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Exchanges of angular momentum

Residuals in :

Nutation Lenght of the day

[:I Mo magnetic coupling
[ CMB coupling only Core contribution to the variation of the length of the day (LOD)
4

Il VB and ICB coupling
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correction by Buffett (2002)




Exchanges of angular momentum

Possible core-mantle coupling mechanisms:

- Viscous
- Gravitational

- Electromagnetic

- Pressure torque on
small scale topography




Exchanges of angular momentum

Possible core-mantle coupling mechanisms:

m ——®» Too weak in the Earth’s core : min. 100x smaller than other torques

- Gravitational

- Electromagnetic

- Pressure torque on
small scale topography




Exchanges of angular momentum

Possible core-mantle coupling:

~Viseous___ ——» Too weak in the Earth core : min. 100x smaller than other torques

- Gravitational
- Electromagnetic

- Pressure torque on
small scale topography

—_—

_ Topographic

couplings

1
I'p = ;/(nB)('r x B)dS

I, = /(r X n)pdS



Motivations

Can the small scale topographic coupling explain:
- The decadal changes in the Length-of-Day (Glane and Buffett 2018, jault 2020) ?
- The out of phase component of the retrograde annual nutation of

the Earth’s rotation axis (Buffett 2002,2010) ?

How well can a local perturbative model help us to understand these

measurements, and what are its limitations ?




GeomEtry Of Spherical shell » Cartesian frame

Key effects:
-Rotation
-Magnetic field
-Stratification
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Base State

Solution of topography unperturbed base flow is an Hartmann flow :

A
B Z
SN LS Up = Upoo(l —€7)
Depends on
position ((9, (I)>

An Hartmann layer

In first approximation we considered a uniform flow with stress-free condition UQ — UQ oo



Base State

Nutation/Precession differential velocity between core and mantle:

W XTr — global to local velocity
~ I 10t
/‘ Ugoo = N(OMr|le, — cosblegle e )
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Base State

Magnetic field:

Dipolar magnetic

magnetic field of equation

Stratification:

Stable and linear

density profile




Equations of motion

y 1
DU = o~ (sinfey + cosfes) x U = Vp+ £- VU - F%ez +(B-V)B,

1
OB = R—mV2B+V>< (U x B),
V-U=0,V-B =0,

Magneto-hydro-dynamic equations (MHD), in Boussinesq approximation



Methods

Solving equations with

Limited by a small parameter

perturbation approach > Topography height

Glane and Buffett (2018) : ~30-50m
Buffett (2010) : ~100m

—_
at
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e

«—— Higher orders of perturbation

Topography height (m)
for a fixed residual of U - n

0 1 2 3
Order
Quasi linear variation when the serie is convergent




Methods

Improvement provided by weakly non linear approach

- Increase of the topography height / decrease error for a
given topography
- Determine the limits of the linear approach and study

the convergence of the perturbative model

- Compute the stresses on the topography in a consistent
way —> stresses were previously computed at order 2 with

order 1 flows



Equations of motion
U = Z/{U() + Zzozl efuk,

B = AleO + Ziozl Eéﬂbk,

example of induction

1 1
T Vb1 + (VX (w1 X bo)) +U(V x (1o x by))

Order1: Otby =




Equations of motion
U = Z/{U() + Zzozl efuk,

B = AleO + Z;ozl Elfbk,

example of induction

4 N
1 1
Order1: Otby = R—mv2b1 + E(V x (a1 X bg)) +U(V x (ug X by))
1 1
Order 2 : Otbo = R—mv2b2 + E(V X (uz X bg)) +U(V x (ug x ba)) + (V X (u1 x by))
o /
\/

Non linear terms



Equations of motion

Equations and boundary conditions - spatial form of variables :

n
U = E Unp ekx x+ky ytk; 2
0
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,’
E +
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g
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O
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B 200 y
. 77777/// g
: -
Y [ — ——————
0 7 : : :

exponential growth of numbers of exponential forms




Topography
shape

n
L 4
Mantle 2 = h(:l?,y) — & Z%(exp (lk )) /na
N
2
4 €; < 1 isthe topography height divided by a
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\\\\\\ typical length scale
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Topography
shape

Mantle

n

h(x,y) = € Z R (exp (ik; -

7=0

r))/n,

N L _ ‘ ,
& € 0 W
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Mthd 2 Steps
ethods JE

Derive the equations Solve systems




Mthd 2 Steps
ethods asmes

Derive the equations Solve systems

v

mpmath
\ /l L1 Lo b — OO

Sympy : symbolic mathematics arithmetic with arbitrary precision
- Differentiation p l-_—’ t h on - Singular value decomposition
- Taylor series - Roots of polynomials

- Determinant of symbolic matrix *

My code : TOCCO
22/29




Methods

0.225
0.180

ko

88%8 91 Order 1
20.045

—0.000

—0.135

| | &9
SO0
HHHOOOOO‘D@
COUINILOSHW

Order 4

N
p (Pa)




0.0579

—100

z (m)

—200

—a00== S0 —9250 0 250 500

x (m)



What is the value for (h,N) required to explain the observed variation of the

length of the day ?

- Steady and uniform flow

- Insulating mantle

integrated = integration
with latitude, taking into
account the variation of )
and Bg

2501
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Topography height (m)
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Glane and Buffett (2018)
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What is the value for (h,N) required to explain the observed

dissipative coupling ?

- Oscillating flow with

diurnal period

- Conducting mantle
> electrical conductivity
= 500

O.CO’I“G

ratio :

Omantle

- Atthe pole: By = 0.5 mT

integrated = integration
with latitude, taking into

account the variation of €

and B()

=9 MW
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-
-~

—_
=)
=

~\

-
-
SE—

—_
-
w

Topography height (m)
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Buffett (2010)
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Conclusion

- We can, with our model, explore a wide panel of parameters in a
consistent manner
- developed at a higher order of perturbation

- We can compare measurement with our model of coupling

— 8.0e+07
— be+7
— de+7

2e+7

Perspectives

From plane to full sphere:

Implement a boundary perturbation in the XSHELLS
code of Nathanael Shaeffer. » global approach

4)( -1.0e+08
XSHELLS output, from Monville et al. 2019
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Equations of motion

Inertia

prDtU

Coriolis force (with Beta-

plane approximation)

gradient

Inviscid fluid

Reduced pressure f

prxez X Ul —

Vp

Lorentz force

+ u%Jr P +

0B =

JxB

nV°BH |V x (U x B)

)

-

Joule Dissipation  ¢oypling term v . U p— O)

Magneto-hydro-dynamic equations (MHD)



