Stanford EARTH

Institut des Sciences de la Terre

Earth Imaging using Body Waves extracted from Teleseismic Noise Correlations

Lise Retailleau, Pierre Boué, Lei Li, Michel Campillo

Imaging using surface waves

Extraction of body waves from correlations

Poli et al 2012b

Extraction of body waves from correlations

Vespagram analysis

Poli et al 2015

Teleseismic body waves at global scale

25-100 seconds

Teleseismic body waves extracted from correlations Regional scale

Imaging with body waves

Core Mantle Boundary Imaging Underneath the North Atlantic Ocean Dataset

Correlations computed between Europe and the US

Imaging process: Construction of sub-arrays Array analysis on at least 150 stations per reflection point

60°N

Vespagram for each combination of sub-arrays

Vespagram(time,slowness)>Vespagram(depth)

Vespagram(Depth) for each combination of sub-arrays

Vespagram(Depth) for each combination of sub-arrays

Vespagram(Depth,dist)

Mapping the lowermost mantle

Imaging the Iowermost mantle

Conclusion

Imaging the lowermost mantle using body wave phases extracted from ambient noise correlations

Beamforming analysis in time and slowness of P arrivals

Period band 3-8s

Analysis in the causal and anticausal part of the correlation functions

Thank you