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Karatekin, Ö. et  al. (2011)

Variations of the 
Earth’s rotation



  

Exchanges of angular momentum
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Gillet, et al. (2019). 

Residuals in : 
Nutation Lenght of the day

Residual of Earth’s nutation, and 
correction by Buffett (2002)



  

Possible core-mantle coupling mechanisms:

- Viscous 

- Gravitational

- Electromagnetic 
 

- Pressure torque on 
  small scale topography 

Exchanges of angular momentum

5/29



  

Possible core-mantle coupling mechanisms:

- Viscous 

- Gravitational

- Electromagnetic 
 

- Pressure torque on 
  small scale topography 

Exchanges of angular momentum

6/29

Too weak in the Earth’s core : min. 100x smaller than other torques



  

Possible core-mantle coupling:

- Viscous 

- Gravitational

- Electromagnetic 
 

- Pressure torque on 
  small scale topography 

Exchanges of angular momentum
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Too weak in the Earth core : min. 100x smaller than other torques

Topographic 
couplings



  

Motivations
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Can the small scale topographic coupling explain:
- The decadal changes in the Length-of-Day (Glane and Buffett 2018, Jault 2020) ?
- The out of phase component of the retrograde annual nutation of 
   the Earth’s rotation axis (Buffett 2002,2010) ?

How well can a local perturbative model help us to understand these 
measurements, and what are its limitations ?
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Geometry of 
the problem

Spherical shell → Cartesian frame

Key effects:
-Rotation
-Magnetic field
-Stratification

CMB
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Base State
Solution of topography unperturbed base flow is an Hartmann flow : 

An Hartmann layer 

Depends on 
position 

In first approximation we considered a uniform flow with stress-free condition
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Base State
Nutation/Precession differential velocity between core and mantle: 

Equatorial 
rotation

→ global to local velocity

Trajectories of particles at the CMB 
(from Pais & Le Mouël  (2001))
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Base State
Magnetic field:

Dipolar magnetic 
magnetic field of equation

Stratification:
Stable and  linear 
density profile



  

Equations of motion
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Magneto-hydro-dynamic equations (MHD), in Boussinesq approximation



  

Methods
Solving equations with  
perturbation approach 

Limited by a small parameter 
→ Topography height
Glane and Buffett (2018) : ~30-50m
Buffett (2010) : ~100m

Quasi linear variation when the serie is convergent 

Higher orders of perturbation
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Methods
Improvement provided by weakly non linear approach
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- Increase of the topography height / decrease error for a 
given topography
- Determine the limits of the linear approach and study 
the convergence of the perturbative model

- Compute the stresses on the topography in a consistent 
way –> stresses were previously computed at order 2 with 
order 1 flows



  

Equations of motion
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Order 1 :

example of induction



  

Equations of motion
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Order 1 :

example of induction

Non linear terms

Order 2 :



  

Equations of motion
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Equations and boundary conditions → spatial form of variables :  

Non linear terms

exponential growth of numbers of exponential forms



  

Topography 
shape
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Mantle

Core
is the topography height divided by a 
typical length scale
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Core

Mantle

Mantle

Core



  

Methods
Derive the equations Solve systems

2 steps
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Methods
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Derive the equations Solve systems

2 steps

My code : ToCCo

Sympy : symbolic mathematics arithmetic with arbitrary precision

- Differentiation
- Taylor series
- Determinant of symbolic matrix

- Singular value decomposition
- Roots of polynomials



  

Methods
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Order 1

Order 4
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What is the value for (h,N) required to explain the observed variation of the 
length of the day ?

- Steady and uniform flow 

- Insulating mantle

integrated = integration 
with latitude, taking into 
account the variation of   
and 
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What is the value for (h,N) required to explain the observed 
dissipative coupling ?

- Oscillating flow with 
diurnal period

- Conducting mantle
  → electrical conductivity 
     ratio : 

- At the pole :  

integrated = integration 
with latitude, taking into 
account the variation of   
and 
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Conclusion 
- We can, with our model, explore a wide panel of parameters in a 
consistent manner
- developed at a higher order of perturbation
- We can compare measurement with our model of coupling

From plane to full sphere:

Perspectives

XSHELLS output, from Monville et al. 2019

Implement a boundary perturbation in the XSHELLS 
code of Nathanael Shaeffer. → global approach
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Magneto-hydro-dynamic equations (MHD)

Joule Dissipation

Inertia Coriolis force (with Beta- 
plane approximation)

Reduced pressure 
gradient Buoyancy Lorentz force

Inviscid fluid

Coupling term

Equations of motion


