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1. INTRODUCTION

1.1 How heterogeneous is the upper crust?

Heterogeneity is a ubiquitous feature of both the sedimentary cover and
the crystalline crust, present in most, if not all, physical properties. This is
documented by borehole measurements of sonic velocities, neutron porosity,
resistivity and many other physical properties. Borehole measurements
provide the bulk of high-resolution data and have been exploited to
demonstrate that small- to intermediate-scale variability, from centimeters to
kilometers, is not simply random, uncorrelated noise. It is clear from such
logs that variability is the norm and homogeneity the exception. As an
example, Figure 1 shows the gamma log measured at the Cajon Pass
borehole, exhibiting systematic fluctuations at all scales. Moreover, such
variability is itself inhomogeneous (e.g., the variance at ~3200 m is greater
than at ~2600 m). These measurements follow a heterogeneous, non-
Gaussian distribution, with clusters of peaks departing from the mean well
past the standard deviation.
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Figure 1. (Top) Gamma log from the Cajon Pass borehole, and (bottom) its derivative
(sample-to-sample difference).

Scale-invariance is the absence of typical scales within a range of
observation: a scale-invariant morphology appears (statistically) identical at
all scales. Scale-invariance has been recognized as a robust statistical
property, shared by many upper crustal medium characteristics. Numerous
works have estimated fractal exponents of well logs (e.g., Todoeschuck et
al., 1990; Bean and McCloskey, 1993; Wu et al., 1994; Holliger et al., 1996;
Mehrabi et al., 1997; Dolan et al., 1998; and Leonardi and Kümpel, 1999).
Power spectra of borehole sonic logs from many different locations and
geologic settings display the ubiquitous 1/k-decay, where k is the
wavenumber. Scale-invariant fluctuations of the elastic parameters may be
caused by fracture distributions (e.g., Leary, 1991, Holliger, 1996; Leary,
this volume), lithologic variability (e.g., Bean, 1996; Goff and Holliger,
1999; Holliger and Goff, this volume), or porosity and fluid content. Such
variability in material properties implies scale-invariant distributions of
reflectors, and consequently a power law dependence of the scattering
quality factor with frequency (Main et al., 1990) and an enrichment of the
coda at high frequency (Leary, 1995). Coda waves are hence seen as direct
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manifestations of the heterogeneous character of the medium in which the
waves propagate.

The episodicity of the faulting/fracturing process, taking the form of
strongly localized events, in both space and time, also shows the
heterogeneity of both the stress and effective rheology of the medium.
Deformation is localized to volumes much smaller than the loaded region, at
least for mature enough systems. Furthermore, the redistribution of stress
following the occurrence of a set of earthquakes with scale-invariant
distribution of sizes, locations and times of occurrence is responsible for, and
due to, scale-invariant, strongly heterogeneous stresses. The systematic
occurrence and the complex character of aftershock sequences following a
rupture event is symptomatic of how heterogeneous, but also how universal,
the process of locally relaxing stress can be. Also, the activation and
complex interactions between defects (quenched disorder) in a rock sample
is known to diminish (by orders-of-magnitude) the strength of the sample
subject to a fracturing experiment; small-scale heterogeneity plays a
dominant role in the deformation process (a recent and rather extensive
review of the role of defects in drastically reducing the strength of rocks can
be found in Sornette, 2000; see also Herrmann and Roux, 1990).

Scale-invariant fluctuations of borehole breakout orientation with depth
have been reported at the Cajon Pass borehole (Shamir and Zoback, 1992),
suggesting that the classical view of a uniform regional stress driving the
seismic activity of a fault zone is not only idealized, but likely to be
inoperative and misleading. Crustal permeability is found to be highly
heterogeneous, with fluctuations of several orders-of-magnitude and
effectively infinite permeability gradients observed in both the crystalline
crust (with, as proposed by Barton et al., 1995, most of the water transport
accommodated by potentially active faults; see also Ito and Zoback, 2000)
and sediments (Liu and Molz, 1997; Painter, this volume; Leary, this
volume). The extent of this heterogeneity, along with a likely highly non-
linear response to perturbations, is such that one can ask whether a
systematic dynamical behavior can be observed in crustal fluid movements,
as for example in the case of co- and post-seismic pore fluid pressure
readjustment (e.g., Grecksch et al., 1999).

We derive from this suite of observations an image of a strongly
heterogeneous crust, with medium properties fluctuating at many different
scales. As briefly described here, such complexity is both due to and
responsible for the complexity of crustal processes; tectonic deformation,
fluid transport and seismic wave propagation are all found to exhibit
complex and intricate behavior. Hence the study of such processes requires
us to account for the heterogeneity of the medium. To neglect such
heterogeneity, for example through deterministic modeling within a
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homogeneous or slowly varying crust, is to ignore much of the character of
such processes.

1.2 The multifractal model

The aim of this paper is to review one of the most advanced attempts at
statistically characterizing crustal small-scale heterogeneity. By proposing
increasingly realistic models and by studying their properties we hope to
achieve a better understanding of how dynamical processes can develop
within the crust. Multifractal distributions are scale-invariant, and as such
can reproduce the power law scaling laws that are observed in borehole logs.
Figure 2 shows several examples of power spectra E(k) of various logs. Note
that no obvious break of scaling is observed at large scales, where
insufficient sampling can lead to spurious leveling-off, nor at small scale as
long as the averaging effect of the tool is removed (Bean, 1996).

While the computation of the power spectrum is of great interest,
allowing to test for the existence of a scaling law, it only gives limited
information on how this signal needs to be statistically rescaled when
zooming in or out. Mono-scaling characterizations typically lead to the
estimate of the Hurst exponent H, such that E(k)~k-1-2H. Characterizations of
this type, either simple fractals or superposition of independent monofractal
distributions (Goff and Holliger, 1999), are generally insufficient to
accurately describe this rescaling. In particular, heterogeneity in the level of
fluctuation and the intermittency of the signals cannot be retrieved by this
method. For example in the case of the gamma log shown in Figure 1, the
spatial variability in the variance could not be modeled with a monofractal
analysis. These variations in the degree of “roughness” of the signal, and
therefore of the local Hurst exponent, call for a modeling approach that
allows for a location-dependent scaling exponent, itself distributed in a
scale-invariant way (otherwise scale-invariance would be broken, as in the
case of a modeling approach which adopts separate “units” of distinct
monofractals).

Multifractal modeling was originally developed for the study of turbulent
phenomena to account for and reproduce scale-invariant variations in the
local level of fluctuations (in particular for the energy flux), and also for the
characterization of strange attractors. The goal of this contribution is
twofold: (1) to review previous analyses of multifractality for various crustal
characteristics, such as borehole logs and fracture/fault patterns, and (2) to
provide methods for numerically generating multifractal distributions with
statistics that mimic the observed statistics of actual crustal quantities. This
then allows for the numerical study of dynamical crustal processes with a
realistic level of heterogeneity.
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Figure 2. Power spectra of five logs from various boreholes, from top to bottom: a) gamma
log from the Cajon Pass borehole; b) S-wave sonic log from the KTB main borehole,
Germany; c) resistivity log from the KTB main borehole; d) neutron porosity log from the
KTB pilot borehole (note the existence of two distinct scaling regimes with a transition at
about 100m); e) P-wave sonic log from the Nirex 1 borehole at Sellafield, UK. The dashed
black lines give power law fits ~k -β of the spectrum decay, with spectral exponent β equal to
a) 1.22, b) 0.98, c) 1.31, d) 1.37, and e) 1.4. All four boreholes probe the crystalline part of the
upper crust.
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In the following, we provide some basic theory of multifractal analysis
and model construction. This is necessarily quite detailed mathematically,
but only the properties and characteristics that are of primary importance to a
geophysical modeler are discussed. Multifractals are mainly seen in this
chapter as a way for modeling and reproducing the heterogeneity of the
crust, especially as observed in well logs. This is, for example, of importance
for the modeling of crustal transport phenomena, since extreme but rare
values of permeability strongly control the flow regime. It is also important
for wave propagation, since large fluctuations in the elastic parameters are
what are primarily observed in seismic reflection data. This approach does
not, however, propose a physical background for the emergence of this
complexity (see Leary, this volume, and Holliger and Goff, this volume).

2. CONSTRUCTION AND PROPERTIES OF
MULTIFRACTALS

This section details the construction and several important properties of
multifractal distributions. It has been written for those who would like to get
a deeper understanding of what multifractals are, but special attention has
been paid to limiting the mathematical developments. As such, this section
contains the minimum material that we think is required for someone
wanting to numerically generate multifractal distributions. The Matlab®
code given at the end of this chapter corresponds to the models developed in
this section. Section 2.1.1 is the most directly accessible, while the other
sections (in particular 2.3.1-3) can be skipped for a first reading.

2.1 Multiplicative cascade models

2.1.1 Construction and characterization

The generic construction of a multifractal distribution is given by
multiplicative cascade models. These models are at the basis of all numerical
methods for generating multifractal distributions, and hence need to be
detailed. We first describe the simple 2-D case of a self-similar multifractal
ε�(x), developed from an outer scale L down to the resolution scale �; the
maximum scale ratio is Λ=L/�. The notation ε classically refers to the
turbulent energy flux, for which these models have originally been
introduced (see Frisch, 1995, for a review). At scale �, we expect to have
Λ x Λ “structures”, or “patches”, within which ε is only slowly varying. The
parameter ε� is therefore defined as a 2-D set, or field, of Λ2 values. These
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intensity values are obtained by fragmenting ε  from the largest scale L down
to �, in a recursive, scale-invariant process (Figure 3): a structure at any
intermediate scale l, with intensity εl(x), is divided into four new, smaller
structures εl/2 (x1),...,εl/2 (x4) at scale l/2, with intensities equal to
εl/2(xi)=εl(x)µi. The µi are independent realizations of a unique positive
random variable µ. The random value µ is only constrained by its non-
negativity in the most general case. Additional constraints on µ arising from
specific considerations will be discussed in Section 2.2. Scale-invariance of
the process is ensured by applying this same step at all intermediate scales,
starting with �=L, and drawing independent realizations of the same random
variable µ at all scales. After n steps, ε is obtained at scale L/2n; thus,
N=log(L/�)/log2 steps are required to generate ε� at scale �. A multifractal
distribution such as ε� is typically characterized by the scaling of its
moments <ε�q> with scale �.

...

...

Figure 3. Construction of a multiplicative cascade with fragmentation of a “parent” structure
into 2 x 2 new “children” structures. A child structure at scale l/2 is given a “weight” εl/2 equal
to the weight εl of its parent times a realisation of the random variable µ.

The moment of order q of ε� is

Nqq
L

qN
L

q ><>=<=>< µεµεε )(
�

, (1)
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since the N realizations of µ are all independent of each other. The angled
brackets indicate ensemble averaging. The moment scaling function K(q) is
effectively the second (Laplace) characteristic function of logµ. Denoting
K(q)=-log<µ q>/log2, we have <µ q>=2-K(q) and therefore

)()( ~2 qKqNKq
L

q −−=>< �� εε , (2)

where the symbol “~” denotes leading order variations with �. So-called
“conservative multifractals” (Mandelbrot, 1974) correspond to a
construction where <µ>=1, i.e., K(1)=0, and hence <ε�>~�0, implying that
the mean of ε is conserved (on ensemble average) during the cascade. We
consider the case in which ε is strictly conserved, so that in the construction
described here (µ1 +µ2 +µ3 +µ4)/4=1. As coined by Mandelbrot (1974) by
referring to statistical mechanics, this yields a “micro-canonical”
conservation, as opposed to the canonical conservation assumed throughout
this chapter. The two models would differ when considering the properties
of locally smoothed distributions (Schertzer and Lovejoy, 1987).

Equation (2) tells us that the moments of order q of the distribution scale
with the scale of observation �, and with an a priori arbitrary scaling
exponent K(q) specified by the choice of the random variable µ. The moment
scaling function K(q) is constrained by K(1)=0, since <µ>=1, and K(0)=0,
due to the normalization of the random variable µ, and its convexity. Strict
convexity (i.e., d2K(q)/dq2>0) of K(q) implies that, for    q2 >q1,
K(q2)>K(q1)q2/q1, so that, as small scales �→0, the higher moments of the
distribution grow more quickly than what would be obtained for a mono-
scaling (hence a linear) K(q), i.e., for which d2K(q)/dq2=0. This results in a
stronger heterogeneity at small scales as compared to mono-scaling models,
and corresponds to a level of fluctuations of ε�(x) varying with the location x;
the more curved K(q) is (i.e., the larger d2K(q)/dq2), the stronger is the
heterogeneity in the fluctuation level (i.e., the more “multifractal” ε).

Scaling of the moments of ε can be associated with the local scaling of ε,
such that the probability density Pr(ε��~�-γ) of having ε� locally scaling in �-γ

is Pr(ε��~�-γ)~�c(γ). The parameter γ is the local order of singularity, and its
probability density function Pr(ε��~�-γ) scales with a scaling exponent c(γ)
corresponding to the co-dimension of its support (Schertzer and Lovejoy,
1987). The two descriptions, in terms of singularities or in terms of the
moments of ε, are equivalent (c(γ) and K(q) are indeed dual by a Legendre
transform; Parisi and Frisch, 1985) as they contain the same information, and
every one of them fully characterize the scaling statistics of ε. However, the
description in K(q) is the one that is the most readily available to the analyst
(wavelet analysis, however, can be used to directly estimate c(γ); Arneodo et
al., 1988), as will be detailed in Section 3.
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A more widespread set of characteristic functions of ε is can be
determined utilizing the measure (rather than the density ε�)

)'( ')(
'

xxxdxE
lx

l −= �
<

�ε . (3)

We then define the function τ (q) (Halsey et al., 1986; Meneveau and
Sreenivasan, 1987) as <El

q>~lD+τ (q), where D is the dimension of the domain
on which ε is defined (in the present 2-D construction, D=2). It is
straightforward to show that τ (q)=(q-1)D−K(q). Equivalently, we can
determine the generalized dimensions

1
)(

1
)()(

−
−=

−
=

q
qKD

q
qqD τ (4)

(Grassberger and Procaccia, 1983). The values D(0), D(1) and D(2) are
called the capacity, information and correlation dimensions, respectively.
Also, one can introduce the singularity α and the function f(α) such that
N(El~lα)~l-f(α), N giving the number of occurrences of the singularity α. We
find that α=D-γ, and f (α)=D-c(γ); i.e., all the quantities α, f(α) and τ (q)
depend on the dimension of the domain D, while γ, c(γ) and K(q) do not. The
latter are therefore invariant when reducing the dimensionality of the
distribution (for example, taking 1-D sections of a 2-D distribution).

2.1.2 Correlations

The construction of ε using a multiplicative cascade constrains the two-
point statistics of the distribution, and hence its correlations. Using a
derivation originally proposed by Yaglom (1966), we find that ε�(x) and
ε�(x+∆x) will correspond to similar structures from scale L down to scale
|∆x|, and then to two independent branches of the cascade from |∆x| to �.
Hence <ε (x+∆x)ε (x)>~<ε|∆x|

2><ε�/|∆x|>2, and with K(1)=0 it follows that

)2(~)()( Kxxxx −∆>∆+< εε . (5)

This is equivalent to a power spectrum scaling as E(k)~k-1+K(2). Note that
K(2)>0 since K(0)=K(1)=0 and d2K(q)/dq2≥0, hence –1+K(2)>−1 for
conservative multifractals. However, typical borehole logs (Figure 2)
possess a spectral slope β >1, implying that the construction given here
cannot be used as such to describe those logs. We will demonstrate in
Section 2.3 how to obtain multi-affine distributions, or “non-conservative”
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multifractals, from conservative multifractals, and thus how to relax this
constraint. Note also that the computation of the power spectrum only yields
one value (at q=2) of the function K(q), and is therefore insufficient for
determining the complete scaling statistics of ε.

2.1.3 Self-affinity

The construction given here is for a self-similar (scaling isotropy)
cascade, hence generating a self-similar multifractal distribution. In other
words, zooming must be identical in all directions. Self-affinity (anisotropic
scaling, hence anisotropic zooming) can also be achieved by dividing a
parent structure into structures of different sizes along the different axes
(e.g., Lovejoy et al., 1987). For example, a fragmentation into 2 x 3 rather
than into 2 x 2 structures would generate a self-affine multifractal such that
Eq. (2) would now read

)(~)( qKqT λελ ><
�

, (6)

where the operator Tλ contracts/dilates anisotropically the two directions x
and y

),(),( 11 yxyxT h+−−→ λλλ , (7)

where h measures the departure from self-similarity. In the case of a
fragmentation into 2 x 3 structures, one gets that h=log3/log2-1. The
parameter h is only constrained by the condition h<1, i.e., Tλ effectively
zooms in both x and y directions when λ >1. Correlations are now of the
form

)2(~)()( Kxxxx −∆>∆+< εε , (8)

where ||• || is a scale function such that

),(),( 1 yxyxT −= λλ  (9)

(Marsan et al., 1996; Schertzer et al., 1997). Typically, “classical” power
spectrum computation of a self-affine 2-D multifractal would yield two
scaling regimes; a unique regime is recovered when properly accounting for
the scaling anisotropy. Self-affinity can be expected to characterize the crust,
as the vertical and the lateral directions are unlikely to behave similarly,
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given geological stratification. Lovejoy et al. (2001) reviewed previous
analyses, along with new ones, showing that the exponent h typically ranges
between -1 and -2 in the crust. Finally, a more complete description of the
departure from self-similarity for scale-invariant distributions, giving not
only self-affine but also more involved cases, can be obtained by
recognizing the fact that the operator Tλ forms a parametric group, hence
allowing for scale-invariant rotations as well (Lovejoy and Schertzer, 1985).

2.2 Multifractal models

The scaling statistics of the multifractal distribution ε�(x) introduced in
Section 2.1 are described by the moment scaling function K(q), defined by
the Laplace characteristic function of the random variable µ: <µ q>=2-K(q) in
the self-similar cascade first introduced. Since µ is arbitrary (as long as
<µ>=1, so as to give a canonically conservative multifractal, and µ ≥ 0),
these statistics are thus also arbitrary, with only the few constraints on K(q)
already evoked in Section 2.1. Various theories and cascade models have
been proposed over the past 50 years to fit empirically estimated K(q)
functions, especially for turbulent energy fluxes (or, rather, the non-
conservative turbulent velocity fluctuations that are readily measurable). For
such fluxes, the reproducibility of K(q) is a remarkable feature, implying the
existence of a fundamental mechanism responsible for it.

An important constraint on K(q) can be formulated by recognizing that
the fixed scale ratio λ1, used to infer the scale l/λ1 of a child structure from
the scale l of its parent structure, is arbitrary. In Section 2.1, the self-similar
cascade was constructed assuming λ1=2, while other values of λ1 can equally
well be chosen, in which case the total number of steps N required to
generate scale � from L varies as λ1

N=L/�. As an example, the multifractal
statistics of a multifractal distribution ε� generated using λ1=2 or λ1=3 would
then be identical if one assumes that, for a given set of L, � and K(q):

• case λ1=2: log(L/�)/log2, and µ(2) (where the subscript denotes the scale
ratio dependence) is such that <µ(2)

q> = 2-K(q);
• case λ1=3: log(L/�)/log3 and <µ(3)

q> = 3-K(q).

The construction described so far, assuming a given value for λ1, is one
of a discrete scale-invariant distribution; the cascade is only developed onto
a discrete, and arbitrary, set of scales L, L/λ1, L/λ1

2,...,L/λ1
N=�. Some authors

have identified this discrete symmetry as an actual property of scale-
invariant systems/distributions observed in nature, which could be
responsible for log-periodic oscillations with period logλ1 in the dynamics of
such systems (Huang et al., 1998; see Sornette and Sammis, 1995, and
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Newman et al., 1995, for discussions on log-periodic dynamics). However,
the question still arises as to why a preferred scale ratio λ1 would be singled
out or, equivalently, as to what constrains the set of favored scales to its a
priori arbitrary state. This constraint can be relaxed by allowing a Poisson
distribution of cascade steps constrained only by the average number of steps
(She and Leveque, 1994). For our construction, this would imply fixing only
a mean density of steps per scale ratio, hence a mean 1λ . Writing

1log
/log

λ
�LN = , (10)

a Poisson distribution with mean density of cascade steps 1λ  and
)(

1)( qKq −>=< λµ  leads to a multifractal distribution with <ε�q>~�-K(q). The
log-Poisson model of She and Leveque (1994) also assumes, for the
turbulent energy flux, that µ is binomial; i.e., it can only take two (arbitrary)
values.

The statistics of µ, and hence K(q), can be constrained by noting that,
when there is no privileged scale ratio λ1, one can develop a cascade εL→εL/λ

on any given scale ratio λ by choosing any real-valued λ1>1 such that the
increment )( 1λµ  is, with the equality holding here for the distributions,

N)( 1λµ = )(λµ , where λ=λ1
N, and therefore

)()( loglog, /1
1 λλλ µµ =∀ = NNN . (11)

The function log µλ is therefore infinitely divisible (hence µ is log-infinitely
divisible) (She and Waymire, 1995; Schertzer et al., 1995). This puts a
strong constraint on µ, and consequently on the only acceptable K(q)
functions, limiting the choice to log-compound Poisson processes, for
example: log-Gamma, log-Poisson, or log-Lévy statistics (Schertzer et al.,
1995; Pocheau, 1998). Note that the scale densification λ1→1 of Schertzer
and Lovejoy (1987) is equivalent to constraining µ to be log-infinitely
divisible. The construction of continuous scale-invariant distributions is
given in Schmitt and Marsan (2001) and takes a simple form owing to the
stable nature of the model when considering log-Lévy statistics for µ
(Schertzer and Lovejoy, 1987; Schmitt and Marsan, 2001). The property of
attraction of Lévy-stable laws in regard to addition implies that they probe a
domain of the phase space not only limited to just one point, unlike other
infinitely divisible but non-stable distributions. Hence, the lognormal and,
more generally, the log-Lévy statistics are somewhat expected to be more
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commonly observed (one needs less constraints on the model to get them)
than their non-stable counterparts. Figure 4 shows two examples of 2-D
conservative lognormal multifractals, obtained from continuous (λ1→1) and
discrete (λ1=2) multiplicative cascades.

Figure 4. Two instances of a 2-D conservative lognormal multifractal, such that
K(q)=0.18(q2-q). (Left) 3-D view of the distributions, (right) 2-D map view of their
logarithms. (Top) Using a continuous cascade model, and (bottom) using a discrete (λ1=2)
cascade model. The structure with apparent squares of the latter is a direct consequence of the
existence of a discrete set of scales on which the cascade is developed, while the continuous
construction does not let such structures appear, by developing the cascade on a continuum of
scales.

2.3 Non-conservative multifractal distributions

As remarked previously in Section 2.1, the multiplicative cascade model
only generates conservative multifractals, such that the spectral slope β of
the power spectrum E(k)~k-β is β <1. This is an overly constrictive
limitation, since most borehole logs exhibit spectral slopes β >1 (e.g., Figure
2), and are therefore examples of non-conservative multifractal (Schertzer
and Lovejoy, 1987), multi-affine (Vicsek and Barabási, 1991), or non-
stationary multifractal (Davis et al., 1994) distributions. Several models, all
elaborating on the multiplicative cascade model, have been shown to



14 Chapter 8

generate multi-affine distributions: middle-point methods (Vicsek and
Barabási, 1991), wavelet dyadic cascades (Benzi et al., 1993a; Arneodo et
al., 1998), fractional integration of conservative multifractals (Schertzer and
Lovejoy, 1987), and multifractal operational time processes (Mandelbrot,
1997). Denoting by v(x) a multi-affine distribution, its scaling statistics can
be detailed by examining the multi-scaling of its increments

)(|~||)()(| qq xxvxxv ζ∆>−∆+< , (12)

where ζ(q) is called the structure function. Simple affine distributions, like
fractional Brownian motions (Mandelbrot and Van Ness, 1968) or fractional
Lévy motions (Taqqu, 1987) and their extension to D-dimensional domains
are such that ζ(q)=Hq, where H is the Hurst exponent. Note that for
fractional Lévy motions, divergence of moments q≥α, where α is the Lévy
index of the motion, leads to a bi-linear numerical ζ(q) (e.g., Schmitt et al.,
1999; Nakao, 2000).

For multi-affine distributions, ζ(q) is no longer linear, and therefore, as
for conservative multifractals, one needs more than just a single exponent to
fully characterize their scale-invariant statistics. Note that the power
spectrum Ev(k) of v scales as Ev(k)~k-1-ζ(2), and ζ(2)>0 ensures that the
spectral slope β such that Ev(k)~k-β is larger than 1. We here briefly recall
two of the afore mentioned models, along with a third model, as candidates
for easy-implementation computational routines for synthetic modeling
purposes. Matlab® codes for such methods are given in the Appendix.

2.3.1 Multifractal operational time

The construction of a 1-D multi-affine distribution v(t) can be given in
terms of a compound fractional Brownian motion w(τ) with a multifractal
operational time τ (t) such that

�=
t

tdtt
 

0 
)'(')( ετ , (13)

with ε being a conservative multifractal distribution (see Section 2.1), with
<ε�q>∼ �-K(q). As shown by Mandelbrot (1997), the increments of v(t)=w(τ(t))
scale like <|v(t+∆t)-v(t)|q>=<|w(τ(t+∆t))-w(τ(t))|q>~<[τ(t+∆t)-τ(t)]qH>, H
being the Hurst exponent of w. Hence we obtain

[ ] >∆<>��

�
��

�<>−∆+< ∆
∆+

�
qH

t

qHtt

t
q ttdttvttv εε  ~)'('~)()(

 

 
, (14)
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and therefore <|v(t+∆t)-v(t)|q>~∆tζ(q) with ζ(q)=qH−K(qH). We can
transform a mono-scaling process (e.g., a fractional Brownian motion) w into
a multi-scaling process by properly mapping the 1-D domain t→τ (t). The
one-to-one mapping τ needs to be scale-invariant (the converse would imply
distinguishing a set of characteristic scales for τ, which would then also
emerge for v), continuous (so that no overlap nor gap is allowed), and non
homogeneous, i.e., multifractal. Figure 5 shows an example of such a
construction; v does indeed possess the scaling symmetry and heterogeneous
structure characteristic of multifractal distributions.
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Figure 5. Construction of a 1-D, non-conservative multifractal v(t) using the multifractal
operational time method. a) A lognormal conservative multifractal ε(t) with K(q)=0.3(q2-q) is
generated using a continuous multiplicative cascade, and b) the operational time τ (t) is
defined as the cumulative sum of ε (t). c) A fractional Brownian motion w(t) is computed with
a Hurst exponent H=0.1, and e) the composition of w with τ yields the multi-affine
v(t)=w(τ(t)). d) and f) compare the derivatives of w and v, respectively, showing that the
composition transforms an “homogeneous” fractal signal into an heterogeneous one with
varying level of fluctuation. The structure function of v(t) is ζ(q)=0.13q−0.003q2.



16 Chapter 8

Extension of this method to (D>1)-dimensional domains is nontrivial;
this would imply mapping vectors dx into dx→du with xddu  ε= , and with
the scaling condition on the “strain” ε  that

)(~ qKqq
xdxd −>< ε (15)

in the general non-self similar case (ε is not symmetric, as it also accounts
for possible rotations). The tensor field ε  needs to also verify the classical
equations of compatibility. As far as we are aware, this type of construction
has yet to be examined. Note that the form of the latter equation is generic to
a multifractal tensorial distribution, and might therefore be thought of as
being representative of the scaling symmetry prevailing for both the stress
and the strain in the crust.

2.3.2 Fractional integration of εεεε��������
(x)

A simple model for generating multi-affine distributions was proposed in
Schertzer and Lovejoy (1987) and corresponds to directly changing the
spectral slope β of a conservative multifractal ε��(x) by fractionally
integrating it

χε +−−= �
Dxxxxdxv ')'(')(

�
, (16)

where D is the dimension of the domain, and χ is a parameter that is adjusted
accordingly to the required spectral slope of v. Such a method can easily be
implemented for any value of D. The Matlab® code given in the Appendix
allows for the construction of 1-D and 2-D models. Note that only this
method (unlike in Sections 2.3.1 and 2.3.3) can handle 2-D or 3-D
simulations. This integration is similar to the construction of a fractional
Brownian motion field, but acts on a multifractal measure rather than on a
Gaussian “white noise”. One can show (Schertzer et al., 1997) that v(x)
verifies Eq. (12) with ζ(q)=χq−K(q), in the self-similar case. For a self-affine
distribution, one needs to fractionally integrate over a self-affine ε��(x), i.e.,

χε +−−= �
elDxxxxdxv ')'(')(

�
, (17)

where Del is the so-called elliptical dimension characteristic of the symmetry
(e.g., Lovejoy et al., 1987). In the self-affine construction given in Section
2.1 (where one structure divides into 2 x 3 structures and hence
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Tλ(x,y)→(λ-1x,λ-1+hy) with h=log3/log2-1) this elliptical dimension is
Del=1+(1-h)=3-log3/log2=1.415 and Eq. (12) now reads

)(~)()( qq xxvxxv ζ∆>−∆+< , with xxT 1−= λλ . (18)

While this method correctly generates the expected multi-affine
distribution, it is unfortunately characterized by profiles with visual aspects
that can differ from actual borehole logs. This comes from the fact that we
fractionally integrate over a positive distribution ε��(x), hence a positive v(x)
with large fluctuations systematically characterized by positive onsets.
However, this characteristic feature is sometimes observed for real logs, for
which this method can therefore be exploited. We show in Figure 6 an
example of such a construction that reproduces the multi-scaling statistics of
the neutron porosity φ(z) of the KTB main borehole.
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Figure 6. Modeling of a non-conservative multifractal signal: the case of the neutron porosity,
φ(z), of the KTB Main borehole a) and its derivative b). The synthetic log c) is obtained by
fractional integration of a continuous multiplicative cascade, and exhibit the same type of
fluctuations for its derivative d) as those of the real signal b).
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2.3.3 Two-step integration of a signed multifractal noise

A third method generates in three steps 1-D multi-affine distributions that
closely mimic both the multi-scaling statistics and the overall characteristics
of, for example, sonic and density logs. Starting from a conservative
multifractal ε (z) with moment scaling function K(q), one can define
increments v(z+∆z)−v(z) by summing ε 1/2(z) weighted by a Gaussian white
noise W(z) over the interval z→z+∆z

�
∆+

=−∆+
zz

z
zWzdzzvzzv )'()'(')()( 2/1ε . (19)

This implies the scaling of the increments in

)2/(2/
2/

~)'(')()( qKq
qzz

z

q zzdzzvzzv −
∆+

∆>>=<−∆+< � ε (20)

A final fractional integration/derivation can then be performed in order to
adjust the spectral slope (hence the linear term of the structure function) as
the spectral slope β of the process v given by the increments defined above is
β=2. An example is shown in Figure 7.
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Figure 7. An instance of a non-conservative multifractal v(z) (top), along with its derivative
(bottom), obtained by the two-step integration method, starting from a lognormal conservative
multifractal generated by a continuous multiplicative cascade. The structure function of v(z) is
ζ(q)=0.2q−0.05q2. The axes have arbitrary units.
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3. MULTIFRACTAL ANALYSES OF BOREHOLE
LOGS AND FRACTURE PATTERNS

Borehole logs provide detailed and reliable measurements of the
geophysical state of the upper crust at depths of the order of one to a several
kilometers. For example, the derivative of the P-wave sonic log gives a
proxy of the reflectivity at the resolution scale, and is hence of great interest
for examining the characteristics of the medium with regard to the scattering
of seismic waves. We will in this section mainly report previous multifractal
analyses of borehole logs. Also, a fundamental source of heterogeneity in the
upper crust arises from fracture and fault patterns, and we will accordingly
review attempts at analyzing and modeling multifractal distributions of
fracture characteristics (location, length, cumulative displacement, aperture).

3.1 Analyses of borehole logs

Multifractal analyses of micro-resistivity (Saucier and Muller, 1993;
Muller, 1993; Saucier et al., 1997), porosity (Muller, 1992), sonic
(Herrmann, 1997, 1998; Marsan and Bean, 1999), and gamma (Marsan and
Bean, 1999) logs have shown how one can quantify the multi-scaling
statistics of crustal heterogeneities. Different techniques were employed to
analyze such signals: direct structure function estimation through the scaling
of the moments of the increments (Marsan and Bean, 1999), transformation
of the signal by taking an (arbitrary) moment ω of the absolute value of the
derivative (Saucier et al., 1997), or wavelet analysis (Herrmann, 1997,
1998). One aspect of these analyses, particularly in the case of Saucier and
Muller (1993), Saucier et al. (1997), Muller (1992), and Marsan and Bean
(1999), is that the scaling is either found to be restricted to rather short scale
ranges (e.g., less than one decade in the case of Saucier and Muller, 1993) or
of average quality, even though the associated power spectra display scaling
regimes over several decades of scales. Such limitations are mainly due to
the restricted number of data points, a particularly severe problem in most
borehole log analysis as a maximum scaling range extending from 1 m to a
few 100’s of meters is typically the best which can be obtained with
sufficient statistical convergence, after removal of the system response of the
tool. Use of a method proposed by Benzi et al. (1993b) in the framework of
extended-self-similarity (ESS), and developed for the study of turbulence,
can improve the quality of the fit. Rather than a direct estimation of the
scaling of increments <|v��(x+∆x)− v��(x)|q> with ∆x, one can look at the
scaling of one moment versus another
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We then define *)(/)()(~ qqq ςςς = , where q* is an arbitrary moment,
which can be taken to be equal to 2. This allows us to use the spectral slope
of v, β, to fully constrain ζ(q): β +1=ζ(2), hence )1)((~)( −= βςς qq . An
advantage of this method is that it automatically accounts for the transition
scales and multiple scaling regimes that could artificially arise from
analyzing 1-D or 2-D slices of non-self-similar 3-D distributions (e.g.,
Schertzer et al., 1997).

The wavelet transform maxima modulus (WTMM) method (Muzy et al.,
1991; Bacry et al., 1993), used by Herrmann (1997, 1998), provides a more
refined technique. It proceeds by tracking the lines of maximum modulus for
varying resolution σ, and determining corresponding orders of singularity α
(or γ, as in Section 2). This method allows for a direct estimation of local
orders of singularity at those locations where a line of local maximum of the
wavelet transform modulus can be identified.

3.1.1 Multifractal analysis of KTB neutron porosity log

To illustrate how the multifractality of a borehole log can be practically
quantified, we provide here an example of a multifractal analysis using the
KTB neutron porosity φ(z). These data consists of 19786 measurements at a
depth interval of 0.152 m. Prior to analysis, we average these values over a
bin size of 10 measurements to remove the inherent smoothing effect
associated with the finite size of logging tool. Figures 6a and 6b show the
KTB porosity log and its derivative. Figure 8b shows the power spectrum of
φ(z), with a best-fit power law function: E(k)~k-1.2, which corresponds with a
Hurst exponent H=0.1 if φ(z) is modeled as a mono-scaling signal. Figure 8
also provides the scaling with � of the moments of the increments of φ:
<|δφ��|q>=<|φ(z+�)−φ(z)|q> for q=1, 2, 3.

While the power law trend is clear for these moments, the fit is not fully
satisfactory, perhaps due to the lack of data points. However, scaling of the
power spectrum from the Nyquist scale up to ~1 km (at which point
statistical convergence cannot be assumed) implies scaling of the moment of
order q=2; we see that the departure from the power law fits is not severe
and similar at different values of q. Plotting <|δφ��|q> versus <|δφ��|2> yields
good power law trends, from which the structure function can be estimated.
Direct estimation of ζ(q) from the scaling of <|δφ��|q> in ~��ζ(q) gives the
structure function ζ(q) (Figure 8d), along with an estimate of the error on
ζ(q) computed by varying the scaling interval of � on which the scaling
exponent is calculated. As the power law fit becomes less accurate at larger
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q, the absolute error on ζ(q) increases. The clear non-linearity of ζ(q)
indicates the multifractality of φ(z). A mono-scaling model of φ based on the
Hurst exponent H=0.1 estimated from the power spectrum would yield a
linear relationship ζ(q)=0.1q.
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Figure 8. Multifractal analysis of the neutron porosity φ(z) of the KTB Main borehole (Figure
6). a) Scaling of the moments of order q=1, 2 and 3 of the increments |φ(z+��)−φ(z)| with the
scale � in meters. b) Scaling of the power spectrum of φ, with the best power law fit in
E(k)~k-1.2 estimated by fitting E(k) averaged over algebraically-spaced intervals (circles). c)
Scaling of the moments of order 1 and 3 of the increments with the moment of order 2,
allowing for a better constrained estimation of ζ(q) (see text for details). d) Structure function
ζ(q) estimated: (circles) by direct fit of the scaling of the moments with scale � (graph a),
along with an estimate of the error (envelope in continuous lines), and (dot-dash) using the
ESS method in c).

We have therefore demonstrated that there are significant variations in
the local degree of variability for the KTB neutron porosity log. Bursts of
rapid fluctuations are found along the borehole, showing that the variability
is not homogeneously distributed. This intermittency is a fundamental
feature of multifractal distributions.

Figures 6c and 6d display an example of a synthetic signal, along with its
derivative, constructed with multi-scaling statistics close to those of the



22 Chapter 8

actual KTB neutron porosity log. A fractional integration of a lognormal
conservative multifractal was performed to obtain this synthetic signal.

Multifractal analysis and simulation can therefore be used for studying
and simulating synthetic media with statistics that closely mimic those of the
upper crust, and hence could improve our understanding of dynamical
processes subjected to such heterogeneous conditions. We note that, for the
upper crust, distinction between various multifractal models based on a
numerical fit of the computed structure function of borehole logs is limited,
given the large degree of uncertainty in the estimated ζ(q) (i.e., the error
envelope on Figure 8d, obtained for the super-deep KTB borehole neutron
porosity log, a signal already much longer than most other borehole logs).
While there might exist a strong case in favor of log-infinitely divisible
models, based on the λ1→1 limit discussed in Section 2.2, one cannot, with
the presently available data, definitely decide on one model or the other.
Hence we recommend using the simplest model that can reproduce the
estimated ζ(q) within its error bars. Lognormal models are generally found
to be of sufficient flexibility (by adjusting the curvature of the function, i.e.,
the relative value of the quadratic term in ζ(q)) to yield such simple,
acceptable models. A Matlab code for generating 1-D or 2-D lognormal
conservative multifractals from continuous multiplicative cascades is given
in the Appendix. Generalization to 3-D models is straightforward. However,
the proposed 2-D (and 3-D) models are scalar models; the inclusion of
principal directions (for example due to the presence of strong non-isotropic
defects like faults) that can rotate with scale and position would require the
development of non-scalar models.

3.2 Fractures and faults

The distribution of faults and fractures is commonly observed to be scale-
invariant (e.g., see review of fracture experiments in Bouchaud, 1997). It has
been proposed that scale-invariance of sonic logs could be due primarily to
scale-invariant fracture distributions in the crust (e.g., Leary, 1991; Holliger,
1996; Leary, this volume), although lithologic variability is also likely to be
important (e.g., Bean, 1996; Goff and Holliger, 1999; Marsan and Bean,
1999). In the crust, fractures are likely to be most important at shallow
depths, where brittle fracturing is most intense, and that their role diminish at
greater depths, where lithostatic pressure and emergence of the ductile
regime tend to close them. If faults and fractures are indeed a primary source
of heterogeneity in the upper crust, then their distribution at shallow depths
would be of great importance for a variety of geophysical processes, such as
scattering of seismic waves, fluid flow (seismically active faults are thought
to be primary flow conduits; Barton et al., 1995), and faulting and
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deformation processes. Here we review attempts at quantifying and
understanding the multifractality of fracture and fault distributions and
associated attributes (e.g., aperture, cumulative displacement).

Cowie et al. (1995) studied the scale-invariant statistics of a numerical
model of elastic anti-plane deformation and faulting. Their original approach
was to consider the temporal evolution of the deformation, showing that
strain localization can be accurately measured by multifractal analysis.
Deformation evolves from a nucleation regime, where small-scale fractures
initiate randomly (due to quenched disorder), to a localized regime during
which favored fractures grow, coalesce, and account for an always larger
portion of the total deformation. This maturation is effectively quantified by
looking at the development of multifractal statistics for the displacement
field. As most of the cumulative displacement becomes localized on smaller
and smaller domains (faults or clusters of faults), the heterogeneous
character of the faulting process becomes more and more pronounced,
resulting in spatially intermittent deformation.

An elegant attempt at analyzing the multifractality of observed fault
distributions was presented by Ouillon and others (Ouillon et al., 1995;
Ouillon and Sornette, 1996; Ouillon et al., 1996). Their approach was to
compare multifractal scaling regimes, obtained by traditional box-counting
methods, of a fault and fracture network map (in Saudi Arabia) from the 1
cm to the 100 km scale, with the associated global strike orientation regimes
analyzed using an anisotropic wavelet transform analysis. Several regimes
common to both analyses were detected that could correspond to
characteristic scales in the crustal layering of the region. The main criticism
that could be formulated here, and that would also apply to other studies on
multifractal networks reviewed here, is that they ignore both the geometry
and topology of a fault trace and the possibly scale-invariant statistics of
fault orientation (strike), by applying an isotropic multifractal analysis that
was originally developed for looking at heterogeneous sets of points
(Poincaré sections of strange attractors). A step towards a more sophisticated
and certainly more informative analysis would then be to use the wavelet
transform used in the work by Ouillon and co-workers to give a density
measure ε (x,�,θ ) of how close we are, at location x, from having a fault of
size greater or equal to scale � striking at θ. A full multifractal analysis could
then be done on ε, taking the strike angle into consideration. Such a
multifractal formalism still needs to be developed in the physics literature.

A very similar multifractal analysis was proposed by Weiss and Gay
(1998) for the case of freshwater ice sample fracturing under uniaxial
compression. Looking at the fracture networks developing at various stages
during the test, weak multifractality was found, with two more or less mono-
scaling competing regimes N(��)~��-1 and ~��-2, where N(��) is the number of
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non-empty boxes at scale � (boxes occupied by at least one fracture
segment). At early stages in the fracturing, N(��)~��-1 develops over more
than two decades, then the second ~��-2 regime appears at large scale with a
transition scale �c decreasing with time. The absence of multifractality before
the onset of tertiary creep is expected to be due to the absence of strong pre-
existing material heterogeneities, the samples being made from fresh water.
In contrast to the model of Cowie et al. (1995), the authors only had access
to the fracture network geometry, as opposed to a (scalar) displacement field.
This precludes a full analysis of the localization of deformation leading to
failure. The transition from one regime to the other is likely to be equivalent
to the transition from a nucleation and growth stage of randomly distributed
fractures (the topological dimension D≈1 for an individual fracture) to a
coalescence regime, during which a dense (i.e., D≈2) percolating network of
fractures is formed. During tertiary creep, localization of the deformation is
observed with the development of a weak multifractal regime above the
transition scale �c, demonstrating that the dynamical organization leading to
the selection and growth of a macro fracture can be obtained even with very
little initial disorder.

The simpler case of 1-D sections of fracture networks was studied by
Belfield (1994). The scalar quantity was then the fracture apertures, and the
data were collected from a microscanner probing horizontal boreholes. A
direct multifractal box-counting analysis yielded good scaling fits of
moments of various orders over more than two decades in scale, and
revealed the clear multifractal character of those logs. A model, based on a
multifractal strain distribution generated from a multiplicative cascade
model was then proposed (Belfield, 1998) to explain and fit the analysis.
(More precisely: from a micro-canonical, discrete (λ1=2), 1-D cascade, with
µ being defined as a (positive) Lévy law.) Note that such a cascade is not
log-infinitely divisible, and would yield, in the limit of an infinite number of
cascading steps, a lognormal cascade.

Finally, the multifractality of 1-D and 2-D mode-I fracture profiles was
analyzed in Schmittbuhl et al. (1995). A clear departure of the structure
function ζ(q) from linearity was found for the height of the fracture
surface/cut. The implications of such a multifractality, which relates to the
existence of heterogeneous distributions of asperities, are yet to be
examined, especially in terms of contact, i.e., friction, properties of fractures
and faults.
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4. CONCLUSIONS

By fully accounting for the scaling variability present in the upper crust,
as for example probed by borehole log measurements, multifractal modeling
is particularly well-suited for characterizing small- and intermediate-scale
crustal heterogeneity distributions. While the geophysicist involved in
numerical/analytical modeling of dynamical processes taking place in such a
variable environment can readily exploit the numerous attempts at analyzing
and reproducing the statistics of the medium, several important issues still
need to be addressed. For example, a full account of tensorial deformation in
a multifractal medium is a particularly challenging problem. Multifractal
modeling can also be used in order to account for the strong variability in
seismicity distributions. A strongly heterogeneous brittle lithosphere can
then be incorporated in dislocation models that systematically assume elastic
homogeneity of the medium, and hence could reproduce the observed small-
scale variability totally ignored in such models. The same can be said of
poro-elastic models that typically assume normal (i.e., Brownian) fluid
diffusion, hence an homogeneously permeable crust, while observations of
fluid circulation in the crust (for example by looking at the water table level
in wells) show how complex this process is.
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APPENDIX

We propose in this appendix five Matlab® programs for the numerical simulation of
lognormal multifractal (conservative and non-conservative) distributions, based on the various
methods described in this paper.

function epsilon=lognormal_multifractal(Lambda,D,C1);
% EPSILON=LOGNORMAL_MULTIFRACTAL(LAMBDA,D,C1) generates
% a lognormal conservative multifractal EPSILON in D dimension, with scale ratio
% LAMBDA and a curvature of the moment scaling function K(q) equal
% to C1, i.e., K(q)=C1(q^2-q)
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Lambda_D=1+(Lambda-1)*(D-1); gamma=randn(Lambda_D,Lambda);

Ktmp(1:Lambda/2+1)=(1:Lambda/2+1);
Ktmp(Lambda/2+2:Lambda)=Ktmp(Lambda/2:-1:2);
K=repmat(Ktmp,Lambda_D,1).^2; Kprime=K;
for a=1:D-1 Kprime=Kprime'; end;
K=sqrt(Kprime+K); ft_f=K.^(-D/2);

Gamma=real(ifft2(ft_f.*fft2(gamma)));
epsilon=exp(Gamma*sqrt(2*C1*log(Lambda)/mean(std(Gamma))^2));

function v=fractional(epsilon,chi);
% V=FRACTIONAL(EPSILON,CHI) performs a fractional integration (CHI>0)
% or derivation (CHI<0) of order CHI of EPSILON. This can be used to
% generate non-conservative multifractals, by fractionally integrating
% (CHI>0) conservative multifractals. EPSILON can be only 1-D or 2-D.

if(min(size(epsilon))==1) D=1; else D=2; end;
Lambda=max(size(epsilon)); Lambda_D=1+(Lambda-1)*(D-1);

Ktmp(1:Lambda/2+1)=(1:Lambda/2+1);
Ktmp(Lambda/2+2:Lambda)=Ktmp(Lambda/2:-1:2);
K=repmat(Ktmp,Lambda_D,1).^2; Kprime=K;
for a=1:D-1 Kprime=Kprime'; end;
K=sqrt(Kprime+K); ft_f=K.^(-chi);
v=real(ifft2(ft_f.*fft2(epsilon)));

function v=nonconservative_I(Lambda,C1,H);
% V=NONCONSERVATIVE_I(LAMBDA,C1,H) generates a 1-D non-conservative
% multifractal V of scale ratio LAMBDA, with a structure function
% zeta(q)=q*(H-C1*H)-(C1/H^2)*q^2, using the multifractal operational
% time method of Mandelbrot (1997). The parameter N gives the
% length of the fractional Brownian motion w, and can be modified.

N=2^18;
epsilon=lognormal_multifractal(Lambda,1,C1);
tau=cumsum(epsilon); tau=tau/max(tau)*N;

filter(1:N/2+1)=(1:N/2+1).^(-0.5-H); filter(N/2+2:N)=filter(N/2:-1:2);
w=real(ifft(fft(randn(N,1))'.*filter));
v=w(ceil(tau));

function v=nonconservative_II(Lambda,D,C1,chi);
% V=NONCONSERVATIVE_II(LAMBDA,D,C1,CHI) generates a non-conservative
% multifractal V of dimension D and scale ratio LAMBDA, and with a
% structure function zeta(q)=q*(CHI+C1)-C1*q^2, using the fractional
% integration method of Schertzer and Lovejoy (1987).
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epsilon=lognormal_multifractal(Lambda,D,C1);
v=fractional(epsilon,chi);

function v=nonconservative_III(Lambda,C1,chi);
% V=NONCONSERVATIVE_III(LAMBDA,C1,CHI) generates a 1-D non-conservative
% multifractal V of scale ratio LAMBDA, with a structure function
% zeta(q)=q*(0.5+C1*0.5+CHI)-C1/4*q^2, using the two-step integration
% method of Marsan, Schmitt, and Bean (unpublished manuscript)
% NB: the spectral slope of V is beta=1+2*CHI

epsilon=lognormal_multifractal(2*Lambda,1,C1);
increment=epsilon.^(0.5).*randn(1,2*Lambda); w=cumsum(increment);
vlong=fractional(w,chi); v=vlong(Lambda/2+1:Lambda*3/2);
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