

SUIVI EN TEMPS RÉEL DE LA DYNAMIQUE DE RÉDUCTION DE Hg2+ EN MILIEU AQUEUX PAR DES POUDRES COMPOSITES DE MAGNÉTITE / FER MÉTAL SYNTHÉTISÉES PAR VOIE HYDROTHERMALE

Delphine Tisserand¹, Fabrice Brunet^{1, *}, Martine Lanson¹, Benjamin Malvoisin¹, Mathieu Bertrand², et Céline Bonnaud²

Résumé

Le Hg est reconnu comme un élément toxique de préoccupation mondiale [1] qui se bioaccumule sous sa forme méthylée [2]. La réduction de Hg²⁺ aqueux en Hg⁰ gazeux a été étudiée à T° ambiante et à 4 < pH < 8,5 sur une suspension d'une poudre composite de magnétite/fer élémentaire (Fe₃O₄/Fe⁰) synthétisée par voie hydrothermale à partir de Fe⁰ selon le procédé géo-inspiré HYMAG'IN [3, 4]. Hg⁰ produit a été suivi insitu à haute résolution temporelle (5 à 10'), au pg absolu, en couplant un analyseur de vapeur froide-spectrométrie d'absorption atomique (CV-AAS) Gardis-5[®]. Un premier pic de Hg⁰ apparait dans les premières heures, lié à la dissolution de Fe⁰, puis un second, lié à l'oxydation de Fe₃O₄.

En plus de leur potentiel environnemental d'élimination du Hg²⁺, les produits Fe₃O₄/Fe⁰ rentrent dans une <u>économie circulaire</u> par le

recyclage des déchets de l'industrie sidérurgique qui produit chaque année des centaines de millions de tonnes de déchets riches en fer [5].

Conclusions

- 2 pics de Hg⁰ = 1-dissolution totale de Fe⁰, augmentation de pH puis 2- Fe₃O₄ réduit Hg²⁺
- Fe₃O₄ réduit préférentiellement Hg²⁺ à pH 6
- Hg²⁺ est le facteur limitant
- **Fe₃O₄ peut s'oxyder** et diminuer le taux de reduction [7]
- Le composite Fe₃O₄/Fe⁰ synthétisé par voie hydrothermale à bas coût selon le procédé HYMAG'IN peut dépolluer en

Bilans de masse Hg

Expérience	Hg ⁰ GARDIS (pg)	Hg ⁰ Piège (pg)	Hg Fe ₃ O ₄ (pg)	Hg parois réacteur (pg)	Récupération Hg fin-début (%)
2_2	2080	2062	1762	n.d.	85
2_9	668	1990	2174	n.d.	81
2_12	3709	880	2258	1975	78

~ 50% du Hg initial est réduit par 30 mg L⁻¹ de Fe₃O₄/Fe⁰ Proportions restantes Hg: solution 5-15 %, Fe₃O₄ 30 %, parois réacteur 5-15 %

Hg des eaux acides à légèrement acides.

References

[1] UN Environment. 2019. Global Mercury Assessment 2018. United Nation Environmental Programme, Chemicals and Health Branch, Programme Chemicals and Health Branch Geneva, Switzerland. ISBN 978-92-807-3744-8.

[2] Clarkson T. W. & Magos L. 2006. The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36, 609-662.
[3] Crouzet C., Brunet F., Recham N., Findling N., Lanson M., Guyot F., Ferrasse J.-H. & Goffé B. 2017. Hydrogen production by hydrothermal oxidation of FeO under acidic conditions. International Journal of Hydrogen Energy, 42(2), 795-806.

[4] Bonnaud C., Brunet F., Bertrand M., Malvoisin B., Lanson M., Goffé B., Tisserand D., Le Bouteiller P., Crouzet C. 2022. Production d'H₂ et de nano-magnétite: le procédé géo-inspiré de la start-up HYMAG'IN. Géologues, Société Géologique de France, 214.

[5] Brunet F. 2019. Hydrothermal production of H₂ and magnetite from steel slags: A geo-inspired approach based on olivine serpentinization. Frontiers in Earth Science, 7, 17.

[6] Wiatrowski H.A., Das S., Kukkadapu R., Ilton E.S., Barky T. & Yee N. 2009. Reduction of Hg(II) to Hg(0) by magnetite. Environmental Science & Technology, 43(14), 5307-5313.

[7] Gorski C.A., Nurmi J.T., Tratnyek P.G., Hofstetter T.B. & Scherer M.M. 2010. Redox behavior of magnetite: implications for contaminant reduction. Environmental Science & Technology, 44(1), 55-60. Cinétique de réduction de Hg²⁺ par Fe₃O₄ en fonction du pH selon la loi cinétique de [6]. Les valeurs de pH à 3, 4, 5 and 6.5 sont représentées respectivement par les traits pleins, longs, courts et les pointillés.

¹Institut des Sciences de la Terre (ISTerre), CNRS et Université Grenoble Alpes, BP 53, 38041 Grenoble cedex 9, France, ²HYMAG'IN 38000 Grenoble, France. * email: Fabrice.Brunet@univ-grenoble-alpes.fr

