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Extraction of body waves from seismic noise

Surface waves as observed in seismic noise correlations from seismic broadband stations

e Usually very robust, as demonstrated in abundant literature since 2004

Influence from the distribution of noise sources: impacts mainly the relative amplitude
between the waves at causal and acausal time

The observations are sufficiently robust to allow for monitoring, using the surface wave coda
The surface waves include also effects of lateral heterogeneities

-> |n the case of seismic surface waves, (most of) the conditions are fulfilled for effective imaging



Example of surface waves great circle deviations
observed in Finland
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Extraction of body waves from seismic noise

Surface waves as observed in seismic noise correlations from seismic broadband stations

* Usually very robust, as demonstrated in abundant literature since 2004

Influence from the distribution of noise sources: impacts mainly the relative amplitude
between the waves at causal and acausal time

The observations are sufficiently robust to allow for monitoring, using the surface wave coda
The surface waves include also effects of lateral heterogeneities

-> |n the case of seismic surface waves, (most of) the conditions are fulfilled for effective imaging

Body waves as observed in seismic noise correlations from seismic broadband stations

» Still at its beginning (>2010)

» Spurious arrivals are known to exist, related to Earthquakes (-> talk by Piero Poli)

* Is the wave scattering sufficient to ensure a good Green’s function retrieval in the frequency
band where we have the most energy?

* Is the distribution of body wave sources sufficiently spread geographically?

Scope of this talk:
 Demonstrate that in some cases (geographical location, array configuration) the distribution of
noise sources is highly inadequate to obtain the body wave part of the Green’s function



Latitude (deg)

Body waves observed at global scale

339 stations, 57000 correlations, FB 0.01-0.5 Hz. Networks:
GEOSCOPE, GSN, K-NET, LAPNET, USARRAY, ALASKA SEIS. NET, ....
Thanks to all the data centers and network providers
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Boué et al. GJI, 2013



Body waves observed at global scale

Correlations Synthetics
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Boué et al. GJI, 2013

BIN SIZE 0.01°
> See talk by Piero Poli



Previous observations of P410P and P660P
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Parenthesis: citing seismic networks

Poli et al. Science, 2012
Data: Kozlovskaya et al., 2007,
DOI: 10.15778/RESIF.XK2007)



Why study the mantle transition zone?

Constraints on temperature and composition of the Earth’s mantle
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Impact on mantle convection
(A) Northern Honshu
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Moving to Nepal-Tibet: HICLIMB Data

Why?

* Dense network

* Previous observations of 410 and 660 (SS precursors; Heit et al.,
2010)

* Important geodynamic questions are still open

Why not?
* Complex crustal structure
* Linear array
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Seismic array

Southern part: 20.5 5500

-76 BB with 4-5 km interstation

spacing, running between Sept 2002 \2: 3
and June 2004
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Noise correlations calculated with an
method that minimises the impact of
earthquakes and high amplitude
storms
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Dist (km)

Correlations between station HO130 and all
profile stations north of HO130

0.05-0.1 Hz (1st microseismic peak)
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Correlations between station HO130 and all
profile stations north of HO130

0.05-0.1 Hz (1st microseismic peak)

0.1-0.2 Hz (24 microseismic peak)

Surface waves
(S->N dominant)
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Variations over the year
(0.1-0.2 Hz)

January - February

June-July
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Variations over the year
Hourly correlations between two stations

0.05-0.1 Hz (1st microseismic peak) 0.1-0.2 Hz (2"d microseismic peak)
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Single arrival dominant in almost all hour windows, for at least 8 months per year




Variations over the year
Hourly correlations between two stations

0.05-0.1 Hz (1st microseismic peak)
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Distance(km)

Looking more into the winter months

Stack of all southern pairs over the winter months (except stations <H0100)
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Beam-forming on small irregular part of array
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Coherent with P wave from a source in
the northern Pacific (~40°N ,~180°E)

Correlations are dominated by ballistic bodywaves from a specific source area (or more
complex filtering effects, see Poli, Campillo, van der Hoop (in revision)




Known locations of P-wave seismic sources

(2" microseismic peak)

(@) Summer (July 2000) (b) Autumn (October 2000)

(c) Winter (January 2001) (d) Spring (April 2001)
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Known locations of P-wave seismic sources
(2" microseismic peak)

Body wave noise sources (Pyle et al., Body wave noise sources observed
2015). White stars: Sources by Sheen and Shin (2016)
observed by Obrebski et al. 2013.
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Distance from source (degrees)

Synthetic Seismograms :

vertical point source at (~Y40°N ,~180°E)
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Correlations of synthetic seismograms
vertical point source at (~40°N ,~180°E)
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Stacking the correlations (normalised for t>80s)

Expected 410 Expected 660
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Stacking the correlations (normalised for t>80s)
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Stacking the correlations (normalised for t>80s)

Expected 410 Expected 660
reflection ] reflection
1.2
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Wishful thinking?
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Distance (km)

Shifting traces

A: Traces shifted so max(trace) is at t=0s
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Stacking shifted traces (normalised for t>80s)
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Stacking shifted traces (normalised for t>80s)
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Subtracting main field by SVD

Pr410P-P PPV660p- PP-P
PPv410p-P
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Subtraction of the ‘deterministic’ waves possible?

A: Traces shifted so max(trace) is at t
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Stacks — and first conclusions

NWWW Stack of input to SVD x 1

W\NW Stack of extracted from SVD x 6.3

J\WM Stack of extracted from SVD and shifted back x 18.7
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On HICLIMB data, second microseismic peak:

* The noise correlations are dominated by deterministic body waves almost all through
the year

* The source of these body waves is likely to be located in the northern Pacific.

 These body waves are when stacked of ~20 times higher amplitudes than the stack of
the remaining waves

* Not possible to reliably extract reflections from mantle discontinuties beneath this
location with the HICLIMB network geometry.




Some general conclusions

* In some cases (location? array configuration, ...) the noise correlations are dominated
by deterministic body waves almost all through the year

* The spike at ‘t=~0’ in the second microseismic peak, observed (and muted) in many
studies is not always a processing problem, but may indicate potential problems

* Large distances (Lapnet: ~ 400km) and spatial filtering (2D arrays) may be a minimum
condition to respect to extract P410P and P660P

 Ultimate small distance: Autocorrelation - ???

Strong need of further diagnostic tools

And don’t forget to properly cite the networks!




