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The larger structures are, the lower their mechanical strength.
Already discussed by Leonardo da Vinci and EdméMariotte several
centuries ago, size effects on strength remain of crucial impor-
tance in modern engineering for the elaboration of safety regula-
tions in structural design or the extrapolation of laboratory results
to geophysical field scales. Under tensile loading, statistical size
effects are traditionally modeled with a weakest-link approach.
One of its prominent results is a prediction of vanishing strength
at large scales that can be quantified in the framework of extreme
value statistics. Despite a frequent use outside its range of validity,
this approach remains the dominant tool in the field of statistical
size effects. Here we focus on compressive failure, which concerns
a wide range of geophysical and geotechnical situations. We show
on historical and recent experimental data that weakest-link pre-
dictions are not obeyed. In particular, the mechanical strength
saturates at a nonzero value toward large scales. Accounting ex-
plicitly for the elastic interactions between defects during the
damage process, we build a formal analogy of compressive failure
with the depinning transition of an elastic manifold. This critical
transition interpretation naturally entails finite-size scaling laws
for the mean strength and its associated variability. Theoretical
predictions are in remarkable agreement with measurements
reported for various materials such as rocks, ice, coal, or concrete.
This formalism, which can also be extended to the flowing insta-
bility of granular media under multiaxial compression, has impor-
tant practical consequences for future design rules.

Owing to its importance for structural design (1), the elabora-
tion of safety regulations (2), or the extrapolation of labora-

tory results to geophysical field scales (3), the size effects on
strength of materials are one of the oldest problems in engineering,
already discussed by Leonardo da Vinci and Edmé Mariotte (4)
several centuries ago, but still an active field of research (5, 6). As
early as 1686, Mariotte (4) qualitatively introduced the weakest-
link concept to account for size effects on mechanical strength,
a phenomenon evidenced by Leonardo da Vinci almost two cen-
turies earlier. This idea, which states that the larger the system
considered is, the larger the probability to find a particularly faulty
place that will be at the origin of global failure, was formalized
much later by Weibull (7). Considering a chain of elementary in-
dependent links, the failure of the chain is obtained as soon as one
link happens to break. By virtue of the independence between the
potential breaking events, the survival probability of a chain of N
links is obtained by the simple multiplication of the N elementary
probabilities. Depending on the properties of the latter, the global
survival probability converges toward one of the three limit dis-
tributions identified by Weibull (7), Gumbel (8), and Fréchet (8),
respectively. Together with Fisher and Tippett (9), these authors
pioneered the field of extreme value statistics.
This purely statistical argument, undoubtedly valid in 1D, was

extended by Weibull (7, 10) to account for the risk of failure of 3D
samples or structures. Besides the hypothesis of independence, it
thus requires an additional hypothesis of brittleness: The nucle-
ation of any elementary crack at the microscopic scale from a pre-
existing flaw is assumed to immediately induce the failure at
the macroscale. More specifically, following linear elastic fracture

mechanics (LEFM) stating that crack initiation from a flaw of size
s occurs at a stress σc ∼ s−1=2, one gets a probability of failure of
a system of size L under an applied stress σ, PFðσ;LÞ, that depends
on the distribution of preexisting defect sizes. Assuming a power
law tail for this distribution, Weibull statistics are expected(7),
PFðσ;LÞ  =  1  −  expð−ðL=L0Þd  ðσ=σuÞmÞ, whereas Gumbel statistics
are expected for any distribution of defect sizes whose the tail
falls faster than that of a power law (8, 11, 12), PFðσ;LÞ  = 1  −
  expð−ðL=L0Þd   expðσ=σuÞÞ, where m is the so-called Weibull’s
modulus, d is the topological dimension, and L0 and σu are nor-
malizing constants. For Weibull statistics, the mean strength σf
and the associated SD δ(σf) then scale with sample size L
as σf ðLÞ ∼ δðσf ÞðLÞ ∼ L−d=m. This approach has been success-
fully applied to the statistics of brittle failure strength under tension
(7, 13), withm in the range 6–30 (14). It implies a vanishing strength
for L→ +∞, although this decrease can be rather shallow, owing to
the large values of m often reported.
Although relying on strong hypotheses, this weakest-link statis-

tical approach was almost systematically invoked until the 1970s to
account for size effects on strength whatever the material and/or
the loading conditions. However, as shown by Bazant (1, 5), in
many situations the hypothesis of brittleness is not obeyed. This is
in particular the case when the size of the fracture process zone
(FPZ) becomes nonnegligible with respect to the system size. In
this so-called quasi-brittle case, an energetic, nonstatistical size
effect applies (15), which has been shown to account for a large
variety of situations (5). Toward large scales, i.e.,L→+∞, the FPZ
becomes negligible compared with L, and the hypothesis of brit-
tleness should therefore be recovered and statistical size effects
should dominate. Statistical numerical models of fracture of het-
erogeneous media also revealed deviations from the extreme value
statistics predictions (16) but, as stated by Alava et al. (ref. 11, p. 9),
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“the role of damage accumulation for fracture size effects in
unnotched samples still remains unclear.” As shown below,
compressive failure results from such progressive damage
accumulation.
In what follows, we do not consider (deterministic) energetic size

effects and explore a situation, compressive failure, where both the
hypotheses of brittleness (in the sense given above) and inde-
pendence are not fulfilled, up to very large scales. Relaxing these
initial hypotheses of the weakest-link theory, our statistical physics
approach remains statistical by nature and relies on the interplay
between internal disorder and stress redistributions. It is based on
a mapping of brittle compressive failure onto the critical depinning
transition of an elastic manifold, a class of models widely used in
nonequilibrium statistical physics characterized by a dynamic phase
transition (17). This approach does not consider a sample’s shape
effects (18), only statistical size effects. The critical scaling laws
associated to this phase transition naturally predict a saturation of
the compressive strength at a large scale and are in remarkable
agreement with measurements reported for various materials such
as rocks, ice, coal, or concrete.

Compressive Failure Cannot Be Captured by a Weakest-Link
Approach
Compressive loadings are particularly relevant in rock mechanics
and geophysical situations (19) as the result, e.g., of lithostatic
pressure and consequently for geotechnical problems (e.g., ref. 18).
Brittle compressive failure is a complex process, as the local tensile
stresses at crack tips are counteracted by the far-field compressive
stresses. Consequently, Griffith-like energy balance arguments, or
related tools such as fracture toughness, cannot be developed to
describe the instability leading to terminal failure, thus making the
weakest-link approach inoperative. Instead, brittle compressive
failure involves an initiation phase, elastic interactions, and stress
redistributions, as well as frictional sliding along rough surfaces. In
what follows, we mean by brittle failure a situation where micro-
scopic ductile deformation processes such as creep or dislocation
motion play a negligible role (20). During the initiation phase,
secondary cracks nucleate from the local tensile stresses generated
by the frictional sliding along preexisting defects such as grain
boundaries, small joints, or microcracks (21, 22). The propagation
of these mode I secondary cracks is, however, rapidly stopped by
the far-field compression. Instead, such nucleation events locally
soften the material (23, 24) and thus cause a redistribution of
elastic stresses, which in turn can trigger other microcrackings.
Then, in the course toward failure, the interaction and linking of
secondary cracks are considered to be at the onset of shear fault
formation, from which the macroscopic instability is thought to
result (22, 25). This process is characterized by a progressive lo-
calization of damage and deformation along a fault (26).
The above description shows that all of the assumptions of the

weakest-link theory are inappropriate in the case of compressive
failure. Summarizing experimental field and laboratory data
obtained for 50 y, it is thus not surprising that their weakest-link
predictions are poorly obeyed. When the compressive strength of
brittle materials has been measured from laboratory tests over
a limited scale range (generally between ∼10−2 m and ∼10−1 m),
either nonsignificant (27, 28) or limited (29, 30) size effects on σf
were observed, whereas, when reported, the associated variance
seemed to increase toward small scales (27). Consequently, these
results do not fully constrain empirical or theoretical size effect
formulations. Some studies were performed instead several
decades ago over a much larger scale range (∼10−2 m to a few
meters), combining laboratory and in situ tests (18, 31–33). All of
them reported a significant scale dependence of σf at small
scales, tentatively and empirically fitted as a power law decrease
(18) σf ðLÞ∼ L−β, but also a nonzero asymptotic strength at
large (>1 m) scales, not explained by the weakest-link approach.
So far, there is no clear explanation for this nonvanishing com-
pressive strength. Instead, empirical formulations of size effects
on compressive strength of brittle materials (3, 18, 34) generally
ignore such asymptotic behavior. Following observations at small

scales, they all share a common power law scaling σf ∼ L−β, with
β varying from very small values (29) (i.e., almost no size effect) to
the LEFM scaling β = 1/2. The weakest-link concept has been
sometimes put forth to explain this scaling for small β values (29),
although it is clear from the above that this approach is irrelevant
in the case of compressive failure. On the other hand, a (de-
terministic) energy analysis of compression failure based on
physical (micromechanical) considerations has been proposed (1,
35). In agreement with the scenario described above, it considers
that the nucleation of microcracks roughly parallel to the principal
compression axis forms a band whose mechanical instability, trig-
gered by the buckling of the microslabs separating the microcracks,
leads to failure. However, the microcracks, and therefore the as-
sociated band, are assumed to nucleate suddenly, just preceding
macrofailure; i.e., this approach does not consider the progressive
route toward the failure, characterized by elastic interactions be-
tween cracks and progressive damage localization. In other words,
the transition to failure is considered a “first-order” transition. This,
in addition to an assumed constant scaling between the band length
and the size of the system, gives a vanishing strength toward large
scales with an asymptotic scaling σf ∼ L−2=5, i.e., slightly shallower
than the LEFM scaling. Consequently, the observed nonvanishing
strength σ∞ is not explained. In addition, this deterministic ap-
proach cannot, by nature, account for a size dependence of the
variability of strength. We propose instead to consider compressive
failure as a critical transition and develop a mapping onto the
depinning transition that allows accounting for the interplay be-
tween local disorder and long-ranged elastic interactions, leading to
a statistical finite size effect.

Compressive Failure as a Critical Depinning Transition
The modeling of the mechanical behavior of heterogeneous
materials induced in recent years an intense research activity. In the
early 1990s the idea emerged that nonlinear processes such as
fracture, plasticity, and damage could be discussed as critical
phenomena (36). In the context of damage, a paradigmatic ex-
ample of this approach is given by the fiber bundle model (37).
However, the scope of this model as well as its variants (38) are
restricted to the catastrophic failure occurring under tensile con-
ditions, i.e., the transition from an initiation stage to a propagating
stage triggered by the development of a critical nucleus. In contrast,
our interest here is the study of progressive damage under com-
pressive conditions. To our knowledge the first attempt of a de-
scription of compressive damage as a critical phenomenon is due to
Toussaint and Pride (39). They developed a statistical mechanics
formalism based on ensemble averages obtained over the rock seen
as a collection of disordered mesovolumes. A specific Hamiltonian
(40) that accounted for the interaction between cracks and the
traditional tools of equilibrium statistical mechanics (partition
function, maximum of entropy) were used to characterize the lo-
calization transition associated with the failure of the material.
We here follow a different route. We proposed recently a nu-

merical progressive damage model whose results are consistent
with an interpretation of brittle compressive failure as critical phase
transition (41, 42). This finite-element model (41) considered a
continuous elastic material with progressive local damage: The
elastic modulus of an element decreases each time the stress state
on that element exceeds a given threshold defined by a Coulomb
criterion. This elastic softening simulates an increase in microcrack
density at the element scale (23, 24). Disorder was introduced on
the local stress threshold. As the result of elastic interactions, the
stress redistribution following a damage event can trigger an ava-
lanche of damage. We showed (41, 42) (i) that the size of the
largest damage cluster and that of the largest damage avalanche
diverge at peak load, which just precedes failure, and (ii) the
divergence of a correlation length ξ at failure, ξ∼Δ−1=ν, where
Δ= ðemf − emÞ=emf (respectively Δ= ðσf − σÞ=σf ) is the control
parameter for strain- (respectively stress)-driven simulations,
em is the applied macroscopic strain, emf is the corresponding
value at peak stress σf (failure), and ν = 1.0 ± 0.1 is the cor-
relation length exponent.
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Here, in the spirit of a recentmodel of amorphous plasticity (43),
we formalize this interpretation of compressive failure as a critical
transition through a mapping onto a depinning model, a class
of models that exhibit out-of-equilibrium phase transition. The
damaging process is described as the motion of a d-dimensional
elastic manifold with long-range interactions through a random
field of obstacles within a space of dimension d+ 1. In our case, the
macroscopic stress plays the role of the driving force and a local
damage event corresponds to the depinning from an obstacle, with
elastic redistributions in both cases. Damage is represented by
a scalar field DðrÞ at a mesoscopic scale λ, which typically corre-
sponds to the correlation length of the structural disorder of the
material, and it occurs whenever the stress state σ reaches the
boundary of an elastic domain defined by the Coulomb criterion,
jτj+ μσN = τC. This criterion is of wide applicability for brittle
materials under compressive stress states to define the onset of
damage (19, 44). τ and σN are, respectively, the shear and normal
stress (sign convention positive in tension) over a plane maximizing
the Coulomb stress jτj+ μσN , and μ= tanðφÞ is an internal friction
coefficient (φ is the so-called angle of internal friction). The het-
erogeneous nature of the material, i.e., the disorder, is accounted
for by a statistical variability of the cohesion τC, δτC.
A crucial feature is the nonindependence of the local damaging

events occurring in the material. Any local event is characterized
by a local decrease of the elastic modulus that occurs in a small
region surrounded by the remainder of the material. The latter
can be seen as an elastic matrix and its reaction induces an elastic
stress field all over the material. We started from the classical
inhomogeneity problem of Eshelby (45, 46) to calculate the stress
field induced by a damaged inclusion. Because the damaged
material is elastically disordered, the internal stress cannot be
obtained by a simple superposition of the contributions of iso-
lated inclusions. To partly account for interactions between
inclusions, we develop a two-step strategy to compute the internal
stress (SI Text). The damage field is first used to obtain a self-
consistent estimate of the average, macroscopic elastic behavior,
E. This effective value, which partly accounts for interactions
between inclusions, is then used to obtain a fluctuating damage
field, defined from the contrast between the actual elastic moduli
at microscale and E. The internal stress is finally obtained from
the sum of the elastic contributions of the associated effective
inclusions. The interplay between local disorder and elasticity is
the basis for depinning models, which have proved successful in
recent years to describe physical and mechanical phenomena as
various as the advance or retreat of a triple contact line on a dis-
ordered substrate (47–49), the motion of a magnetic wall in a thin
film (50), the propagation of a crack front in a heterogeneous
material (51–54), etc. The full derivation of our problem is given
in SI Text. It allows a complete mapping onto a depinning model,
with the following equation of evolution of the damage field,

Μ
∂D
∂t

ðrÞ=R�
σexts + σels

�fDg;EðfDgÞ; r=λ�− 2cosðφÞτCðr;DÞ�;
[1]

where R denotes the positive part, Μ is a mobility coefficient, and
λ is the characteristic length scale of the microstructural disorder.
In the language of depinning models, we identify σexts as the
external forcing term, σels as the elastic contribution induced by
the damage field D, via the knowledge of the damage-dependent
effective modulus E, and τC is the disorder.
This formal mapping enables us to apply to progressive damage

the various analytical and numerical results obtained in the frame-
work of the depinning transition. In the “thermodynamic” limit, i.e.,
for a system of infinite size, a well-defined critical threshold σth
separates the static phase (limited damage) from the dynamic one
(failure). For our problem, this is the expression of a nonvanishing
asymptotic strength, σ∞ > 0. In the case of samples of finite size,
fluctuations of the measured threshold σf are expected in the vicinity
of σth. We thus expect, as for the threshold force of the depinning

transition (6, 55), a finite-size scaling for the compressive strength
σf of the form

δ
�
σf
�ðLÞ=AL−1=νFS ; or

δ
�
σf
�ðLÞ
σ∞

=
�
L
LA

�−1=νFS
[2]

σf ðLÞ=BL−1=νFS + σ∞; or
σf ðLÞ
σ∞

=
�
L
LB

�−1=νFS
+ 1; [3]

where νFS is the finite-size exponent and σ∞ is a nonvanishing as-
ymptotic value of the strength forL→+∞.A, B (in Pa:m1=νFS ),LA=
ðA=σ∞ÞνFS , and LB = ðB=σ∞ÞνFS (in meters) are constants. These
length scales define the scales below which, respectively, the fluctu-
ations and the finite-size corrections become important compared
with the asymptotic strength σ∞. We expect these to scale as
LA;B ∼ λðδτc=τcÞνFS , where δτc=τc represents the associated variabil-
ity on the local cohesive strength (SI Text). This implies that in the
case of weak disorderLA andLB will be of the order of λ (e.g., grain
size, aggregate size, etc.), but might be significantly larger in the case
of strong disorder when, e.g., cracks or joints widely distributed in
size are initially present in the material. The classical assumption
(55) is ν = νFS, whereas the mean-field prediction (56) is ν = 1. Eq. 2
expresses the variability on strength intrinsically related to the fail-
ure process, to which experimental sources of variability should be
added. Toward very small scales, L � λ, the proposed scaling (Eqs.
2 and 3) necessarily breaks down when σf approaches the material
strength limit (1).

Application to Experimental Data in Cohesive Materials
In full qualitative agreement with experimental data (see above),
this finite-size scaling implies an apparent power law decay of the
mean strength at small sizes, a nonvanishing strength for L → +∞,
and an increasing variability toward small sizes. Relation [2]
is hardly testable from experimental data, as δ(σf) values, when
reported, are based on a limited number of independent tests and
include experiment-related scatter. For studies including field tests
at the meter scale (18, 31–33) and assuming that the asymptotic
strength σ∞ was reached at the largest scale, we fitted the data
with relation [3]. The agreement is remarkable, with the best-fit
νFS value ranging from 0.8 to 1.05 (Fig. 1), i.e., close to the mean-
field prediction, ν = 1. The corresponding length scales LB range
from∼20 cm to 40 cm, a possible sign of relatively strong disorder
(joints, microcracks) in these natural rock samples. For studies
based only on laboratory tests, either (i) no significant size effect
on strength is reported, as for fresh-water granular ice (27), lime-
stone (57), granite (57), or concrete (28) (this can be explained by
a smallLB in Eq. 3 and/or an insufficient dataset to properly sample
size effects), or (ii) the data can be well fitted by [3], assuming νFS=
1, as shown in Fig. S1 for high-performance (HP) concrete (30) and
marble (29). In the case of HP concrete, the scale LB is close to the
maximumsize of theandesite aggregate (12mm) (30). Inagreement
with our former expectation, in such initially unfractured materials,
the microstructural scale (aggregate size, grain size, etc.) likely sets
this LB scale.
The confining pressure σ3 increases the axial compressive

strength σ1f of rocks, ice, coal, or concrete (19, 28, 34, 58). Up to
a confining ratio σ3/σ1f of about 30%, failure is brittle and occurs
through microcrack initiation and interactions, followed by shear
fault formation at the onset of macroscopic instability, as described
above (58). This failure mode is sometimes called Coulombic
faulting, reminiscent of the importance of solid friction in this case
(44). Consequently, one expects our mapping to the depinning
transition to hold in this case. The combination of the effects of size
and of confining pressure on strength has been rarely studied, but
the available data on coal (34) are well explained by Eq. 2 with
νFS = 1 and an increasing asymptotic strength σ∞ with increasing
confinement, as expected (Fig. 2). For these natural samples, the
scale LB is once again relatively large (several centimeters). It
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slightly decreases with increasing confinement, suggesting a second-
ary effect of confinement on the sensibility of LB to the variability of
the local strength, δτc=τc. For such multiaxial compression tests, the
deviatoric stress σ1 − σ3 appears to be the most relevant variable.
Thus, the strength has been defined as σf = σ1f − σ3. This choice for
σf , instead of the axial strength σ1f, obviously does not change the
value of the exponent νFS or of the scaleLB. For confinements larger
than ∼30%, compressive failure is no more brittle, and another
failure mode occurs, as mode I secondary crack nucleation is
inhibited. This failure mode, called plastic faulting, involves thermal
softening and an adiabatic shear instability (59). In this case, we no
longer expect elastic interactions between microcracks to occur, i.e.,
our size effect formalism to hold. Indeed, it has been found that for
large confining pressure, size effects on compressive strength dis-
appear (60). This sets the range of applicability of our formalism.

Application to Granular Media
This mapping onto the depinning problem is likely not restricted to
brittle cohesive materials. As described in ref. 43 and recalled in SI
Text, it can be extended to the macroscopic plastic instability in
amorphous media. The case of a cohesionless frictional granular
medium compressed under confinement can be interpreted as an
intermediate case between amorphous plasticity and compressive
damage. Indeed, shear-induced local rearrangements of the granular
structure lead to irreversible local strains but not to a systematic
degradation of local stiffness. Compared with amorphous plasticity,

other complications are present, however, such as dilatancy. When
compressed under confinement, these media exhibit a macroscopic
flowing instability associated to strain localization (61), which sets
the yield stress, i.e., the “strength.” This instability can also be
considered a critical transition (62). In this case, the disorder is
topological, coming from the arrangement of particles.
From this analogy, we expect finite-size scaling (relations [2]

and [3]) to ensue. However, to our knowledge, there is so far no
experimental data over a significant range of scales to check this
anticipation. We therefore simulated the mechanical behavior of
frictional granular materials, using the molecular dynamics dis-
crete element method (63). Two-dimensional granular assem-
blies made of a set of frictional circular grains were considered.
The dynamic equations were solved for each of the grains, which
interact via linear elastic laws and Coulomb friction when they
are in contact (64). Neither cohesion between grains nor rolling
resistance was considered. To build granular assemblies with
strongly different initial (before loading) characteristics, in terms
of coordination number and/or packing density, specific sample
preparation procedures were used. Details on the discrete ele-
ment model as well as on these procedures are given in SI Text.
These granular assemblies were loaded under a multiaxial
configuration, with the external axial stress σ1 prescribed to im-
pose a constant axial strain rate, whereas the radial stress σ3, i.e.,
the confining pressure, was kept constant. The 2D sample sizes
varied from 100 grains to ∼45,000 grains.

Fig. 1. Finite-size effect on uniaxial compressive
strength (experimental data). (A) Granodiorite (31);
(B) quartz diorite (31); (C) coal (32). Main graphs:
mean compressive strength σf vs. size. Black circles:
published experimental data, with associated SD
(when reported). Red curve: fit by Eq. 3, using σ∞ =
20 MPa for granodiorite, 6.8 MPa for quartz diorite,
and 4 MPa for coal. The best-fit νFS exponents are,
respectively, 0.85, 1.05, and 0.8. The associated
constants length scales LB are, respectively, 0.41 m,
0.235 m, and 0.30 m. Insets show the same data and
fits, in a σf vs. L−1=νFS graph where Eq. 3 is a straight
line and reveals the asymptotic strength σ∞.

Fig. 2. Finite-size effect on multiaxial compres-
sive strength for coal (experimental data). These
strength values have been recalculated using the
generalized Hoek and Brown empirical formula-
tion (equation 1 of ref. 34) and using the set of
parameters found in table 3 of the same ref. 34,
for confining pressure σ3 = 0 MPa, 2 MPa, 5 MPa,
and 9 MPa. (A) Mean compressive strength
σf = σ1f − σ3 vs. size. For this multiaxial loading, the
deviatoric stress has been considered here as the
relevant variable. The corresponding fits from
Eq. 3 of the main text, using νFS = 1, are shown
as lines. The best-fit asymptotic strengths σ∞ are,
respectively, 6.1 MPa, 16.6 MPa, 26.9 MPa, and 37.4
MPa for σ3 = 0 MPa, 2 MPa, 5 MPa, and 9 MPa. The associated LB values are, respectively, 27 cm, 12 cm, 9 cm, and 7.5 cm. (B) Same data and fits, in a σf vs.
L−1=νFS graph where Eq. 3 is a straight line and reveals the asymptotic strength σ∞.
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Whatever the initial characteristics of the assemblies, finite size
scaling of compressive strength was observed, in full agreement with
Eqs. 2 and 3 (Fig. 3), showing the generic nature of the concept
proposed here. In agreement with our expectation, the scales LA

and LB were slightly larger than the average particle size and in-
creased for less dense, less coordinated samples (Table S1).

Failure Strength Statistics
As noted in the Introduction, the weakest-link hypothesis leads to
extreme value statistics for the probability of failure under an applied
stressσ.As theweakest-link theoryappears irrelevant for compressive
failure, we do not expect such extreme statistics for the distribution of
strength in this case. Published experimental data with a sufficient
number of failure tests to analyze strength distributions are rare.
Results obtained on ice indeed exclude extreme statistics, either
Weibull orGumbel, and argue instead forGaussian statistics (Fig. 4).
The same is true for the discrete-element modeling of frictional
granular media (Fig. S2). We anticipate, from the criticality of the
transition, the scaling form of the distribution Pðσf ;LÞ of the fluctu-
ations for a systemof sizeL asPðσf ;LÞ=LνFS Ψ½ðσth − σf ÞLνFS �. Such
a scaling form naturally leads to the scaling relations for the mean
value σf (relation [3]) and the SD δðσf Þ (relation [2]) of the com-
pressive strength discussed above. However, the precise form of the
statistical distribution Ψ is not prescribed by this simple scaling
analysis. In particular, Ψ is not expected to obey the predictions of
extreme value statistics whose hypotheses (absence of interactions)
are not satisfied in the present problem. In recent results obtained in
a similar framework [depinning model of amorphous plasticity (65)],
Gaussian-like distributions were observed as well.
Combining Gaussian statistics with Eqs. 2 and 3 leads to the

following expression for the probability of failure at scale L
under a stress σ:

PFðσ;LÞ= 1
2

2
41+ erf

0
@σ − σ∞

�
1+ ðL=LBÞ−1=νFS

	
ffiffiffi
2

p
σ∞ðL=LAÞ−1=νFS

1
A
3
5: [4]

Concluding Comments
This statistical physics interpretation of compressive failure of
continuous and granular media has important practical con-
sequences. First, when laboratory-scale (centimeter to decameter)
studies show no significant size effect, one expects that laboratory
strength values will give a good estimate of the asymptotic (field)
strength. Extrapolation of laboratory-scale data to scales smaller
thanLA orLBwill bemore difficult, owing to the intrinsic variability
at such scales. However, the mean-field estimate of the finite-size
exponent, νFS = 1, obtained from theoretical considerations, well

Fig. 3. Finite size effects for the discrete-element model of frictional granular
media under multiaxial compression [low-coordinated (LC)1 samples; see SI
Text for details about the model] and then normalized by the confining
pressure σ3. (Upper) Mean compressive strength σf=σ3 = ðσ1f − σ3Þ=σ3; (Lower)
associated SD vs. system size. System size has been defined as

ffiffiffiffiffiffi
Ng

p
, where Ng

is the number of grains of the model. Black circles: model results. Red curves:
finite size scaling given by Eq. 3 for the mean strength and Eq. 2 for the SD,
with νFS = 1.07, LA = 1.68, LB = 4.21, and σ∞ = 1.65 × σ3. The best-fit exponent
νFS and scale LAwere obtained from the SD scaling (Lower), and the asymptotic
strength σ∞ and scale LB were then obtained from the scaling of σf=σ3 (Upper,
Inset). Inset shows the same data and fits, in a σf=σ3 vs. L−1=νFS graph where
Eq. 3 is a straight line and reveals the asymptotic strength σ∞.

Fig. 4. Distribution of uniaxial compressive failure
strength for fresh-water granular ice (grain size: ∼1
mm), from ref. 27. (A) Weibull statistics, where
WðL,σf Þ= lnð−lnð1−PFðσÞÞ=L3Þ and PF(σ) is the (cu-
mulative) probability of failure under an applied
stress σ. Because data obtained for different sample
sizes do not collapse onto a single straight line,
compressive strengths do not follow Weibull sta-
tistics. (B) The same is true for Gumbel statistics.
(C ) Normal probability plot for the standard dis-
tributions. The collapse onto a single straight line,
which corresponds to Eq. 4, argues for Gaussian
statistics.
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describes the fluctuations and the associated finite-size corrections,
whereas for initially unfracturedmaterials,LA andLB are related to
the characteristic microstructural scale (grain size, aggregate size,
etc.). Therefore, owing to its predictive potential, we believe that
the proposed scaling is a useful, simple to use guidance for future
structural design rules or regulations (e.g., ref. 2).

Materials and Methods
The characteristics and the simulation settings of the discrete-element
model of frictional granular media are given in SI Text, along with the

formal derivation of the mapping of brittle compressive failure onto the
depinning transition of an elastic manifold. All the experimental data
analyzed here have been obtained from the literature.
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Here we (i) provide a formal derivation of the mapping of brittle
compressive failure onto the depinning transition of an elastic
manifold and (ii) present the characteristics and the simulation
settings of the discrete-element model of frictional granular media.

Brittle Compressive Failure as a Depinning Transition
We consider a scalar field representing at a mesoscopic scale the
damage in a geomaterial or the plastic strain in an amorphous
material or a granular material. In quasi-static loading conditions,
a simple and natural way of accounting for the nonlinear nature
of the mechanisms that locally induce an irreversible change of
structure consists of modeling its onset by threshold dynamics on
the local stress state. Damage or plasticity occurs whenever the
stress state σ reaches the boundary of an elastic domain defined
by FðσÞ= σc. The heterogeneous nature of the material is ac-
counted for by a statistical variability of the threshold σc.
The associated interplay between local disorder and elasticity

is the basis of depinning models that have proved successful in
recent years to describe various physical and mechanical phe-
nomena. In all cases the modeling consists of reducing the
problem to the motion of an elastic line (or manifold) in a random
landscape. Let us denote h(r, t) the location of the elastic line at
time t. A general formulation of the equation of evolution in the
framework of a depinning model thus reads (1)

Μ
∂h
∂t

ðr; tÞ=FextðtÞ+
Z

dr′Jðr− r′Þ½hðr′; tÞ− hðr; tÞ�+ η½r; hðr; tÞ�;
[S1]

where Fext corresponds to an external driving force applied to the
elastic line, Μ is a mobility coefficient, and η is a random noise
characterized by its distribution and its spatial correlation ac-
counting for the random nature of the material. The integral term
is an elastic-like kernel depending of the phenomenon under
study. The competition between elasticity and disorder in that
framework is shown to induce a dynamic phase transition. Below
some critical threshold, the elastic manifold advances only a finite
distance before arresting. Above the threshold it can advance
indefinitely and acquires a finite velocity. Close to the threshold
typical critical features are recovered: divergence of a correlation
length, finite size effects, etc. The application of this formalism
has recently proved extremely useful in the field of solid mechan-
ics. Models of interfacial crack propagation in mode I based on
the early works of Gao and Rice (2) have enabled, for instance,
the prediction of statistics of crack arrest lengths in indentation
experiments (3) or the quantitative estimate of effective tough-
ness of heterogeneous interfaces (4).
Here we propose to extend the depinning formalism to the case

of compressive damage. As a starting point we discuss a model
recently developed to describe plasticity of amorphous materials at
a mesoscopic scale (5). In amorphous or disordered materials the
development of plasticity or damage can be described as a series of
local inelastic events (structural rearrangements or microcracks,
respectively). In the first case, a local plastic strain «p can be as-
sociated to the mesoscale region where the rearrangement(s) has
taken place; in the second case, a local damage D can represent
the elastic weakening induced by the microcracks at the meso-
scale. In both cases the occurrence of an event can be associated
to the satisfaction of a criterion based on the value of the local
stress field FðσÞ= σc, where the random nature of σc accounts for
the material disorder. In both cases, the occurrence of a local

inelastic event in an elastic matrix (the remainder of the material) is
responsible for an internal stress field. The modeling of this internal
stress field is a key ingredient in the development of the model.
The internal stress field induced by an inelastic event can

obviously be computed numerically as detailed below in Discrete-
Element Model of Frictional Granular Media. It will depend on
the fine details of the inelastic event as well as the elastic matrix.
However, far from the rearrangement only the asymptotic far
field will really matter. In the present framework of building a
depinning model at mesoscopic scale, we concentrate on the
asymptotic far field and forget about the finer details.
In two of the most influential papers ever published in solid

mechanics, Eshelby calculated the stress field induced by an ellip-
soidal inclusion (6, 7). It appears that in the far field the elastic
interaction scales as r−d, where r is the distance and d the topo-
logical dimension. This interaction exhibits an anisotropic charac-
ter: In some directions the stress is enhanced whereas in others it is
decreased. This anisotropy of the elastic interaction is a key in-
gredient of the modeling of the localization behavior in amorphous
plasticity as in damage. More specifically, Eshelby solved two dif-
ferent inclusion problems. The first one, also known as the eigen-
strain problem, consists of finding the elastic stress induced by a
deformed inclusion in an elastic matrix. In this case both inclusion
and matrix are made of the same material. This case naturally
applies to an inclusion that has undergone plastic deformation. It
also applies, with some simplifying assumptions, to the case of
granular media undergoing irreversible local rearrangements of the
granular structure (Discrete-Element Model of Frictional Granular
Media). The second problem, known as the inhomogeneity prob-
lem, consists of finding the elastic stress induced in an elastic matrix
under remote loading by an inclusion characterized by elastic
properties different from those of the matrix. This case applies to
an inclusion that has undergone local damage.

Plastic Inclusions and Amorphous Plasticity.For the sake of simplicity
we restrict to the case of a 2D problem (e.g., plane strain). In the
absence of inclusion we consider a biaxial loading characterized by
σextx and σexty . The material is characterized by a Young modulus
E and a Poisson coefficient υ. Let us now consider a unique circular
inclusion of radius λ. The inclusion is located at the origin and polar
coordinates are used.
We first specialize to the case of plasticity (the first Eshelby

problem). The inclusion has undergone plastic deformation that
in absence of the matrix would result in a local plastic (purely
deviatoric) strain «p. Assuming that the symmetry of this local
plastic strain is the same as the external loading, we obtain for
the elastic perturbation (e.g., ref. 8)

σxx − σyy =Λ
E

1− υ2
λ2
�
«p
�
cosð4θÞ
r2

σxy =Λ
E

1− υ2
λ2
�
«p
�
sinð4θÞ
r2

σxx + σyy =Λ
E

1− υ2
λ2
�
«p
�
cosð2θÞ
r2

;

[S2]

where Λ is a constant depending on υ. A crucial point here is that
whatever the precise shape of the reorganized region is, the far-
field asymptotics will remain unchanged, with an amplitude pro-
portional to the surface S= πλ2 of an equivalent spherical inclu-
sion times the mean plastic deformation «p it would have
undergone in the absence of a surrounding matrix.
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Note here another crucial point: In this first case of amorphous
plasticity, matrix and inclusion are characterized by the same elastic
properties. The case of multiple inclusions is thus immediately
solved by superposition.
In this framework, assuming a scalar plastic criterion based on the

sole local shear stress τ= jσxx − σyyj, a simple equation of evolution
for the plastic strain «p can be written in the framework of a quasi-
static loading, considering an overdamped dynamics (5)

Μ
∂«pðr; tÞ

∂t
=R

h
τextðtÞ+ τel

�
r;
�
«p
��

− τc
�
r; «p

�i
; [S3]

where R denotes the positive part, and

τel
�
r;
�
«p
��

= A
Z

cosð4θrr′Þ
jr− r′j2

�
«pðr′; tÞ− «pðr; tÞ

	
dr′: [S4]

One recovers here a typical depinning model, consistent with the
general definition given above in [S1] with an external driving
“force” τext, a random field τc, and an elastic kernel τel. Note
here that in contrast to most depinning models, the elastic kernel
is anisotropic, which induces a specific localization behavior to
the model (5). To complete the depinning interpretation we can
embed the 2D lattice in a 3D space where the extra coordinate is
given by the plastic strain «p. In so doing we recover the motion
of a 2D manifold in a 3D random landscape.

Compressive Damage: From Elastic Inhomogeneities to Stress Fluctuations.
We discuss now the case of a circular inhomogeneity of radius λ, of
Young modulus E1 = E0ð1−DÞ, where D is the local damage, and
(for the sake of simplicity) of unchanged Poisson coefficient υ.
In plane strain we note κ = 3–4υ. We consider a remote biaxial
stress characterized by σextx and σexty . The far-field internal stress
induced by the inhomogeneity reads

σxx + σyy =
−2D

1+ κð1−DÞ
λ2


σextx − σexty

�
cosð2θÞ

r2

σxx − σyy =
−2D

1+ κð1−DÞ
λ2


σextx − σexty

�
cosð4θÞ

r2

+
1
2

D
1+ 2ð1−DÞ=ðκ− 1Þ

λ2


σextx + σexty

�
cosð2θÞ

r2

σxy =
−D

1+ κð1−DÞ
λ2


σextx − σexty

�
sinð4θÞ

r2

+
1
4

D
1+ 2ð1−DÞ=ðκ− 1Þ

λ2


σextx + σexty

�
sinð2θÞ

r2
:

[S5]

This gives in a more condensed form

σxx + σyy =


σextx − σexty

�
f ðDÞB2


 r
λ
; θ
�

σxx − σyy =


σextx − σexty

�
f ðDÞB4


 r
λ
; θ
�
+


σextx + σexty

�
gðDÞB2


r
λ
; θ
�

σxy =
1
2



σextx − σexty

�
f ðDÞC4


r
λ
; θ
�

+
1
2



σextx + σexty

�
gðDÞC2


 r
λ
; θ
�
;

[S6]

where the functions B and C present an inverse quadratic de-
pendence with distance and the indexes 2 and 4 denote the di-

polar and quadrupolar symmetries, respectively. Note that for small
values of D, functions f and g can be regarded as almost linear.
How do we extend this result, obtained with an isolated in-

homogeneity, to the stress induced by a damage fieldD(r)? The
disorderedmaterial can be here regarded as a set of inhomogeneities
of size λ, the discretization scale of the model. In contrast to the case
of plasticity, the generalization to a large number of inhomogeneities
is not immediate because of interactions between them and so
simple superposition is not exact here. Our approximation consists
of considering that the internal stress field results from a superpo-
sition of the stresses induced by individual inclusions embedded in
an equivalent matrix of effective modulus (at the macroscale)
E=E0ð1−DÞ, where E0 is the initial Young modulus of the ma-
terial and D is the effective mean damage.
Before detailing our approach, it is of interest to briefly discuss

the question of the elastic behavior of disordered materials and
its implication for damage. Historically, mechanical engineering
studies have focused on homogenization, i.e., the determination
of the average elastic properties at a macroscopic scale from the
knowledge of the microscopic properties. Conversely, statistical
physics studies mainly focused on the stress fluctuations induced
by the elastic disorder. Here we consider the evolution with
damage of both the mean elastic behavior and its fluctuations.
Consider the material at a given stage of damage. The damage

field DðrÞ gives immediate access to the heterogeneous elastic
properties, EðrÞ=E0½1−DðrÞ�. Here and in the following (for the
sake of simplicity) the Poisson coefficient ν is assumed to remain
unchanged. From this knowledge, an effective (average) Young
modulus E can be defined at a macroscopic scale. A fluctuating
damage fieldDflucðrÞ can thus be defined from the contrast between
the actual elastic moduli at a microscopic scale EðrÞ and the ef-
fective (average) modulus E at a macroscopic scale. Stress fluctua-
tions can be then obtained from this fluctuating damage field.
What is the effect of the occurrence of a localized damage event

in this framework? At first it will affect (weaken) the average
elastic behavior: Effective moduli will undergo a slight decrease.
As a direct consequence of this evolution of the average elastic
behavior, stress fluctuations induced by the stiffer (less damaged
than average) regions will be amplified because the contrast with
the effective matrix has increased. Conversely, stress fluctuations
induced by the softer (more damaged than average) regions will
be attenuated. On top of that, the newly damaged area will give an
additional contribution to the stress fluctuations.
This sets the theoretical framework of our approach. No par-

ticular approximation has been performed so far because the
methods to be used for the determination of the effective modulus
E and the stress fluctuations remain to be specified. Note in par-
ticular that interactions between inhomogeneities can affect the
determination of both the effective moduli and the stress fluctua-
tions. To be more specific and make possible a future numerical
implementation (out of the scope of the present study), a natural
choice would consist of resorting to a self-consistent approximation
for the computation of the effective modulus E and to a simple
superposition of isolated inhomogeneities within the just-defined
effective matrix to compute the stress fluctuations. In so doing the
internal stress is thus obtained through two successive steps: (i) the
determination of the Young modulus E of the effective matrix
associated to a given damage fieldD(r) and (ii) the computation of
the stress fluctuations from isolated “effective” inhomogeneities
due to the contrast between the local moduli EðrÞ and the effective
modulus E. Here the self-consistent scheme proposed for step i
partly accounts for interactions between inhomogeneities whereas
for step ii these interactions are not explicitly accounted for, but
only via the value of the effective modulus E that sets the precise
level of elastic contrast of each inhomogeneity.
Using the effective mean damage D that derives from the self-

consistent estimate of the effective modulus E = E0ð1−DÞ, we
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define the fluctuating damage field DflucðrÞ that gives the local
contrast to the effective matrix:

DflucðrÞ=DðrÞ−D
1−D

: [S7]

We can now write the internal stress induced by the damage field
DðrÞ as a superposition of the stress fields radiated by the local
inhomogeneities DflucðrÞ within the homogeneous matrix of
modulus E:

σelxxðrÞ+ σelyyðrÞ=


σextx − σexty

�Z 

f
�
Dfluc�r′�−DflucðrÞ	B2

�jr− r′j
λ

; θr;r′


dr′

σelxxðrÞ− σelyyðrÞ=


σextx − σexty

�Z 

f
�
Dfluc

�
r′
�
−DflucðrÞ	B4

�jr− r′j
λ

; θr;r′


dr′

+


σextx + σexty

�Z 

g
�
Dfluc

�
r′
�
−DflucðrÞ	B2

�jr− r′j
λ

; θr;r′


dr′

[S8]

σelxyðrÞ=
1
2



σextx − σexty

�Z 

f
�
Dfluc�r′�−DflucðrÞ	C4

�jr− r′j
λ

; θr;r′


dr′

+ 
1
2



σextx + σexty

�Z 

g
�
Dfluc�r′�−DflucðrÞ	C2

�jr− r′j
λ

; θr;r′


dr′:

Compressive Damage: Stress-Based Criterion. We use the Coulomb
criterion, jτj+ μσN = τC, to define the onset of damage, with
μ= tanðφÞ the internal friction coefficient and φ the angle of
internal friction. This criterion can be rewritten as a function of
the eigenvalues of the stress tensor σ1 > σ2 as (9)

FðσÞ= ðσ1 − σ2Þ+ ðσ1 + σ2ÞsinðφÞ− 2cosðφÞτC = 0: [S9]

To map this compressive damage problem onto a depinning
model, we rewrite this last expression for a biaxial stress state
perturbed by the elastic contributions induced by the damage
field, σ = σext + σel. This requires the computation of the ei-
genvalues σ1 and σ2, which are obtained from

σ1 + σ2 =


σextx + σexty

�
+


σelxx + σelyy

�
[S10]

and

ðσ1 − σ2Þ2=


σextx − σexty

�2
+ 2



σextx − σexty

�

σelxx − σelyy

�
+
�
σel1 − σel2

�2
:

[S11]

Note that we expect σel to be of the order of e× σext, where the
magnitude small parameter e should be given by the typical value
of damage (relative fluctuation of the elastic modulus). Restrict-
ing our calculation to first order and replacing the internal stress
by a superposition of Eshelby stresses induced by effective in-
homogeneities as derived above, we obtain

σ1 + σ2 =


σextx + σexty

�
+


σextx − σexty

�
A2 [S12]

and

ðσ1 − σ2Þ2 =


σextx − σexty

�2
+ 2



σextx − σexty

�2
B4

+  2


σextx − σexty

�

σextx + σexty

�
B2 +O

�
e2
�
;

[S13]

which gives

σ1 − σ2 =


σextx − σexty

�
ð1+B4Þ+



σextx + σexty

�
B2 +O

�
e2
�
; [S14]

where
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We can now rewrite the Coulomb criterion

FðσÞ=


σextx − σexty

�
+


σextx + σexty

�
sinðφÞ+



σextx − σexty

�
B4

+


σextx + σexty

�
B2 +  



σextx − σexty

�
A2sinðφÞ− 2cosðφÞτC

[S15]

or in a more condensed way

FðσÞ= σexts + σels



fDg; r

λ

�
− 2cosðφÞτCðrÞ; [S16]

where τCðrÞ is the spatially fluctuating cohesion [note that we
may have also the cohesion depending on the damage field,
τCðfDg; rÞ, if the disorder is not fully quenched], and

σexts =


σextx − σexty

�
+


σextx + σexty

�
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�
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λ

�
sinðφÞ:

Combining these expressions with [S16], we can now write
a simple equation of evolution of the damage field based on
the positive part of the yield function FðσÞ. The damaging rate
is assumed to linearly depend on the excess of the local stress
with respect to the Coulomb stress. As detailed above, the
local stress is a sum of two contributions, the externally im-
posed stress and an internal stress that depends on the full
damage field. We thus recover a complete mapping onto a de-
pinning model, with the following equation of evolution of the
damage field,

Μ
∂D
∂t

ðrÞ=R
h
σexts + σels



fDg;EðfDgÞ; r

λ

�
− 2cosðφÞτCðr;DÞ

i
;

[S17]

where R denotes, as above, the positive part. We identify σexts as
the external forcing term, σels as the elastic contribution induced
by the damage field D, and τC the disorder. In [S17], we have
made explicit the dependence of the internal stress σels on the
modulus E of the effective elastic matrix to make more apparent
the two successive steps of its computation (self-consistent esti-
mate of the modulus of the effective matrix and superposition of
the elastic interactions induced by isolated inhomogeneities
within the effective matrix).
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Following Eq. S16 a stress threshold σC = 2τC   cosðφÞ can be
defined. The fluctuations of the local stress threshold δσC =
2δτC   cosðφÞ give a natural scale for the stress fluctuations within
the material. We thus expect the characteristic lengths LA and
LB to be dressed with a parameter that depends on δσC. λ being
the characteristic length scale of the disorder (i.e., the dis-
cretization scale of our mesoscopic model), we thus expect the
strength fluctuations to scale as δðσf Þ=σ∞ =Cðδτc=τcÞðL=λÞ−1=νFS
and the length scales LA and LB as LA;B ∼ λðδτc=τcÞνFS . In the case
of strong disorder δτc � τc these length scales can thus be sig-
nificantly larger than λ.
This description of the internal stress field induced by the

progressive damage as a simple superposition of the stress fields
induced by isolated inhomogeneities within an effective matrix is
obviously only approximate. Two limitations may be emphasized
at this stage. First, the asymptotic field cannot be reduced to the
effect of an equivalent spherical inclusion and also depends on the
shape (10, 11). In the presence of cracks, we expect, for instance,
anisotropic effects that are not accounted for in the present
modeling. In particular, the homogeneous effective matrix (used
here as an intermediate step to compute the internal stress) can be
anisotropic whereas it has been considered here as isotropic.
Moreover, as damage is progressive, the matrix to be considered
around the inclusion is itself already damaged. As proposed
above, one may use an effective modulus to account for the
weakening. Still an important feature will be missed: the asym-
metry of the elastic properties of the damaged matrix between
loading and unloading. This question has been discussed by Roux
and Hild (12), who analyzed the behavior of the elastic influence
function along the damage process. They show that this influence
function can still be described as a power law of the distance to the
crack or inclusion but with an exponent that depends on the state
of damage and that eventually approaches mean-field interaction.
As alreadymentioned in the main text, the case of a cohesionless

frictional granular medium compressed under confinement can be
interpreted as an intermediate case between the amorphous plas-
ticity and compressive damage problems. This frictional granular
material may be described by Eq. S17 derived above for the
evolution of damage, replacing the damage variable D by the
plastic strain variable «p and using for the elastic stress the same
strategy as above, starting from Eq. S2 (homogeneous Eshelby)
instead of Eq. S5 (inhomogeneous Eshelby). Numerical simu-
lations are necessary for a complete description, as detailed in
Discrete-Element Model of Frictional Granular Media below.
Within the approximations discussed above, amorphous plasticity

as well as compressive damage can be discussed in the theoretical
frameworkof a depinningmodel (Eqs.S3 andS17).By construction
such models exhibit a dynamical phase transition. Below a critical
value of the applied external stress, the material experiences only
limited damage (or plastic deformation) and its structural integrity
remains. The closer the external stress is to threshold, the larger the
extent of damage. Failure (or plastic flow) is eventually obtained
once the critical threshold is reached. This description of me-
chanical failure as a critical phase transition implies the presence of
traditional features of criticality, in particular the divergence of
a correlation length and universal statistics of finite size effects (13–
15), as detailed in the main text. In addition, the anisotropic
character of the elastic kernels associated with Eshelby inclusions
naturally induces a localization behavior (5).

Discrete-Element Model of Frictional Granular Media
Simulations of the mechanical behavior of granular materials
were performed using the molecular dynamics discrete element
method (16). The main characteristics of the model, which
has been described in more detail elsewhere (17), are summa-
rized below.
Two-dimensional granular assemblies made of a set of Ng

frictional circular grains were considered. The dynamic equa-

tions are solved for each of the grains, which interact via linear
elastic laws and Coulomb friction when they are in contact (18).
The normal contact force fn is related to the normal apparent
interpenetration δn of the contacts as fn = kn × δn, where kn is the
normal contact stiffness coefficient (δn > 0 if a contact is present,
and δn = 0 if there is no contact). The tangential component ft of
the contact force is proportional to the tangential elastic relative
displacement, with a tangential stiffness coefficient kt. Here we
set kt = kn. Neither cohesion between grains nor rolling re-
sistance is considered. The Coulomb condition jftj ≤ μmicro,
where μmicro is the grain friction coefficient, requires an in-
cremental evaluation of ft every time step, which leads to some
amount of slip each time one of the equalities ft = ±μmicro × fn
is reached. A normal viscous component opposing the relative
normal motion of any pair of grains in contact is also added to
the elastic force fn to obtain a damping of the dynamics.
All of the granular assemblies built for the present work were

obtained under static loading in the absence of body forces (such
as gravity). Circular 2D grains of uniformly distributed surfaces
are considered. The polydispersity is kept constant for all samples,
setting the largest grain diameter Dmax such that Dmax = 3Dmin.

Sample Preparation. The particles are randomly (in terms of di-
ameter) placed on sites of a regular lattice of spacingDmax, before
being mixed. This mixing procedure uses the contact dynamics
(CD) method (16), so considers hard disks, and consists in set-
ting grains in motion with random velocities, leaving them to
interact in collisions that preserve kinetic energy, to produce
a disordered configuration. At the end of this procedure, all
grains velocities are set equal to 0 and an isotropic compression
is performed using the molecular dynamics (MD) method.
This isotropic compression step of sample preparation is here

performed in two different ways, and three different types of
initial samples named highly coordinated (HC), low-coordinated
1 (LC1), and LC2 differing in packing fraction and coordination
number are built as explained in the following. The results shown
in Fig. 3 of the main text correspond to the intermediate con-
figuration LC1.
HC samples. HC and very dense samples are obtained from an
isotropic compression on frictionless grains, i.e., setting a particle
friction value μiso = 0. The samples built in that case show values
of initial packing density Φini of the order of 0.847 ± 0.001 and
a backbone coordination number, i.e., average number of contacts
by grain that carry forces, Z*ini = 4.
Initially LC samples. LC samples, characterized by Z*ini of the order
of 3, are obtained following the method of ref. 18, i.e., by main-
taining strongly agitated granular gas states at high densities be-
fore performing the isotropic compression with a final value of
friction coefficient. Contrary to ref. 18, shaking is here performed
at various distances from the maximum packing fraction (obtained
from HC samples), by tuning the expansion parameter α. Details
of the procedure, starting from a disordered granular gas, are
as follows:

First, an isotropic compression is performed on frictionless
particles until reaching an equilibrium state of maximum pack-
ing fraction, as done in HC samples).

Second, a homogeneous expansion, multiplying all coordinates
by a constant factor α slightly larger than 1, is performed. Two
values for α, which both lead to an expansion greater than the
maximum grain interpenetration, are taken into account in this
study.We considered α= 1.01 to build samples of type LC1, which
are characterized by packing densities similar to the samples ob-
tained inHC samples, i.e., Φini of the order of 0.847 ± 0.001 and
α = 1.1 to build samples of type LC2, which are characterized
by smaller packing densities of Φini = 0.82 ± 0.002.
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Third, a shaking procedure that uses the same contact dynam-
ics code as the one used during the preparation of the granular
gas is performed. The number of iterations nit is imposed to be
constant for all samples generated. Here, we set nit = 5 × 105,
which corresponds to the lower bound value above which the
values of Φini and Z*ini obtained at the end of the sample
preparation are not affected by the values of nit.

Finally, an isotropic compression setting the particle friction
μiso = μbiax = 1 is performed, where μbiax = 1 is the particle
friction considered during the multiaxial testing explained
in the following.

Multiaxial loading configuration. An increase of the external axial
stress σ1 is prescribed to impose the constant axial strain rate (see
below), whereas the radial stress σ3, i.e., the confining pressure, is
kept constant. The external mechanical loading is prescribed on
the grain assembly, using periodic boundary conditions. Instead
of considering a sample delimited by rigid walls on which force is
applied at the boundary of the sample, which would lead to an
inhomogeneous repartition of the external force through the
granular assembly (16), we consider a periodic simulation cell.
The grain stiffness coefficient kt = kn and the confining pres-

sure σ3 are sized with respect to the contact stiffness K = kn/σ3
that we set equal to 1,000. This value for K is of the order of the
one obtained in a compression experiment performed on glass
bead assemblies under 100 kPa of confining pressure, where K
approximately equals 3,000 in that case.
The axial strain « is imposed to increase at a constant rate by

prescribing a constant strain increment δ«1 at each discretization
time interval. To ensure quasi-static loading, δ«1 is sized with

respect to the inertial number I defined as I = _e1
ffiffiffiffiffiffiffiffiffiffiffi
m=σ3

p
, where

m is the average grain mass. We here set I = 5 × 10−5, ensuring
quasi-static loading (16, 19).
As for the multiaxial compression tests on coal discussed in

Fig. 2, the deviatoric stress σ1 − σ3 has been considered here as
the relevant variable.
Simulations. Simulations were performed for various sample sizes
defined as L =

ffiffiffiffiffiffi
Ng

p
. We made L to vary from 10 to 212. The

number of independent simulations performed with each system
size has been set equal to 100, except for the largest system size
L = 212 for which only 20 simulations have been performed.
The sample preparation procedure described above is away to set

different levelsof initial disorder, allowingus tocheck therobustness
of our size-effect formalism against this disorder level. In other
words, disorder is not introduced in an ad hoc manner, but rather
has a topological origin that is physically materialized at the mi-
croscopic scale by changes in the spatial organization of grains and
grain contacts. This initial topological disorder has a strong in-
fluence on macroscopic behavior: The HC samples appear much
stiffer than LC samples, with a brutal postinstability softening.
Despite these strongly different macroscopic responses, the size
effects on yield stress are very well described by our formalism
(Eqs. 1 and 2 of themain text) for HC, LC1, and LC2 samples, with
an exponent νFS that is very close to 1 in all cases (Table S1), in
agreement with the mean-field exponent ν of the depinning tran-
sition (20). On the contrary, the disorder plays a significant role on
asymptotic strength, with a larger σ∞ for highly coordinated, dense
samples, as expected. The scales LA and LB are slightly larger than
the average particle size and increase for less dense, less co-
ordinated samples, as expected.

1. Fisher DS, Dahmen K, Ramanathan S, Ben-Zion Y (1997) Statistics of earthquakes in
simple models of heterogeneous faults. Phys Rev Lett 78(25):4885–4888.

2. Gao HJ, Rice JR (1989) A first-order perturbation analysis of crack trapping by arrays of
obstacles. J Appl Mech Trans ASME 56(4):828–836.

3. Charles Y, Hild F, Roux S, Vandembroucq D (2006) Material-independent crack arrest
statistics: Application to indentation experiments. Int J Fract 142(1–2):51–67.

4. Patinet S, Vandembroucq D, Roux S (2013) Quantitative prediction of effective
toughness at random heterogeneous interfaces. Phys Rev Lett 110(16):165507.

5. Talamali M, Petäjä V, Vandembroucq D, Roux S (2012) Strain localization and
anisotropic correlations in a mesoscopic model of amorphous plasticity. C R Mec
340(4–5):275–288.

6. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and
related problems. Proc R Soc A 241:376–396.

7. Eshelby JD (1959) The elastic field outside an ellipsoidal inclusion. Proc R Soc A 252:561–569.
8. Gong SX, Meguid SA (1993) Interacting circular inhomogeneities in plane elastostatics.

Acta Mech 99(1–4):49–60.
9. Jaeger JC, Cook NGW (1979) Fundamentals of Rock Mechanics (Chapman & Hall, London).
10. Sevostianov I, Kachanov M (2011) Elastic fields generated by inhomogeneities: Far-

field asymptotics, its shape dependence and relation to the effective elastic properties.
Int J Solids Struct 48(16–17):2340–2348.

11. Sevostianov I, Kachanov M (2012) Is the concept of “average shape” legitimate, for
a mixture of inclusions of diverse shapes? Int J Solids Struct 49(23–24):3242–3254.

12. Roux S, Hild F (2002) On the relevance of mean field to continuum damage
mechanics. Int J Fract 116(3):219–229.

13. Baret JC, Vandembroucq D, Roux S (2002) Extremal model for amorphous media
plasticity. Phys Rev Lett 89(19):195506.

14. Girard L, Amitrano D, Weiss J (2010) Fracture as a critical phenomenon in a progressive
damage model. J Stat Mech 2010:P01013.

15. Girard L, Weiss J, Amitrano D (2012) Damage-cluster distributions and size effect on
strength in compressive failure. Phys Rev Lett 108(22):225502.

16. Radjai F, Dubois F (2011) Discrete-Element Modelling of Granular Materials (Wiley,
Hoboken, NJ).

17. Gimbert F, Amitrano D, Weiss J (2013) Crossover from quasi-static to dense flow
regime in compressed frictional granular media. ArXiv:1208.1930.v3.

18. Agnolin I, Roux JN (2007) Internal states of model isotropic granular packings.
I. Assembling process, geometry, and contact networks. Phys Rev E Stat Nonlin Soft
Matter Phys 76(6 Pt 1):061302.

19. GDR MiDi (2004) On dense granular flows. Eur Phys J E Soft Matter 14(4):341–365.
20. Ertas D, Kardar M (1994) Critical dynamics of contact line depinning. Phys Rev E Stat

Phys Plasmas Fluids Relat Interdiscip Topics 49(4):R2532–R2535.

Weiss et al. www.pnas.org/cgi/content/short/1403500111 5 of 7

www.pnas.org/cgi/content/short/1403500111


Fig. S1. (A and B) Finite-size effect on uniaxial compressive strength for HP concrete (1) (A) and marble (2) (B). Main graphs: mean compressive strength σf vs.
size. Black circles: published experimental data, with associated SD (when reported). Red curve: fit by Eq. 3 of the main text, using νFS = 1. The best-fit as-
ymptotic strengths σ∞ are 91 MPa for HP concrete and 76 MPa for marble. The associated scales LB are, respectively, 7.6 mm and 3.4.mm. Insets show same data
and fits, in a σf vs. L−1=νFS graph, where Eq. 3 is a straight line and reveals the asymptotic strength σ∞.

1. del Viso JR, Carmona JR, Ruiz G (2008) Shape and size effects on the compressive strength of high-strength concrete. Cement Concr Res 38:386–395.
2. Mogi K (1962) The influence of the dimensions of specimens on the fracture strength of rocks. Bull Earthquake Res Inst 40:175–185.

Fig. S2. Distribution of multiaxial compressive strength for the discrete-element model of frictional granular media (LC1 samples; details in SI Text). (A and B)
Weibull (A) and Gumbel (B) statistics, whereWðL,σf Þ= lnð−lnð1− PFðσÞÞ=L2Þ and PF(σ) is the (cumulative) probability of failure under an applied stress σ. Because
data obtained for different sample sizes do not collapse onto a single straight line, compressive strengths do not follow either Weibull or Gumbel statistics. (C)
Normal probability plot for the standard distributions. The collapse onto a single straight line argues for Gaussian statistics.
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Table S1. Parameters describing the initial properties of granular samples considered and the finite-size scaling of
compressive strength

Sample type νFS A B LA LB σ∞/σ3 Φini Z*ini

HC 1.01 3.36 4.14 1.55 1.92 2.17 0.847 ± 0.001 4
LC1 1.07 2.68 6.32 1.68 4.21 1.65 0.847 ± 0.001 3 ± 0.1
LC2 1.03 2.13 5.52 2.27 6.06 0.96 0.819 ± 0.002 3 ± 0.1
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