results in a con-

flict between the axial vorticity equation in the entire core volume,

on which we rely, and the radial vorticity equation at the CMB used

by Jackson (1996). The two equations do not apply to the same

scales of the flow and it would have been tricky to treat differently

the small and large scales of the flow in our inversion.

In this study, the tangential geostrophy constraint is imposed as in

Pais et al. (2004), by penalizing the integral
∫

CMB
[∇H ·(u cos θ )]2 dS

that can be written as xT RGx. The penalizing factor that multiplies

this term is made sufficiently high to guarantee that this condition

is satisfied in practice all over the CMB.

5.1.2 Equatorial symmetry outside the rim of the tangent cylinder

Mirror symmetry of the core surface flow for reflection about the

equatorial plane implies

uφ(θ ) = uφ(π − θ )

uθ (θ ) = −uθ (π − θ ),
(27)

that is, the azimuthal component is symmetric, whereas the latitudi-

nal component is antisymmetric. If equatorial symmetry was to be

imposed over the whole CMB, the above conditions would require

selection of only the m + n even poloidal coefficients and only the

m + n odd toroidal coefficients. However, the special treatment of

the volume inside TC leads to impose it only for θ > θ 0, where θ 0

is the colatitude of the rim of the TC at the core surface. We then

consider a grid of N grid values of θ 0 < θ < π/2, where the following
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system of 2(2L x + 1) equations is to be satisfied:

∑
n

2
dP0

n

dθ
[1 + (−1)n] t0,c

n = 0

∑
n≥m

m

sin θ
Pm

n [1 − (−1)n+m] sm,c(s)
n

±
∑
n≥m

dPm
n

dθ
[1 + (−1)n+m] tm,s(c)

n = 0, m = 1, . . . , Lx

∑
n

2
dP0

n

dθ
[1 − (−1)n] s0,c

n = 0

∑
n≥m

dPm
n

dθ
[1 − (−1)n+m] sm,c(s)

n

±
∑
n≥m

m

sin θ
Pm

n [1 + (−1)n+m] tm,s(c)
n = 0, m = 1, . . . , Lx .

(28)

According to these equations, both m + n odd poloidal and m +
n even toroidal coefficients may be present. Altogether, this gives a

system of 2N grid(2L x + 1) equations which, in matrix form, yields

S x = 0,

where S is a 2N grid(2L x + 1) × 2L x (L x + 2) matrix and x the

vector of 2L x (L x + 2) poloidal and toroidal coefficients of the flow.

The related quadratic form in x that is penalized in the inversion is

xT RSx, where RS = ST S.

5.1.3 Zero latitudinal flow on the rim of the tangent cylinder

As already pointed out, the impermeability condition on the inner

core surface requiring that u0
s = 0 at s = r i , implies that u θ = 0 at

the CMB, on the rim of the TC, that is,

uθ (θ0, φ) = 0

uθ (π − θ0, φ) = 0. (29)

This yields the following system of 2L x + 1 equations to be verified

for θ = θ 0 and θ = π − θ 0,

∑
n

2
dP0

n

dθ
s0,c

n = 0

∑
n≥m

dPm
n

dθ
sm,c(s)

n ±
∑
n≥m

m

sin θ
Pm

n tm,s(c)
n = 0 m = 1, . . . , Lx ,

(30)

and that can be written, in matrix form,

T x = 0.

The first relation in (30) is trivially satisfied by tangentially

geostrophic flows. T is a 2(2L x + 1) × 2L x (L x + 2) matrix. The

quadratic form to be penalized in the inversion is xT RT x, where

RT = TT T.

5.2 Constraints used as proxies of a comprehensive

dynamic model

Having simplified the vorticity equation into the eq. (17) for axial

vorticity, it should eventually be possible to estimate core flows that

both account for SV observations and evolve in response to mag-

netic and rotation forces. In the meantime, we consider this study as

an intermediate step. Many authors (Galperin et al. 2001; Danilov

& Gurarie 2002) have already considered QG turbulence without

the presence of a magnetic field. They have observed that because

of the β-term (second term on the LHS of eq. 17), a zonation ef-

fect occurs whereby latitudinal flows are penalized and large-scale

motions are predominantly in the φ-direction. We mimic this ef-

fect in our inversion by penalizing radial motions us multiplied by

the weight β. We have not much information on magnetic forces

acting on the fluid. Yet, we do know that they are the counterpart

of induction of magnetic field. We can thus assume that magnetic

forces tend to oppose motions able to produce magnetic fields. We

tentatively account for this effect by penalizing horizontal gradi-

ents in the QG velocity field. Finally, we also minimize the kinetic

energy integrated in the fluid outer core. The following three regu-

larization terms can be written as quadratic forms in the CMB flow

coefficients, as explained in Appendix B.

5.2.1 Minimization of the β-effect

The term βus enters the equation for axial vorticity defined in the

equatorial plane. We penalize the surface integral of |βus |2 over

the equatorial section. From eqs (13), (10) and (21) this amounts to

penalize the following integral, on the CMB,∫ 2π

0

(∫ θ0

0

+
∫ π

π−θ0

) (
1

Hc Hi

∂

∂φ
�

)2

CMB

| cos θ | sin θ dθ dφ

+
∫ 2π

0

∫ π−θ0

θ0

(
1

H 2
c

∂

∂φ
�

)2

CMB

| cos θ | sin θ dθ dφ, (31)

where the factor cos θ is for the projection of the surface element on

the equatorial section and no distinction is made between the core

surface streamfunction inside and outside the rim of the TC, as one

same set of spherical harmonic coefficients is used to characterize it.

Using Appendix B, it can be readily noted that penalizing βus inside

the core amounts to penalize certain relations between the poloidal

coefficients that characterize the surface flow. We have computed

the elements of the matrix Rβ that make possible to write (31) as a

quadratic form on x, xT Rβx.

5.2.2 Minimization of the rate of strain tensor elements

Magnetic field induction yields the time changes of magnetic energy,∫
V Bi B j ei j dV , where ei j = 1/2

(
∂ui/∂x j + ∂u j/∂xi

)
is the rate of

strain tensor in Cartesian coordinates x i , (i = 1, 2, 3) (see e.g. Fearn

et al. 1988). For QG flows, the flow deformation is mainly 2-D, in

the plane perpendicular to the rotation axis.

The plane symmetric tensor e has only two independent elements,

since the non-divergence of the equatorial leading order flow carries

the further condition that its trace must be zero. Then, in cylindrical

coordinates,

es φ = eφ s = 1

2

(
1

s2

∂2�

∂φ2
− 1

s

∂�

∂s
+ ∂2�

∂s2

)

es s = −eφ φ = − 1

s2

∂�

∂φ
+ 1

s

∂2�

∂s∂φ
. (32)

As none of the terms in (32) is z-dependent, each integration over

the equatorial plane section can transform into an integration over

the core surface, as in the preceding section, where the contribu-

tion of the two, north and south hemispheres, is contemplated. Us-

ing the description of the core surface � in terms of poloidal and

zonal toroidal CMB flow coefficients, as given in eq. (B4), we sum

the two independent integrals to derive a new quadratic form in x,

xT R−1
e x.
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5.2.3 Energy minimization

The penalization of the surface kinetic energy density has been used

as a weak regularization for CMB flow inversions (e.g. Pais et al.
2004), as one possible way to regularize the flows while avoid-

ing to restrict too strongly medium to small flow scales. Here,

having a model for the whole core flow, we can derive expres-

sions for the whole flow kinetic energy density
∫

V u · udV =∫
V (u02

φ + u02

s + u12

z )dV , where V denotes the liquid core volume.

These three contributions can be expressed in terms of the stream-

function � at the core surface, according to the following three

relations:∫
V

u02

s dV = rc

∫ 2π

0

∫ π

0

(
cos θ

sin θ

∂

∂φ
�

)2

CMB

sin θ dθ dφ, (33)

∫
V

u02

φ dV = rc

∫ 2π

0

∫ π

0

(
∂

∂θ
�

)2

CMB

sin θ dθ dφ, (34)

∫
V

u12

z dV = r 2
c

3

∫ 2π

0

(∫ θ0

0

+
∫ π

π−θ0

)

×
[

H 3
c − H 3

i

H 2
c H 2

i

(
∂

∂φ
�

)2
]

CMB

| cos θ | sin θ dθ dφ

+rc

3

∫ 2π

0

∫ π−θ0

θ0

(
∂

∂φ
�

)2

CMB

sin θ dθ dφ. (35)

Note that no distinction is made between the three streamfunction

�, �+ and �− at the core surface, because they are described there

in terms of the same set of spherical harmonic coefficients (see

Appendix B). The sum of the previous three terms is written as

xT R−1
E x, and establishes the third quadratic form to be penalized.

6 R E S U LT S

The iterative procedure increases by 10–15 times (the number of

steps needed for convergence) the time allocated to each flow com-

putation. In addition, the number of regularizing norms used to tune

the flow inversion sets up the dimension of the domain of parameters

(λβ , λe, λE ). Because of the high number of computations required,

we did not explore the domain of parameters in a systematic way, as

in Pais et al. (2004). Instead, following a trial and error approach,

we have set (λβ = 1.0 × 106, λE = 1.0 × 105) and we determine

Table 1. Characterization of QG flow x̂1 using ‘pessimistic’ errors.

Attenuation parameters Misfit Error K αn Physical quantities

Epoch λe 1 λe 2 χ 1 χ 2 K α v
(S)
rms v

(V )
rms β effect eeffect

(km yr−1) (km yr−1) (yr−2) (yr−1)

2001.0 2.7 × 104 1.4 × 105 0.98 1.01 4.6 0.6 16.6 9.7 8.8 × 10−10 5.8 × 10−2

2002.5 2.0 × 104 6.0 × 104 0.98 1.00 5.9 0.6 17.3 9.6 1.1 × 10−9 6.5 × 10−2

2004.0 2.3 × 104 9.0 × 104 1.00 0.98 6.2 0.6 16.8 9.2 9.7 × 10−10 5.8 × 10−2

Table 2. Characterization of QG flow x̂1 using ‘optimistic’ errors.

Attenuation parameters Misfit Error K αn Physical quantities

Epoch λe 1 λe 2 χ 1 χ 2 K α v
(S)
rms v

(V )
rms β effect eeffect

(km yr−1) (km yr−1) (yr−2) (yr−1)

2001.0 1.2 × 104 5.3 × 104 1.01 0.99 5.8 0.6 19.3 11.5 1.2 × 10−9 8.3 × 10−2

2002.5 1.5 × 104 4.9 × 104 0.99 0.98 6.5 0.6 18.2 10.1 1.2 × 10−9 7.2 × 10−2

2004.0 1.3 × 104 6.5 × 104 1.00 0.98 6.9 0.6 18.6 10.4 1.1 × 10−9 7.3 × 10−2

two values of the parameter λe so that the normalized error χ ∼ 1.0

for the final converged flows x̂1 and x̂2.

Flows computed using either the ‘pessimistic’ or the ‘optimistic’

initial errors for the SV model, are characterized in Tables 1 and 2 for

epoch 2001.0. The K andα parameters of the exponential curve fitted

to the converged modelling errors are also displayed. In addition to

standard quantities as the core surface root mean square (rms) flow

speed, v(S)
rms = (

∫
CMB

u · u dS/4πr 2
c )1/2, we can also compute other

physical quantities characterizing the interior flow. It is the case of

the rms β us term over the equatorial plane, βeffect ∼ 
√

xT Rβx, the

rms volume energy, v(V )
rms ∼ √

xT RE x, and the rms strain tensor ele-

ments over the equatorial plane, eeffect ∼ √
xT Rex, which we show

in those tables. Besides, values of
√

xT RGx,
√

xT RSx and
√

xT RT x
can be used to appraise how close the geometrical constraints are

satisfied by the flow. We obtain, for all computed flows, values of

the order 10−6 for the latter three quantities (see Section 5.1), in

units of km yr−1. These values, which serve to quantify the velocity

components violating the geometrical constraints, are much smaller

than v(S)
rms or v(V )

rms.

We note that the rms velocity is higher at the surface than in the

volume. Indeed, the flow energy density, proportional to u2(s, φ, z),

always increases with z from the equatorial plane to the CMB since

us and uφ are z-invariant while u2
z increases, outside TC, as z2.

To clarify the description and discussion of results, let us set the

interval n � 6 as defining ‘large scales’, 6 � n � 13 for ‘intermediate

scales’ and n � 13 for small scales.

In Figs 6–8 we show results characterizing the iterative inver-

sion for epoch 2001.0, using the regularization terms specific of

this study. Neither the power spectra of the SV misfit at the Earth’s

surface (Fig. 6), nor charts of global distribution of SV misfit (not

shown) indicate any significant spatially localized features. We do

not find any particular region where equatorial symmetry or zero

latitudinal flow on the rim of the TC are harder to verify. Two cases,

when using ‘pessimistic’ or ‘optimistic’ initial errors, are analysed.

Comparison with Fig. 3 shows a somewhat higher modelling error,

due to an overall weaker regularization. Fig. 6 further confirms sim-

ilar values obtained for the difference between the SV produced by

advection of BL by flows (1) and (2), on the one hand, and the SV

due to advection of BS by flow (2), on the other hand.

Comparing the left- and right-hand columns of Fig. 6, it stands

out that better accounting for the intermediate scales of SV as the

result of smaller a priori errors does deteriorate the fit quality to

SV large scales. This is due to smaller flow scales that are required
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Figure 6. Results from iterative inversion of CHAOS model at epoch 2001.0 for a QG core flow, using new regularization norms specified in Section 5. Power

spectra at the Earth’s surface of different signals specified in the Fig. legend-box, when starting from ‘pessimistic’ (left-hand column) or ‘optimistic’ (right-hand

column) SV uncertainties.
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Figure 7. Mean energy per degree for toroidal (black circles) and poloidal (grey diamonds) coefficients of the CMB surface expression of the inverted QG flow

for epoch 2001.0. Also shown, the mean energy per degree for a n−2 flow spectrum (dot–dashed curve). Left: ‘pessimistic’ SV error model. Right: ‘optimistic’

SV error model.

(see Fig. 7), in the interval n ∼ 15–18, which also contribute to

large-scale SV by advecting BS. We also show in Fig. 7, the curve

of mean energy per degree corresponding to an energy spectrum

depending on n−2. Only for degrees above ∼15, using ‘pessimistic’

initial errors, or above ∼18, when using ‘optimistic’ initial errors,

do the computed values converge. For those smaller scales, where

convergence is steeper than for a n−2 spectrum, the statistical flow

assumptions of Hulot et al. (1992) leading to their estimate of the

SV signal that results from the interaction between BS and the flow

(see Section 3.1) apply, but not before.

Voorhies et al. (2002) advocate that a theoretical MF spectrum

of the form

{R(n)}c = W
n + 1/2

n(n + 1)

( c−
a

)2n+4

(36)
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Figure 8. Estimates of MF small-scales modelling errors for 2001.0, using for the MF power spectrum eq. (6) (solid line) and eq. (36) (dashed line). Also

shown, the diffusion modelling errors from free decay modes l = n (white squares) and the dipole diffusion modelling error from the second free decay mode

(black circle).

at the Earth’s surface is more reliable than R∗(n) in (6). Using the

values W = 4.5 × 1010 nT2 and c− = 3.5 × 103 km as estimated by

Voorhies et al. (2002) and Voorhies (2004), we have compared the

effect of two different MF spectrum models. Fig. 8 shows Earth’s

surface mean square values of the SV modelling errors for 2001.0.

As in Section 3, we fit an exponential curve Kαn to the mean mod-

elling errors per degree. We average out converged modelling error

curves obtained for 10 different stochastic MF small-scale models.

The solid curve is obtained using relation (6) and the dashed curve

is for relation (36). The two MF spectra lead to similar surface mean

square modelling errors, though slightly higher for {R(n)}c. This

must be due to the slightly more gradual decrease of {R(n)}c than

of R∗(n) for higher MF degrees. For comparison, we also show the

estimate of diffusive effects based on l = n decay-modes (Holme &

Olsen 2006). It clearly stands out that the modelling error associ-

ated to underparametrization of the MF is more important than the

magnetic diffusion modelling error computed in this way. This is

globally true over all length scales, and particularly for the largest

ones. Considering the second free decay mode for the dipole term

in order to account for a more complicated structure than the lowest

order free decay mode as recommended by Holme & Olsen (2006)

increases the estimate of the mean square diffusional error by a fac-

tor 16, which is too small to alter our conclusion about the relative

importance of the two sources of errors (black circle in Fig. 8).

Figs 9 and 10 show the maps of axial vorticity in an equatorial

section for the three epochs 2001.0, 2002.5 and 2004.0, when using

‘pessimistic’ and ‘optimistic’ initial errors, respectively. An ortho-

graphic projection is used, which has the particular advantage that, if

the central point is one of the poles, the corresponding hemisphere is

projected onto the equatorial plane. In case of z-invariance, this 2-D

representation gives all the information on the flow. Common to the

two sets of charts, is the clustering of vortices around the rim of the

TC, especially over the hemisphere west to the Greenwich merid-

ian. The � streamfunction maps shown in Fig. 11 unambiguously

outline these vortices.

The � maps are useful to describe the largest scales of the flow.

The most notable feature is a grand westward jet circling round

the inner core. It touches the inner core from around 135◦W to

150◦E, and moves to larger radii in the Atlantic hemisphere, in a

band 30◦ away from the equator, from around 90◦E to 90◦W. The

main lines of this feature have been noted before, in flows inverted

using the spectral method with the toroidal, steady or tangentially

geostrophic flow assumptions (see e.g. Bloxham 1991). Recently,

it has been seen in the relatively fine-scale core surface flows of

Holme & Olsen (2006) and also in the time average flow for 1840–

1990 obtained by Amit & Olson (2006) using a grid-based finite

difference method. The equatorial symmetry of this flow, imposed

in this work, is not always clear in previous studies, where often

the low latitude jet is more pronounced in the Southern than in the

Northern hemispheres. Also, in some previous studies, the high lat-

itude jet crosses the rim of the TC and closes into a complete large

vortex centred beneath the Southern Atlantic Ocean (e.g. Amit &

Olson 2006). Here, where crossing over high latitudes is impeded,

the large jet closes by encircling the inner core. Accordingly, the

single large jet feature not only incorporates the well-known low

latitude westward drift, beneath the Indian and Atlantic oceans, but

also a less frequently reported high latitude westward drift beneath

the Bering Sea. The often reported anti-cyclonic vortex centred be-

neath North America (e.g. Amit & Olson 2006) merges with the

also reported anti-cyclonic vortex beneath the Arabian Peninsula

(e.g. Bloxham 1989) to give the northern hemisphere counterpart

of this large-scale feature. Equatorial symmetry inside the rim of

the TC being not imposed, we also recover another known result,

namely a polar vortex more conspicuous in the Northern than in

the Southern hemispheres (e.g. Olson et al. 1999), except for epoch

2004.0 (see Fig. 12). Eventually, it is possible that inverting for sep-

arate streamfunctions inside and outside the TC, will better resolve

the asymmetry inside TC.

Smaller scale vortices, of diameter ∼700 km (m ∼ 6), cluster

around the rim of TC. Particularly robust to the change in SV

model error criteria (compare Figs 9 and 10), are the cyclonic fea-

tures between 135 and 225◦E, and the two anti-cyclonic vortices

centred at ∼45◦W and ∼120◦W. Between the two of them, a cy-

clonic vortex centred at ∼90◦W seems also to be present. One other
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Figure 9. Axial vorticity in the equatorial plane for QG flows obtained from iterative inversion of CHAOS model at epoch 2001.0 (top), 2002.5 (centre),

2004.0 (bottom), as viewed from the North (left-hand side) and the South (right-hand side) poles. Also shown, the projection of the tangent cylinder. Values

obtained with the ‘pessimistic’ initial SV uncertainties. Colour scale ranges between −0.25 and +0.25 rad yr−1, blue for positive vorticity (cyclones) and red

for negative vorticity (anticyclones). Solid line contours only for vorticity intensity starting at 0.075 rad yr−1, every 0.025 rad yr−1.

cyclonic/anti-cyclonic pair can be identified between 90◦E and

120◦E, in all charts except for 2004.0. The localization of these

main features being very stable all over the 3-yr time span con-

sidered, the associated vorticity intensity does apparently change,

though we can not say how robust is this result.

We have wondered how crucial is each constraint used as proxy

of a dynamic effect. We have thus calculated flows using only one

constraint (λβ = λe = 0 or λβ = λE = 0 or λe = λE = 0) at a

time. We have found that the large jet structure is present in these

three extreme cases. Well defined vortices clustered around the TC

appear, centred at similar positions, when minimizing either the βus

term—which promotes vortices more elongated along parallels—

or the strain tensor elements. From a closer look at these results

we can advance that the flows we present in this study are domi-

nantly constrained by the minimization of the rate of strain tensor

elements. The other two regularizations do, nonetheless, introduce

additional physically motivated constraints on the flow coefficients,

which contribute to decrease the number of free parameters in the

inversion.

We have also examined the effect of considering QG divergence-

free flows. It requires replacing the tangential geostrophy constraint

∇ H · uH = tan θ u θ /r c on the core surface, by the two new con-

straints (A6) and (A8) derived in Appendix A, depending on if we

are considering the region outside or inside the rim of the TC. For

the volume flow model, which we need to access in order to estab-

lish the volume regularizations discussed in Section 5.2, we follow
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Figure 10. Same as Fig. 9, starting from the ‘optimistic’ initial uncertainties. Colour scale ranges between −0.30 and 0.30 rad yr−1. Solid line contours only

for vorticity intensity starting at 0.1 rad yr−1, every 0.03 rad yr−1.

Schaeffer & Cardin (2005) (see also Appendix A) and consider a

pseudo-stream function ξ to be compared with the streamfunction

� characterizing the non-divergence-free QG flow. As explained

in Appendix A, the discontinuity imposed to the derivatives of

∇ H · uH at θ = θ 0 can not be reproduced by a single set of spher-

ical harmonic poloidal coefficients (the same for the two regions,

outside and inside the rim of the TC), unless u θ has a high mul-

tiplicity zero at θ 0. To avoid this conflicting situation, we impose

the divergence-free condition (A8) in a grid outside the rim of the

TC, and no geometrical condition whatsoever in the surface region

inside. The volume inside the TC is nonetheless taken into account

for the minimization of the β-effect, of the rate of strain and of the

total energy. The computed pseudo-stream function ξ is shown in

Fig. 13 for 2001.0, next to the streamfunction � for the same epoch.

The results obtained for ξ in the polar region θ < θ 0 have no partic-

ular meaning and are not shown. As we can see, a large westward

jet can still be seen, particularly strong when touching the TC and

at low latitudes between 45◦W and 90◦W and less visible between

90◦W and 135◦W and also around 90◦E, where it is more difficult

to separate it from the vortices clustering around the rim of the TC.

These, show a clear correspondence to the high latitude vortices in

the � chart, though they tend to be weaker.

Of particular geophysical interest, is the time variation of the

zonal component of our computed flows, since it can be related to

geodetic observations of the Earth’s rotation. The zonal component

of the QG flow consists in the cylindrical annuli responsible for

changes in the axial angular momentum of the liquid core. We can

then compute

Lz = ρ

∫
V

su0
φ(θ ) dV (37)
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Figure 11. Streamfunction contours at the equatorial plane, for the QG flows obtained from iterative inversion of the CHAOS model at epochs 2001.0 (top),

2002.5 (centre), 2004.0 (bottom), as viewed from the North (left-hand side) and the South (right-hand side) poles. Also shown, the solid core limits. Results

obtained with the ‘pessimistic’ initial SV uncertainties. Flow circulation is westward along the large jet feature and is cyclonic (+) or anticyclonic (−) in

vortices.

(Jault et al. 1988; Jackson et al. 1993) and compare L z(t), from our

computed flows, with (I c + I m) (2π/T 2
0) �LOD (t) from geodetic

observations, where I c and I m are the moments of inertia of the

core and mantle, respectively, and T 0 is the reference value for the

length-of-day (LOD). This is done in Fig. 14, where, as observations,

we use annual means of LOD, computed from the IERS CO4 series

of daily values. No matter the initial SV error used, the change of

tendency at the middle epoch is always recovered.

It is customary to simplify the computation of (37) by neglecting

the inner core volume and approximating the fluid core to a spherical

liquid-filled cavity. This is of course supported, on the basis of the

very small moment of inertia of the centred liquid sphere having the

inner core radius. Considering, separately, the fluid region inside TC,

Jackson (1997) further confirmed that its contribution to the total

angular momentum is much smaller than that of the region outside

the TC. This result still applies for our computed flows. However,

we also find that, from one epoch to the other, the amount of angular

momentum variation of the inside region can be of the same order of

magnitude as that of the outside region. We also computed Lz(s ′) =
ρ

∫ s′
0

su0
φ dV , the axial angular momentum contribution of the liquid

core with s < s ′. We then confirm the minor contribution of the

region inside the TC (s < r i ). However, plotting the curve T 2
0/

[2 π (I c + I m)] dL z(θ )/dθ (i.e. the core contribution, per degree of

latitude, to LOD variation) in Fig. 15, it becomes apparent that the

core angular momentum is concentrated in two latitudinal bands, the

first one between 20◦ and 30◦ colatitude, and the second one at almost
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Figure 12. Zonal angular velocity as a function of normalized distance to rotation axis, for QG flows inverted from CHAOS model at epochs 2001.0 (solid),

2002.5 (dashed) and 2004.0 (dot–dashed), using ‘pessimistic’ initial SV uncertainties. Also shown the inner core radius, below which black and red curves

refer to the Northern and to the Southern hemispheres, respectively.

Figure 13. Streamfunction (left-hand side) and pseudo-stream function (right-hand side) contours at the equatorial plane, for non-divergenceless and diver-

genceless QG flows, respectively. Flows were obtained from iterative inversion of the CHAOS model for 2001.0.

60◦ colatitude. Crossing this information with the streamfunction

charts, we realize that the axial angular momentum of the core is

mainly carried by the large jet feature identified above.

7 D I S C U S S I O N A N D C O N C L U S I O N S

Several interesting conclusions can be drawn from the flow inver-

sions described above. First, we find that intermediate scales (n ∼
6–13) of the SV, made known by recent magnetic satellite missions,

have a significant contribution from advection of the magnetic field

by intermediate to small-scale flows. These results show that the lim-

itation brought by using truncated series at a relatively low degree,

say 13, of the flow scalar potentials, which would not be a critical

issue if the flow was large-scale, with an energy spectrum converg-

ing below the truncation spherical harmonic degree, is presently

hampering the identification of flows responsible for the finest SV

structures recently resolved. In fact, no strong physical argument

exists to support a large-scale assumption on the decade timescale,

much on the contrary.

Second, we are able to estimate part of the modelling error that

results from the ignorance of the core magnetic field with harmonic

degree n ≥ 14. We concur with Eymin & Hulot (2005) in noting

that, as it happens, this modelling error is much more important

than the observational errors, for SV low harmonic degrees. As a

result, it is much more critical to have an accurate knowledge of the

observational errors for scales of the SV corresponding to n � 8 -

as exemplified by a comparison between calculations (Figs 9 and

10) made with, respectively ‘pessimistic’ and ‘optimistic’ estimates

for the errors - than for the large scales. We use our estimate of the

modelling error to correct iteratively for the covariance matrix Cy,

and to invert for more consistent flows. Of course, we can anticipate
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Figure 15. Distribution of the contribution per degree of latitude, to excess length of day of the liquid core divided into coaxial cylindrical annuli. Results

using ‘pessimistic’ initial SV uncertainties.

that further increasing the space resolution of SV, will worsen even

more the fit to large-scale SV. Eventually, the paradigm of a large-

scale SV due to advection of the field by a large-scale flow may have

to be revised.

Third, we suggest new geometrical constraints on the flow. We

find that it is possible to account for the SV models derived from

satellites data with motions symmetrical with respect to the equator

outside the TC that can be continued inside the core as QG motions.

We are thus able to present maps of axial vorticity in the equatorial

plane. We resolve vortices of azimuthal harmonic degree m ∼ 6

and diameter ∼700 km just outside TC. Note that non-uniqueness

has been eliminated outside the TC, by imposing that the same

vortices account for magnetic field induction at the core surface

in both hemispheres. As CMB closed contours of Br/cos θ are not

equatorially symmetric, the axial vortices will always produce some

SV.

Finally, we recover the often commented asymmetry between the

Atlantic and Pacific Hemispheres that is characteristic of SV models

for recent epochs. Strong anticyclones in the Atlantic hemisphere

contrast with weak cyclones in the Pacific hemisphere. We note a

westward jet, also asymmetric, circling around the inner core, that

moves closer to TC in the Pacific hemisphere. Its geometry results

from the constraint that flows cannot cross TC. It carries most of the

core angular momentum. We find a satisfactory agreement between
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our estimates for core angular momentum changes and estimates

derived from LOD observations using conservation of the total Earth

angular momentum.

We note that the contribution of the fluid region inside the TC to

the total angular momentum is very small, between 4 and 9 per cent

and 6 and 8 per cent with ‘optimistic’ and ‘pessimistic’ estimates

for the SV error, respectively. However, its contribution to the time

changes of core angular momentum is important enough. Indeed, the

related estimate of excess length-of-day due to this fraction alone

of the core is of the order of 10−4 s. This observation may point

to a role of the solid inner core in the mechanism responsible for

interannual changes in core angular momentum (see e.g. Mound &

Buffett 2003).

What confidence can we have in these velocity maps? Quasi-

geostrophy requires that the height H c(s) do not vary too rapidly

with the distance s to the rotation axis. Thus, this approximation

may not work well near the outer rim of the equatorial section, which

corresponds to the low latitudes at the core surface. This is the very

region where the tests of core flow imaging methods with numerical

dynamos conducted by Rau et al. (2000) and Amit et al. (2007) fail.

These authors have attributed the poor recovery of surface flows

there to radial magnetic diffusion. By penalizing βus , we ensure

that our axial vorticity maps are, at least, consistent with the QG

hypothesis on which we rely. Hopefully, some spurious flows in the

equatorial region are also avoided. We note also that because the

penetration of the TC by core flows is prohibited in our calculation,

the inverted flows are almost azimuthal where the slope of the ICB

is very large, which corresponds to the region, within TC, where the

conditions required to assume quasi-geostrophy would, otherwise,

be the most violated.

This study can be viewed either as an alternative or as a com-

plement to recent investigations of core surface flows controlled by

lateral variations in the heat flux at the CMB (Lister 2004; Amit &

Olson 2006; Aubert et al. 2007). We have noted that several small-

scale vortices of fluctuating intensity are required to account for the

satellite data. These can hardly be controlled by thermal features

standing in the lower mantle for millions of years. On the other

hand, the QG approach is the least grounded for the largest scales

of the flow that cannot be inferred from the z-averaged axial vor-

ticity alone. Aubert (2005) and Aubert et al. (2007) have recently

argued, on the basis of numerical simulations of dynamos driven ei-

ther by homogeneous or by heterogeneous boundary heat flux, that

a thermal wind balance holds for steady flows. At the core surface,

thermal winds are tangentially geostrophic. Thus, an interesting de-

velopment of this study is to try to account for the SV with core flows

of which the rapidly varying small-scale components are QG and

the large-scale components are either unconstrained or tangentially

geostrophic.

We consider this work as a step towards a fully dynamic study

of core flows. We have shown that QG flows may account for ge-

omagnetic SV. We can now contemplate adding to the information

provided by SV models the eq. (17) that governs the evolution of

QG core flows, applying the geomagnetic data assimilation method

outlined by Fournier et al. (2007) with a more realistic physical

model.

Our study relies on a SV model derived from satellite data that

resolves much smaller length scales than the historical models of

the magnetic field that were used in core flow modelling until a

few years ago. We are well aware, however, that such a model re-

mains preliminary and that further improvements can be expected

in the years to come. Models incorporating dynamic constraints

like the model presented here will be required to fully benefit

from these efforts in recording and modelling the Earth’s magnetic

field.
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Gire, C. & Le Mouël, J.L., 1990. Tangentially geostrophic flow at the core-

mantle boundary compatible with the observed geomagnetic secular vari-

ation: the large-scale component of the flow, Phys. Earth planet. Int., 59,
259–287.

Glatzmaier, G. & Roberts, P.H., 1995. A three-dimensional self-consistent

computer simulation of a geomagnetic field reversal, Nature, 377, 203–

209.

Gubbins, D., 1991. Dynamics of the secular variation, Phys. Earth planet.
Int., 68, 170–182.

Gubbins, D. & Roberts, P.H., 1987. Magnetohydrodynamics of the Earth’s

core, in Geomagnetism, Vol. 2, ed. Jacobs, J.A., Academic Press, London.

Heimpel, M., Aurnou, J. & Wicht, J., 2005. Simulation of equatorial and

high-latitude jets on Jupiter in a deep convection model, Nature, 438,
193–196.

Holme, R. 2007, Large-scale flow in the core, in Treatise on Geophysics,
Vol. 8: Core Dynamics, pp. 107–130, ed. Olson, P., Elsevier, Amsterdam.

Holme, R. & Olsen, N., 2006. Core surface flow modelling from high-

resolution secular variation, Geophys. J. Int., 166, doi:10.1111/j.1365-

246X.2006.03033.x, 518–528.
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Le Mouël, J.-L., Gire, C. & Madden, T., 1985. Motions at the core surface

in geostrophic approximation, Phys. Earth planet. Int., 39, 270–287.

Lister, J.R., 2004. Thermal winds forced by inhomogeneous boundary con-

ditions in rotating, stratified hydromagnetic fluid, J. Fluid Mech., 505,
163–178.

Maus, S., Rother, M., Stolle, C., Mai, W., Choi, S., Lühr, H., Cooke, D.
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A P P E N D I X A : D I V E RG E N C E - F R E E

Q UA S I - G E O S T RO P H I C F L O W S

A1 Divergence-free QG flows outside TC

We search for a velocity field u (s, φ, z) defined in the fluid vol-

ume, obeying the no-penetration boundary condition and obtained
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by adding a small perturbation to a solution of eq. (11). The vorticity

equation obtained from the eq. (14) with the magnetic term omitted

yields:

∂

∂z
u1

s = 0

∂

∂z
u1

φ = 0

u1
z = A(s, φ, t)z + B(s, φ, t), (A1)

where A and B are z-independent. We assume that the velocity field

is of the form (A1). Then, the impenetrability condition at z =
±√

r 2
c − s2 gives

uz = − s z

r 2
c − s2

us, (A2)

as in (16) and

uθ = us

√
s2 + z2

z
. (A3)

After elementary transformations where we use ∂/∂θ = z∂/∂s −
s∂/∂z and ∂us/∂z = 0, we can write

∇H · u = ∇E · u + s

z2
us (A4)

where ∇ E · is the equatorial divergence operator ∇E = ∇ − ẑ∂/∂z.

If we further impose that the flow is incompressible, then

∇E · u = − ∂

∂z
uz . (A5)

This gives, on the core surface,

∇H · u (θ, φ) = 2
tan θ

rc
uθ (θ, φ). (A6)

Thus, we recover the ‘columnar flow’ expression (20) of Amit

& Olson (2004). Indeed, the factor 2 in the right-hand side of (A6)

results from imposing the flow to be incompressible, in addition to

the initial conditions ∂

∂z us = ∂

∂z uφ = 0 and ∂

∂z uz uniform in z. Those

two constraints correspond to the Amit & Olson (2004) definition

of columnar flows.

A2 Divergence-free QG flows inside TC

Within TC the ‘columnar flow’ condition must take a different ex-

pression as we now show. We keep assuming that the velocity field

is of the form (A1) but with two different expressions for A and B,

respectively, for z ≥ 0 and z ≤ 0. The no-penetration condition holds

both at the core surface z = ±H c(s) and at the inner core surface

z = ±H i (s), with Hc(s) = √
r 2

c − s2 and Hi (s) = √
r 2

i − s2.

The expression (A2) for u z , valid outside TC only, is changed

into:

uz = sus

Hi Hc
[z ∓ (Hi + Hc)] (A7)

as in (20), where the plus and minus signs refer to the northern and

southern hemispheres, respectively. After a few transformations, we

obtain

∇H · u (θ, φ) =
(

Hi ∓ Hc

Hi

)
tan θ

rc
uθ (θ, φ) (A8)

for the velocity field expressed at the outer surface.

Let us now study how the two expressions (A6) and (A8) match

at the TC. Denoting ε = (r i − s), we find that H i is O(ε1/2)

while u θ is O(ε) as a result of the impermeability condition on TC.

Thus

∇H · u|s→r−
i

= ∇H · u|s→r+
i

= 0, (A9)

and ∇ H · u is continuous at s = r i .

We face however a remaining difficulty. As we use the same set of

spherical harmonic coefficients to represent the flow poloidal scalar

S inside and outside TC, the horizontal divergence is given every-

where on the core surface by∇H ·uH = ∑
n(n+1)Pm

n (sm,c
n cos mφ+

sm,s
n sin mφ). Due to the continuity of the associated Legendre func-

tions and of all their derivatives for 0 < θ < π , we readily note that

it is not possible to introduce a discontinuity neither on ∇ H · uH

nor on some of its derivatives at, for instance, s = s i . We have thus

exhibited a contradiction between the properties of divergenceless

QG flows and the assumption that the poloidal and toroidal flow

scalars can be expanded as sums of spherical harmonics defined

on the whole core surface. Indeed, the calculation of divergenceless

QG flows would require different expansions of the velocity field,

respectively, inside and outside TC.

A3 Divergence-free versus non-divergence-free QG flows

Our approach for the main computations in this study has been to

consider the simplest QG flow, defined by the identity (22), that

still verifies the no-penetration condition (see Section 4). Eq. (A4)

is transformed, at the core surface, into the eq. (26) (the tangential

geostrophic condition) of Section 4, which is valid anywhere on

the top of the core. This flow is, nonetheless, not divergence-free.

An alternative to this choice is to further include a component u′

that guarantees that the total flow is incompressible. The tangential

geostrophic condition must then be replaced by the two conditions

(A6) and (A8). The computation of a surface flow compatible with

these conditions on the core surface can be made following a RLS

criterion. The procedure is in fact analogous to the one we use to

impose equatorial symmetry and no-crossing of the TC, with each

condition being implemented on a different grid of core surface

points, one inside and the other outside the rim of the TC. Up to

this point, there is no need to specify u′. However, the expression of

the velocity field in the interior has to be made explicit in order to

implement the other constraints used as proxies of a comprehensive

dynamic model: minimization of the β-effect, of the rate of strain

and of the total energy. Following Schaeffer & Cardin (2005), we

define a pseudo-stream function ξ (s, φ) from the non-zonal part ũs

of us :

ũs(s, φ) = 1

s

∂ξ

∂φ
. (A10)

Then, u z can be derived from ξ using eqs (A2) and (A7). Finally,

uφ(s, φ) = −∂ξ

∂s
+ s

H 2
c

ξ (s, φ)

u±
φ (s, φ) = −∂ξ

∂s
− s

Hi Hc
ξ±(s, φ), (A11)

where the superscripts ± refer to the northern and southern regions

inside the TC. Expressions (A10) and (A11) differ from the def-

inition (13) of non-divergenceless QG flows only through the last

terms of the two identities composing (A11). They are O(ηcl/H c)

and O(η i l/H c) smaller than the main terms, respectively, outside

and inside TC (l length scale in the equatorial plane).
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A P P E N D I X B : T H E E X P R E S S I O N O F

Ψ AT T H E C O R E S U R FA C E

As noted in Section 4, the whole QG columnar flow can be de-

rived from the scalar streamfunction �(s, φ). This is clearly seen in

eq. (13), and can be made explicit in eqs. (16) and (20) by writing

uz (s, φ, z) = − z

H 2
c

∂

∂φ
�(s, φ)

u±
z (s, φ, z) = z ∓ (Hi + Hc)

Hi Hc

∂

∂φ
�±(s, φ). (B1)

Being z-independent, � can be expressed in terms of the core surface

flow coefficients. What is more, using the tangential geostrophic

condition makes it possible to relate � to only the poloidal and

zonal toroidal CMB flow coefficients. From (23) and (24)

∇H · uH = 1

r 2
c cos2 θ

∂

∂φ
�(θ, φ)

∇H · u±
H = 1

r 2
c cos2 θ

∂

∂φ
�±(θ, φ), (B2)

making possible to determine the non-zonal coefficients of the

streamfunction � in terms of the poloidal coefficients of the CMB

flow. The zonal coefficients can be deduced from

uzon
φ = − 1

rc cos θ

d

dθ
� zon(θ )

u± zon
φ = − 1

rc cos θ

d

dθ
�± zon(θ ). (B3)

As we compute one single set of coefficients for the flow so-

lution, that are expected to describe the flow everywhere on the

CMB (whether inside or outside the rim of the TC), the same set

of spherical harmonic coefficients is used to describe � and �±

at the core surface. We denote them by {ψm,c
n , ψm,s

n }. As expected

from expressions (23) and (24), we obtain for these coefficients, ex-

pressions similar to those relating the geostrophic pressure spherical

harmonic coefficients to the poloidal and zonal toroidal surface flow

coefficients (e.g. Gire & Le Mouël 1990):

r−2
c ψm,c(s)

n = +
(−)

am
n sm,s(c)

n−2 +
(−)

bm
n sm,s(c)

n +
(−)

cm
n sm,s(c)

n+2

r−2
c ψ0

n = n − 1

2n − 1
t0
n−1 + n + 2

2n + 3
t0
n+1, (B4)

where

am
n = (n − 2)(n − 1)

(2n − 3)(2n − 1)

×
√

(n − m − 1)(n − m)(n + m − 1)(n + m)

m

bm
n = n(n + 1)

m(2n + 1)

[
(n − m + 1)(n + m + 1)

2n + 3
+ (n + m)(n − m)

2n − 1

]

cm
n = (n + 2)(n + 3)

(2n + 5)(2n + 3)

×
√

(n − m + 1)(n − m + 2)(n + m + 1)(n + m + 2)

m
.

(B5)

The relations above can be used to write any condition on � or

on its latitudinal or meridional derivatives at the CMB, in the form

of corresponding conditions on the CMB flow poloidal and zonal

toroidal coefficients.
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