


Developments in

Clay Science – Volume 5B

Handbook of
Clay Science

Second Edition

Techniques and Applications

Faı̈za Bergaya
CRMD, CNRS-Université d’Orléans,
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Mixed-layer structures are remarkable examples of the order/disorder observed

in natural (e.g. clay minerals and layered oxides) and synthetic (e.g. carbons,

layered double hydroxides, layered dichalcogenides, and high-temperature super-

conductors) lamellar crystals. Mixed-layer structures consist in the alternation

either of layers exhibiting contrasting structures, compositions, and basal dis-

tances or of layers having similar basal distances but differing by their internal

structures or stackingmode, that is exhibiting different layer displacement or rota-

tion between consecutive layers. The different layer types can co-exist in variable

proportions within the crystal and define a variety of layer stacking sequences.

Twomain categories of mixed-layer structures can be singled out depending

on the actual distribution of interstratified layer types. The first corresponds to

regular structures in which different layer types alternate periodically, usually

along the axis perpendicular to the layer plane (the c*-axis). When they were

naturally occurring, such mixed-layer structures were often given mineral

names, as they had strictly periodic structures and were also often considered

as distinct phases. Chlorites and corrensite are two examples of such structures

that can be described as regular talc–brucite and chlorite–smectite, respectively.

Within the material chemistry community, these regular alternations of dif-

ferent layer types are known as the ‘staging’ phenomenon, the nth staging

corresponding to the systematic occurrence of a given layer type at every nth
layer (Fogg et al., 1998; Ijdo and Pinnavaia, 1998). When the different layer

types have the same structure but differ in their layer displacement, their regular

alternation defines polytypic variants of a given mineral/species.

In the second type of mixed-layer structures, the different layer types either

alternate at random or tend to some sort of ordering (avoiding, for example, the

existence of pairs of the minor layer type) or segregation (clustering layers of a

given type). In this case, and if interstratified layers have significantly different

thicknesses and structures, the resulting reflection positions do not obey Bragg’s

law but form a non-rational series (d001 6¼ l�d00l) leading to an apparent lack of

physical meaning for the observed peak positions. The second type of mixed-

layer structures also includes structures in which the respective thicknesses of

interstratified layers are multiples of each other (e.g. chlorite–serpentine). In this

case, the positions of reflections corresponding to the mixed-layer structure form

a rational series, and the identification of the interstratified character of the struc-

ture then requires a more detailed analysis of peak position, profiles (especially

width), and relative intensities for different reflections (Moore and Reynolds,

1997; Drits, 2003). Finally, the second type of mixed-layer structures includes

structures in which interstratified layers have approximately the same thickness

but distinct structures or layer displacement. In this case, only the positions of

non-basal reflections are affected. These reflections form non-rational series

as basal reflections for mixed-layer structures in which interstratified layers have

significantly different thicknesses and structures. Within this last type of mixed-

layer structures, additional variety can arise from the possible incommensurabil-

ity of the interstratified layers within the a–b plane.
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The sustained interest in mixed-layer structures arises from their reactiv-

ity, which is reinforced by their anisotropic character. In particular, the inter-

calation properties of lamellar compounds, including clay minerals, have

drawn the attention of the material chemistry community for the last few dec-

ades with the view to prepare polyfunctional materials. Similarly, the reactiv-

ity of natural layered silicates in response to their environmental conditions

was thoroughly investigated both for its potential ability to record temperature

and/or pressure paleo-conditions, and for assessing the possible impact of

these minerals on their environment, in particular in the context of waste stor-

age. Lanson (2011) recently reviewed the efforts dedicated to the structural

characterization of mixed-layer structures, essentially using X-ray diffraction

(XRD) in the fields of materials chemistry and (clay) mineralogy (layered sili-

cates, layered oxides, and layered double hydroxides). This author stressed the

necessity of a direct quantitative comparison between experimental and calcu-

lated XRD patterns to determine the crystal chemistry of mixed-layer struc-

tures. He also showed that mixed-layer structures containing three, or more,

layer types may be extremely common, the main reasons for their scarce

description in the literature being the lack of adapted calculation routines.

This chapter thus proposes a thorough description of theoretical concepts

allowing the calculation of diffraction effects from mixed-layer structures

with any layer types and ordering parameters using the matrix formalism. It

also includes algorithms allowing a comprehensive determination of the prob-

ability parameters required to describe layer stacking in mixed-layer struc-

tures. Finally, all recent developments that have proved to be necessary to

fit XRD data from mixed-layer structures (fluctuations of layer thickness,

presence of inter-crystalline defects, contrasting nature of crystal external

edges, etc.) are described, and the equations necessary for the calculation of

induced diffraction effects derived.

2.3.1 DIFFRACTION INVESTIGATION OF MIXED-LAYER
STRUCTURES

2.3.1.1 Diffraction Fundamentals

A scattering entity may be considered as an ensemble of elementary scatterers or

atoms, with an individual scattering power.1 When interacting with the primary

X-ray beam, these elementary scatterers act as a source of scattered waves.

According to the kinematic theory of diffraction, the wavelength of these second-

ary waves is unaffected by the scattering, and their amplitude is much lower than

that of the primary waves. Secondary waves are scattered in all directions, their

1. The scattering power of an atom, particle, or object is the amplitude ratio of X-rays scattered in

a given direction and with a given wavelength by this element to that scattered by a free electron.

The scattering power of an atom is known as its ‘atomic scattering amplitude’ and expressed in

electron units.
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relative phases in a given direction depending on the mutual arrangement of ele-

mentary scatterers in the scattering entity. Constructive, or destructive, interfer-

ences of secondary waves induce a modulation of the diffracted intensity as a

function of the direction considered. Figure 2.3.1A shows two elementary scat-

terers, one at the origin of the coordinate system (in C) and the other shifted by

vector r (in B). The directions of incident and scattered waves are indicated by

the unit vectors k0 and k, respectively. The distances covered by the waves scat-
tered at the origin and at the end of vector r differ in their length:

D¼ (AB�CD)¼� [(k�k0) �r], where [(k�k0) �r] is the scalar product of the
two vectors. The path difference between the two waves determines their phase

shift: ’¼ 2p
l D¼�2p

l ðk�k0Þ�r�½ .

Waves scattered at the origin (in C) are thus ahead of phase by ’ compared

to those scattered at the end of vector r (in B). Vector s¼ (k�k0)/l is defined

symmetrically with respect to the incident and diffracted beams (Fig. 2.3.1B),

thus leading to s¼2 sin y/l, y being half of the diffraction angle. The scalar

2q

q
q

A B

C

D

k – 

s

d

k

k/l

r

r

k0k0

k0/l

s
s

k0

A

B

k0

FIGURE 2.3.1 (A) Schematic representation of incident (k0) and diffracted (k) beams for two

elementary scatterers located at the origin and at the end of vector r (C and B, respectively).

(B) Definition of vector s¼ (k�k0)/l and of the path difference between waves diffracted by

planes perpendicular to s and located in C and B.
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product (s �r) implies that the phase shift is related solely to the component of r
along the s direction. The component of r perpendicular to the s direction does

not contribute to the phase shift, and all elementary scatterers located along the

dotted lines on Fig. 2.3.1B thus share a common phase term, and diffraction

may be considered as the reflection of X-rays by the set of planes shown by

these lines. Vector s is perpendicular to these reflecting planes, and the path dif-

ference between waves diffracted by these planes can be expressed as

k�k0ð Þ�r½ � ¼ l s�rð Þ¼ ljsjjrjcos s�rð Þ¼ 2d siny,

where d¼ |r| cos(s �r) is the interplanar distance (d-value). When the value of

this path difference is a multiple of l, that is, when 2d sin y¼nl (Bragg’s

law), interferences of secondary waves are constructive and the sum of their

amplitudes is maximum.

Thus, if fj is the scattering power of the atom whose position is defined by

vector rj, its scattered amplitude is

fj exp�2pi s�rj
� �

(2.3.1)

and the amplitude of waves scattered by a set of atoms can be written as

A sð Þ¼
X
j

fj exp�2pi s�rj
� �

(2.3.2)

To obtain a dimensionless term in the exponential, the dimensions of s and
r are reciprocal. If the distribution of scatterers is described by r in the real

space, then the scattered amplitude A(s) can be described by vector s in the

reciprocal space. In turn, the intensity of the scattered waves is the product

of A(s) and its conjugate value, that is,

I sð Þ¼A sð ÞA� sð Þ¼
X
i

X
j

fifj exp�2pi s� rj� ri
� �� �

: (2.3.3)

Equation (2.3.3) allows the calculation of diffraction effects arising from a set of

atoms if their scattering powers and mutual arrangement are known. Scattering

centres may be not only atoms but also a set of scatterers. For example, the con-

cept of a crystal lattice is often used to describe diffraction by crystalline mate-

rials. According to this concept, each of the lattice nodes has a scattering power

corresponding to the unit cell. In this case, fj should be replaced in Eq. (2.3.2) by
the scattering power of the unit cell, named structure amplitude (F), and vector
rj defines the origin of the jth unit cell. The structure amplitude can be written as

FðsÞ¼
X
i

fi exp�2piðs�riÞ, the sum over i being limited to a single unit cell.

2.3.1.2 Calculation of Diffraction Effects from Mixed-Layer
Structures

It will be assumed hereafter that layers constitutive of mixed-layer structures

have a two-dimensional (2D) periodicity. Mixed-layer structures can thus be

considered as one-dimensionally (1D) disordered structures in which layers
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differing by their thickness and/or scattering power alternate along the perpen-

dicular to the layer plane with different degrees of order/disorder. Diffraction

effects will be calculated first for a single layer, then for a set of layers (crys-

tal), and finally for a set of crystals (powder sample).

The single layer has an orthogonal unit cell with parameters a, b, and c0, the a
and b lattice vectors being defined within the layer plane while c0 represents the
layer thickness or the layer-to-layer distance in a crystal. The origin of the nth unit
cell in the layer is located at rn¼n1aþn2b. Similarly, the position of the jth atom
in this unit cell is at rj¼xjaþyjbþ zjc0, xj, yj, with zj being the relative coordi-

nates of this atom in the unit cell. The position of any atom in the layer may thus

be determined from the sum of vectors rn and rj, while, according to Eq. (2.3.1),
the amplitude of X-rays scattered by this atom can be written as:

fj exp�2pi s� rnþ rj
� �� �

:

In turn, the amplitude of X-rays scattered by a single layer can be obtained

by summing this amplitude over all j atoms of the unit cell and over all unit

cells of the layer: that is,

A sð Þ¼ 1

O

X
n1

X
n2

X
j

fj exp�2pi s� rnþ rj
� �� �

¼ 1

O

X
n1

X
n2

exp�2pi s�rnð Þ
X
j

fj exp�2pi s�rj
� �

, (2.3.4)

the double sum over n1 and n2 being normalized by the surface area of the unit

cell within the a–b plane (O).
It is then convenient to define vector s in the coordinate system of the

reciprocal lattice. Vectors a*, b*, and c* are reciprocal of a, b, and c in the

real space: that is, (a �a*)¼ (b �b*)¼ (c �c*)¼1 and (a �b*)¼ (b �a*)¼
(a �c*)¼ (c �a*)¼ (b �c*)¼ (c �b*)¼0. The axes of the reciprocal coordinate

system are thus perpendicular to the planes of the coordinate system in

the real space. If a, b, and g are the coordinates of s in the reciprocal space

(s¼aa*þbb*þgc*), then

rn�sð Þ¼ n1aþn2b and rj�s
� �¼ xjaþ yjbþ zjg: (2.3.5)

By combining Eqs. (2.3.4) and (2.3.5):

A a;b;gð Þ¼ 1

O

X
n1

X
n2

exp�2pi n1aþn2bð Þ
X
j

fj exp�2pi xjaþ yjbþ zjg
� �

:

(2.3.6)

The amplitude of X-rays scattered by a single layer is thus a function of

the a, b, and g coordinates of vector s in the reciprocal space. If this layer

is rectangular with an extension of N1 and N2 unit cells along the a and b axes,

respectively, the first two sums in Eq. (2.3.6) are geometric progressions with

common ratios equal to exp-2pia and exp-2pib, respectively, and Eq. (2.3.6)

can be expressed as
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A a;b;gð Þ¼ 1

O
sinpN1a
sinpa

sinpN2b
sinpb

exp�pi N1�1ð Þaþ N2�1ð Þb½ �X
j

fj exp�2pi xjaþ yjbþ zjg
� �

:

In turn, the intensity, normalized to a unit cell, of X-rays scattered by

atoms of this layer becomes

I a;b;gð Þ¼O
s
A� a;b;gð ÞA a;b;gð Þ

¼ 1

Os
sin2pN1a
sin2pa

sin2pN2b
sin2pb

X
j

fj exp�2pi xjaþ yjbþ zjg
� ������

�����
2

, (2.3.7)

where s is the surface area of the layer in the a–b plane.

In this equation, the product
sin2pN1a
sin2pa

sin2pN2b
sin2pb

is the interference func-

tion F(a,b) and depends on the size and shape of the layer, while the squared

expression is the structure factor of a unit cell |F(a,b,g)|2.
For high values of N1 and N2 (�103–104), the interference function exhi-

bits the major maxima for integer values a¼h, b¼k, while the intensity

decreases rapidly when a 6¼h and b 6¼k. If a, b, and g are expressed as

hþX, kþY, and Z, respectively, Eq. (2.3.7) may be written as

Ihk X;Y;Zð Þ¼ 1

Os
Fhk X;Yð ÞjFhk X;Y;Zð Þj2:

In the reciprocal space, the intensity maxima are thus located along the rods

parallel to the c*-axis and crossing the reciprocal lattice at hk nodes (Fig. 2.3.2).
Within the X, Y range over which the interference function (Fhk(X,Y)) is intense,
the structure factor (|Fhk(X,Y,Z )|

2) varies slowly and may be satisfactorily

approximated by |Fhk(Z )|
2, leading to the following expression for the intensity

distribution within hk rods:

Ihk X;Y;Zð Þ¼ 1

Os
Fhk X;Yð ÞjFhk Zð Þj2: (2.3.8)

The intensity distribution within a rod is thus described by two indepen-

dent functions, namely, the structure factor |Fhk(Z)|
2 along a rod and the inter-

ference function Fhk(X,Y) across that rod. Because only waves scattered by

planes parallel to the layer surface are involved, the sole rod with h¼0 and

k¼0 needs to be considered for the calculation of basal reflection intensity.

In this case, the amplitude of X-rays scattered by one layer is proportional

to the product of the structure amplitude F(Z ) and the shape factor D(X,Y ).2

2. The shape factor D(X,Y ) is the Fourier transform of the layer shape function g(x,y),which is

equal to 1 and 0 within and outside the layer, respectively (Ewald, 1940).
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A X;Y;Zð Þ¼ 1

O
F Zð ÞD X;Yð Þ with F Zð Þ¼

X
j

Kj fj exp�2pizjZ,

where zj is the coordinate along the normal to the layer of the jth atom in the

unit cell (in Å); Kj is the occupancy of the zj position by the j atoms; and Z is

the coordinate in the reciprocal space along c* (in Å–1).

The function D(X,Y) depends on the size and shape of the layer. It is rea-

sonable to assume that in a crystal, all layers have the same shape and size in

the a–b plane. Consequently, the terms D(X,Y ) are similar for all layers and

may be omitted in the following developments. A mixed-layer crystal with

N layers may thus be considered as a column parallel to the c*-axis (or to

the Z direction) and consisting of N unit cells of different types with a com-

mon basis. To calculate the intensity of waves scattered by such a column

along Z, it is convenient to choose the origin of the coordinate system on

the lower surface of the crystal and to number layers from bottom to top

(Fig. 2.3.3). The position of the mth layer in the crystal is thus defined by vec-

tor rm. X-rays scattered by the unit cell of the mth layer are thus ahead of

phase with respect to those scattered by the unit cell at the origin of the coor-

dinate system, and their amplitude is

Fm Zð Þexp�2piZrm, (2.3.9)

where Fm is the structure amplitude of the unit cell for the mth layer, and rm
the distance from the origin of the crystal to the origin of the mth layer.

Z

X

Y

n

c*

hk

 

00

b

a

p

FIGURE 2.3.2 Schematic intensity distribution in the reciprocal space for a single layer. Intensity

maxima are located along the rods parallel to the c*-axis and crossing the reciprocal lattice at hk nodes.
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The summation of Eq. (2.3.9) over all unit cells of the column is the

amplitude of waves scattered by the whole crystal:

A Zð Þ¼
XN
m¼1

Fm Zð Þexp�2piZrm (2.3.10)

Equation (2.3.10) may be further modified by introducing the phase shift

’i¼�2pZxi between the ith and (iþ1)th layers, which depends on the layer

thickness (xi), as

A Zð Þ¼F1þF2 exp i’1þF3 exp i ’1þ’2ð Þþ �� �
þFN exp i ’1þ’2þ�� �þ’N�1ð Þ (2.3.11)

F1, F2, . . ., FN being the structure amplitudes of the first, second, . . ., and
Nth layers, and ’1, ’2, . . . , ’N�1 the phase shifts induced by the thicknesses

of the first, second, . . . , and (N�1)th layers (x1, x2, . . ., and xN�1,

respectively).

The intensity of the diffracted waves is the product of this structure ampli-

tude and its conjugate value (Wilson, 1949a):

N–1

m�

m

3

2

1

N

x3

xN–1

xN

x2
x1

n Layers

0

rm�

rm

FIGURE 2.3.3 Schematic representation of a mixed-layer crystal composed of N layers (or unit

cells), labelled from 1 to N from bottom to top. The position of the mth layer (or unit cell) in the

crystal is defined by vector rm and its thickness is xm.
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I Zð Þ¼A∗ Zð ÞA Zð Þ¼F�
1F1þF�

2F2þ�� �þF�
NFN

þF�
1F2 exp i’1þF�

2F3 exp i’2þ�� �þF�
N�1FN exp i’N�1þ conjugate

þF�
1F3 exp i ’1þ’2ð ÞþF�

2F4 exp i ’2þ’3ð Þþ �� �
þF�

N�2FN exp i ’N�2þ’N�1ð Þþ conjugate

þF�
1FN exp i ’1þ’2þ�� �þ’N�1ð Þþ conjugate

(2.3.12)

The different terms of Eq. (2.3.12) are arranged in the way that the products

of structure amplitudes are calculated for single layers in the first line, for layer

pairs in the second line, layer triplets in the third line, etc. Terms of the first line

thus correspond to the contribution to intensity of waves diffracted by single

layers. Terms of the second line and their conjugates correspond to the contribu-

tion to intensity of waves diffracted by pairs of adjacent layers taking into

account the path difference between rays scattered by external layers of each

pair, etc. The last term and its conjugate value are the contribution to intensity

of waves diffracted by the crystal’s outer layers taking into account the path dif-

ference between scattered rays. The intensity of X-rays diffracted by a lamellar

crystal thus sums the contributions from individual layers and those from the

two external layers in all possible subsequences consisting of two, three, . . .,
(N�1),N layers, taking into account the distance between these external layers.

In mixed-layer structures, the occurrence probability of a layer with a

given nature (structure amplitude) and thickness as the first, second, . . .,
and Nth layers, which are needed in Eq. (2.3.12), is defined by a set of proba-

bility parameters. If the probability of finding an s-type layer (s¼1, 2, . . ., T)
at position q (q¼1, 2, . . ., N) is ws, the intensity of waves diffracted by this

layer is wsFs
∗Fs. For a mixed-layer structure with T layer types,

P
s¼1
T ws¼1,

and the average intensity of waves diffracted by layer q in a crystal can be

expressed as

XT
s¼1

wsF
�
sFs ¼F�

0F0 , (2.3.13)

where the index 0 indicates that this average intensity is calculated for a single

layer. It is possible to hypothesize that ws does not depend on q and that

Eq. (2.3.13) is valid for all layers. Consequently, the intensity of waves dif-

fracted, independently of each other, by all individual layers in a crystal is

equal to

N
XT
s¼1

wsF
�
s Fs ¼N F�

0F0 : (2.3.14)
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By analogy with the second line of Eq. (2.3.12), the contribution to intensity

of waves diffracted by an st pair of layers can be calculated by defining the prob-
ability wst to find a pair of s and t layers in positions q and (qþ1), respectively:

wstF
�
s Ft exp i’sþ conjugate¼ 2RewstF

�
sFt exp i’s, (2.3.15)

where Re is the real part of the complex.

As for the contribution of single layers,
P

s¼1
T P

t¼1
T wst¼1, and the aver-

age intensity of X-rays scattered by pairs of adjacent layers in positions q
and (qþ1) can be written as

2Re
XT
s¼1

XT
t¼1

wstF
�
sFt exp i’s ¼ 2Re F�

0F1 exp i ’f g1 , (2.3.16)

where F1 is the structure amplitude of the nearest neighbour layer of the F0

layer, and {’}1 the phase shift induced by the layer-to-layer distance between

their origins (thickness of the F0 layer). As for the contribution of single

layers, Eq. (2.3.16) is assumed to be valid for all (N�1) layer pairs in a crys-

tal consisting of N layers, and the total contribution to intensity of waves dif-

fracted by pairs of adjacent layers can be expressed as

2Re N�1ð Þ
XT
s¼1

XT
t¼1

wstF
�
sFt exp i’s ¼ 2Re N�1ð Þ F�

0F1 exp i ’f g1 : (2.3.17)

A similar logic can be used to calculate the contribution to intensity of a

layer sequence in which s and t layers occur as nth nearest neighbours

(n¼2, 3, . . ., (N�1)), that is, in position q and qþn, respectively:

wsh1h2...hn�1tF
�
sFt exp i ’sþ’h1 þ’h2 þ�� �þ’hn�1

� �þ conjugate

¼ 2Rewsh1h2...hn�1tF
�
sFt exp i ’sþ’h1

þ’h2
þ�� �þ’hn�1

� � (2.3.18)

where wsh1h2...hn�1t is the occurrence probability of the sh1h2. . .hn�1t layer

sequence, ’s,’h1 ,’h2 , . . . ,’hn�1
the phase shifts induced by the corresponding

layer thicknesses xs,xh1 ,xh2 , . . .xhn�1
.

Again,
PT

s¼1

PT
h1¼1

PT
h2¼1� � �

PT
hn�1¼1

PT
t¼1wsh1h2...hn�1t ¼ 1, and the average

intensity of waves diffracted by a (nþ1) layer sequence with s and t layers
in positions q and (qþn) is

2Re
XT
s¼1

XT
h1¼1

XT
h2¼1

. . .
XT

hn�1¼1

XT
t¼1

wsh1h2...hn�1tF
�
sFt

exp i ’sþ’h1 þ’h2 þ�� �þ’hn�1

� �¼ 2Re F�
0Fn exp i ’f gn (2.3.19)

For a given value of n, the index q may vary from 1 to (N�n) as there are
(N�n) sequences of (nþ1) layers in an N-layer crystal. Equation (2.3.19) is

valid for all these sequences, and the total contribution to intensity of waves

diffracted by sequences of (nþ1) layers can be expressed as
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2Re N�nð Þ
XT
s¼1

XT
h1¼1

XT
h2¼1

. . .
XT

hn�1¼1

XT
t¼1

wsh1h2...hn�1tF
�
sFt

exp i ’sþ’h1 þ’h2 þ�� �þ’hn�1

� �
¼ 2Re N�nð Þ F�

0Fn exp i ’f gn (2.3.20)

Index nmay vary from 1 (layer pairs) to (N�1), the n¼0 case corresponding

to individual layers (Eq. 2.3.14).

The summation of Eq. (2.3.20) for n values ranging from 1 to (N�1) allows

calculating the contribution to intensity of all layer sequences in a crystal, that is,

2Re
XN�1

n¼1

N�nð Þ
XT
s¼1

XT
h1¼1

XT
h2¼1

. . .
XT

hn�1¼1

XT
t¼1

wsh1h2...hn�1tF
�
sFt

exp i ’sþ’h1 þ’h2 þ�� �þ’hn�1

� �
¼ 2Re

XN�1

n¼1

N�nð Þ F�
0Fn exp i ’f gn (2.3.21)

The total intensity of diffracted waves is obtained by taking into account

the contributions of individual layers (Eq. 2.3.14).

I¼N
XT
s¼1

wsF
�
sFsþ2Re

XN�1

n¼1

N�nð Þ
XT
s¼1

XT
h1¼1

XT
h2¼1

� � �
XT

hn�1¼1

XT
t¼1

wsh1h2...hn�1tF
�
sFt

exp i ’sþ’h1 þ’h2 þ�� �þ’hn�1

� �
¼NF�

0F0 þ2Re
XN�1

n¼1

N�nð Þ F�
0Fn exp i ’f gn (2.3.22)

A periodic structure is a specific case of Eq. (2.3.22) with T¼1,

Fs ¼Fh1 ¼Fh2 ¼ �� � ¼Fhn�1
¼Ft ¼F, ’s ¼’h1 ¼’h2 ¼ �� � ¼’hn�1

¼’, and

ws ¼wsh1 ¼ �� � ¼wsh1h2���hn�1t ¼ 1, leading to a simplified expression of the dif-

fracted intensity, as

I Zð Þ¼F�F Nþ2Re
XN�1

n¼1

N�nð Þexp in’
( )

¼F� Zð ÞF Zð Þ Nþ2Re
XN�1

n¼1

N�nð Þexp 2piZnx
( )

¼ jF Zð Þj2 sin
2pNZx

sin2pZx
¼ jF Zð Þj2G Zð Þ (2.3.23)

In this case, the intensity distribution along the Z-axis is the product of the
structure factor of the unit cell |F(Z )|2 and of the interference function G(Z).
For a mixed-layer structure, the occurrence probabilities of the different layer

sequences introduced in Eq. (2.3.22) remain to be determined.
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2.3.2 STATISTICAL DESCRIPTION OF LAYER STACKING IN
MIXED-LAYER STRUCTURES

The intensity of X-rays diffracted by a single crystal (Eq. 2.3.12) can be calcu-

lated as the sum of the contributions from individual layers, layer pairs, layer tri-

plets, and so on. For periodic crystals, the expression is much simplified

(Eq. 2.3.23), whereas for a mixed-layer structure, the occurrence probability

of the different layer sequences introduced in Eq. (2.3.22) should be deter-

mined. In addition, natural mixed-layer structures usually occur as finely dis-

persed powders whose individual crystals differ by the number, content, and

distribution of the different layer types. Diffraction by such an ensemble of

crystals can be described statistically, the frequency of individual layers, layer

pairs, layer triplets, etc. being described by a set of probability parameters.

The Markovian model is widely used for this purpose (Hendricks and Teller,

1942; Wilson, 1942; Jagodzinski, 1949a,b,c, 1954; Méring, 1950; Kakinoki

and Komura, 1952, 1954a; MacEwan, 1958; Allegra, 1961, 1964; Reynolds,

1967, 1980; Drits and Sakharov, 1976; Bethke and Altaner, 1986; Drits and

Tchoubar, 1990), as it allows calculating the occurrence probability of any layer

sequence. These sequences may be composed of one, two, three, . . . layers
whose positions in the crystal are known. TheMarkovian model allows also tak-

ing into account different order–disorder models with the common Reichweite

parameter S and a reduced set of probability parameters for each S value.

The Markovian model assumes that the probability of finding a given layer

type at a given position in the crystal only depends on the nature of its neigh-

bours. The essential parameter of the various order–disorder models used to

describe layer stacking is the number of layers that influence the occurrence

probability of a layer type at a given position. This parameter is the ‘short-range

order factor’, or ‘Reichweite’, S, and was first introduced by Jagodzinski

(1949a,b,c, 1954). For random layer stacking, the occurrence probability of a

layer at a given position does not depend on adjacent layers and S¼0. If this

probability depends on a unique preceding layer, then S¼1, and, when the

occurrence probability of a layer in position n depends on layers with positions
(n�1), (n�2), . . ., (n�m), then S¼m. Here, n andm are the numbers of layers

in an arbitrary but fixed direction along the layer stack, and S can only have inte-
ger values (Lanson, 2011). The following section essentially reviews the set of

probability parameters required to describe thoroughly layer stacking for differ-

ent values of the S parameter, and the logical procedures to determine them.

2.3.2.1 Occurrence Probability of Any Layer Sequence

2.3.2.1.1 Randomly Interstratified (S¼0) Mixed-Layer Structures
with Two Layer Types (T¼2)

If the alternation of A and B layers is random (S¼0), the occurrence probabil-

ity of layer type i (i¼A, B) at a given position in the crystal does not
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depend on the adjacent layers and is equal to its abundance wi, with the

following relation:

wAþwB ¼ 1 (2.3.24)

The occurrence probability of any layer sequence is then equal to the prod-

uct of the relative abundances of its building layers, that is,

wAA ¼w2
A,wAB ¼wBA ¼wAwB,wBB¼w2

B

wAAA ¼w3
A,wAAB ¼wABA ¼wBAA ¼w2

AwB,wABB ¼wBAB ¼wBBA ¼wAw
2
B,wBBB ¼w3

B

wAAAA ¼w4
A,wAAAB ¼wAABA ¼wABAA ¼wBAAA ¼w3

AwB

wAABB ¼wABAB ¼wABBA ¼wBAAB ¼wBABA ¼wBBAA ¼w2
Aw

2
B

wBBBA ¼wBBAB ¼wBABB ¼wABBB ¼wAw
3
B,wBBBB ¼w4

B,etc:

As for the relative abundances of elementary layers, the occurrence prob-

abilities of the different layer pairs, triplets, etc., are linked by specific

relations:

wAAþwABþwBAþwBB ¼ 1

wAAAþwAABþwABAþwABBþwBAAþwBABþwBBAþwBBB ¼ 1,etc:
(2.3.25)

2.3.2.1.2 Mixed-Layer Structures with S¼1 and Two Layer Types
(T¼2)

When S¼1, the occurrence probability of a j-type layer at a given position

depends on the nature of the preceding layer i. In addition to the relative abun-

dance parameters wA and wB, a new set of junction probability coefficients

(pAA, pAB, pBA, pBB) is necessary to determine the occurrence probability of

a layer sequence. The pij (i, j¼A, B) parameter describes the probability of

finding a j-type layer after an i-type one. With these two sets of parameters,

the occurrence probability of any layer sequence can be described as follows:

wAA ¼wApAA,wAB ¼wApAB,wBA ¼wBpBA,wBB ¼wBpBB

wAAA ¼wApAApAA,wAAB ¼wApAApAB,wABA ¼wApABpBA, . . . ,wBBB ¼wBpBBpBB

wAAAA ¼wApAApAApAA,wAAAB ¼wApAApAApAB,wAABA¼wApAApABpBA,

wABAA ¼wApABpBApAA,

wAABB ¼wApAApABpBB,wABAB ¼wApABpBApAB, . . . ,wBBBB ¼wBpBBpBBpBB,etc:

2.3.2.1.3 Mixed-Layer Structures with S�2 and T¼2

For a mixed-layer structure with S¼2, the probability of finding a k-type
layer at a given position depends on the nature of the preceding layer pair

ij. In addition to the relative abundances wi and junction probabilities pij, a
new set of junction probabilities pijk (i, j, k¼A, B) is needed to describe the
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layer stacking sequence. The pijk coefficients define the probability of finding

a k-type layer following an ij layer pair. In turn,

wAA ¼wApAA,wAB ¼wApAB,wBA ¼wBpBA,wBB ¼wBpBB

as in the S¼1 case, and

wAAA ¼wApAApAAA,wAAB ¼wApAApAAB,wABA ¼wApABpABA, . . . ,wBBB ¼wBpBBpBBB

wAAAA ¼wApAApAAApAAA,wAAAB ¼wApAApAAApAAB,

wAABA ¼wApAApAABpABA,wABAA ¼wApABpABApBAA,

wAABB ¼wApAApAABpABB,wABAB ¼wApABpABApBAB, . . . ,

wBBBB¼wBpBBpBBBpBBB,etc:

Mixed-layer structures with S¼3 can be described with the same guide-

lines after the introduction of an additional set of junction probabilities pijkl
defining the probability of finding an l-type layer after an ijk layer triplet:

wAA ¼wApAA,wAB ¼wApAB,wBA ¼wBpBA,wBB ¼wBpBB

wAAA ¼wApAApAAA,wAAB ¼wApAApAAB,wABA ¼wApABpABA, . . . ,wBBB ¼wBpBBpBBB

wAAAA ¼wApAApAAApAAAA,wAAAB ¼wApAApAAApAAAB,

wAABA¼wApAApAABpAABA,wABAA ¼wApABpABApABAA,

wAABB ¼wApAApAABpAABB, . . . ,

wBAAA¼wBpBApBAApBAAA, . . . ,wBBBB ¼wBpBBpBBBpBBBB

2.3.2.1.4 Mixed-Layer Structures: General Case

The same guidelines can be used to determine the occurrence probabilities of

the different layer sequences for a mixed-layer structure consisting of T layer

types. These probabilities are systematically linked by the following relations:

XT
i¼1

wi ¼ 1,
XT
i¼1

XT
j¼1

wij ¼ 1,
XT
i¼1

XT
j¼1

XT
k¼1

wijk ¼ 1, . . . ,etc: (2.3.26)

Accordingly, a randomly interstratified mixed-layer structure (S¼0)

appears as a specific case (pij¼wj) of mixed-layer structures with S¼1. Simi-

larly, a mixed-layer structure with S¼1 is a specific case of a mixed-layer

structure with S¼2 where pijk¼pjk, . . . which can be written as (S¼0)2
(S¼1)2 (S¼2) � � � using the mathematical formalism. Despite misleading

uses in the literature, the Reichweite parameter S defines only the extent of

the influence of a given layer, but provides no indication as to the nature of

this influence, which is characterized by junction probabilities. For S>0,
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these junction probabilities can be varied to describe mixed-layer structures

with a tendency to either layer ordering, or layer segregation.

The complete calculation of occurrence probabilities for the different layer

sequences in mixed-layer structures with S¼m requires the junction probability

parameterswi, pij, pijk, . . ., pijk� � �l, where the number of indexes ijk� � �l is equal to
(mþ1), to be known. When using the Markovian model, specific relationships

link w and p parameters, and only a fraction of them are independent. The fol-

lowing section describes these relations and lists the sets of independent proba-

bility parameters for mixed-layer structures with different values of S and T.

2.3.2.2 Determination of Independent Probability Parameters

2.3.2.2.1 Randomly Interstratified Mixed-Layer Structures (S¼0)

As described above, the occurrence probability of any layer sequence in a two-

component mixed-layer structure with S¼0 is equal to wnA
A wnB

B , nA and nB being
the numbers of A and B layers, respectively, in this sequence. From Eq. (2.3.24),

a two-component (T¼2) mixed-layer structure randomly interstratified is thus

fully described by one of the coefficients wA or wB. From Eq. (2.3.26), the num-

ber of independent probability coefficients is (T�1) for a randomly interstrati-

fied mixed-layer structure consisting of T layer types. The relative abundance of
the first layer type, for example may be defined without restrictions within the

[0, 1] range, but the range available for the other occurrence probability para-

meters depends on the values of the previously defined coefficients. For

example, the relative abundance of the second layer type should be defined

within the range [0, (1�w1)], that of the third layer type within the range

[0, (1�w1�w2)],. . . and wT¼1�P i¼1
T�1wi.

2.3.2.2.2 Mixed-Layer Structures with S¼1 and T¼2

In this case, the six probability parameters (wA, wB, pAA, pAB, pBA, pBB)
required to characterize thoroughly the mixed-layer structure are linked by

the following relations:

wAþwB ¼ 1, pAAþpAB ¼ 1, and pBAþpBB ¼ 1 (2.3.27)

The first relation is obvious, the other two meaning that a given layer (A or B)
is followed by either an A or a B layer, which is also evident for a two-component

mixed-layer structure. In addition, the six probability parameters are related by

the following relations:

wA ¼wApAAþwBpBA, and wB ¼wApABþwBpBB (2.3.28)

The products wApAA and wBpBA describe the occurrence probabilities of AA
and BA pairs, that is wAA and wBA, respectively, whereas the overall relations

assert that a given layer (A or B, respectively) follows either an A or a B layer

in a two-component mixed-layer structure. By combining the second relation
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of Eq. (2.3.27) (pAB¼1�pAA) with the first of Eq. (2.3.28) [wA(1�pAA)¼
wBpBA], it is possible to deduce that

wApAB ¼wBpBA, or wAB ¼wBA (2.3.29)

The four relations in Eqs. (2.3.27) and (2.3.29) thus reduce to two the

number of independent probability parameters required to characterize thor-

oughly a mixed-layer structure with S¼1 and T¼2. One of these parameters

should be wA or wB. If wA is chosen and if wA>wB, then Eq. (2.3.29) leads to

pAB ¼wB

wA
pBA ¼wB

wA
1�pBBð Þ and

wB

wA
	 1 (2.3.30)

It is thus convenient to choose pBA or pBB as the second independent prob-

ability parameter, as there are no restrictions on the value of either, which can

range from 0 to 1. If pBB is chosen as the second independent parameter, all

other probability parameters can be calculated as

wB ¼ 1�wA,pBA ¼ 1�pBB,pAB ¼ 1�wA

wA
1�pBBð Þ,pAA ¼ 1�1�wA

wA
1�pBBð Þ
(2.3.31)

2.3.2.2.3 Ordering and Segregation in Mixed-Layer Structures
with S¼1 and T¼2

Among mixed-layer structures with S¼1, two main types can be differen-

tiated depending on the relative values of the wA and pAA probability para-

meters. For example, when pAA>wA, the occurrence of AA pairs is favoured

compared to random interstratification; A layers are thus clustered and the

mixed-layer structure is said to be segregated. On the other hand, when

pAA<wA, the occurrence of AB and BA pairs is favoured compared to random

interstratification, and interstratification is considered to be ordered. As pro-

posed first by Sato (1965), the degree of segregation, or of ordering, may be

described from the last relation in Eq. (2.3.31):

pBB ¼ wA

1�wA
pAAþ1� wA

1�wA
(2.3.32)

and the derived Fig. 2.3.4.

Equation (2.3.32) indicates that pBB and pAA are linearly correlated for a

given wA value. Mixed-layer structures with a given wA value are thus located

along straight lines originating from the upper right corner of the diagram in

Fig. 2.3.4. Both pAA and pBB axes correspond to mixed-layer structures with

the maximum possible degree of ordering (MPDO), which corresponds to

pBB¼0 when wA�wB or to pAA¼0 for wA 	 wB (S¼1). The physical mixture

of periodic crystals composed either of A or of B layers corresponds to the

upper right corner of the diagram with pAA¼pBB¼1 (Fig. 2.3.4). The specific

case of randomly interstratified mixed-layer structures (S¼0) corresponds to
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the line where pij¼wj, that is to the straight line linking the upper left and

lower right corners of the diagram in Fig. 2.3.4. The domain above this diag-

onal, that is, towards the physical mixture point at the upper right corner, cor-

responds to mixed-layer structures with a tendency to segregation, whereas

the domain below this diagonal corresponds to partial ordering. The lower left

corner with wA¼wB¼0.5 and pAA¼pBB¼0 corresponds to the periodic

ABAB. . . layer sequence with a 1:1 ratio between A and B layers.

Cesari et al. (1965) defined simple parameters to characterize the degree

of ordering, or of segregation, in two-component mixed-layer structures with

S¼1. In the first case, the parameter aims at quantifying the degree of ran-

domness (or disorder) in the stacking of A and B layers, and can be defined as

D1 ¼ pAA=wA when wA <wB and 0	 pAA 	wA (2.3.33)

and

D0
1 ¼ pBB=wB when wA >wB and 0	 pBB 	wB (2.3.34)

The index 1 of D and D0 parameters indicates that the disorder parameters

describe mixed-layer structures with S¼1. Both D1 and D0
1 parameters may

vary from 0 (MPDO case, S¼1) to 1 (random interstratification, S¼0).

Drits and Sakharov (1976) transformed Eq. (2.3.32) into

0.0 0.2 0.4 0.6 0.8 1.0

PBB

PAA

C1= 0.2

C1= 0.4

C1= 0.6

C1= 0.8

wA= 1.00

wA= 0.00

0.0

0.2

0.4

0.6

0.8

1.0

D�1= 0.2

D1= 0.2

D1= 0.4

D1= 0.6

D1= 0.8

D1= 1.0
S = 0

D�1= 0.6

wA= 0.75

wA= 0.50

wA= 0.25

wA= 0.375

wA= 0.675

D�1= 0.8

D�1= 0.4

FIGURE 2.3.4 Junction probability diagram for two-component mixed-layer structures with

S¼1. See text for details. Adapted from Drits and Sakharov (1976).

Chapter 2.3 X-ray Identification of Mixed-Layer Structures 69



wA ¼ 1�pBB
2�pAA�pBB

(2.3.35)

and introduced this relation into Eqs. (2.3.33) and (2.3.34) to obtain

pBB ¼ 2pAA�p2AA�D1

pAA�D1

and pAA ¼ 2pBB�p2BB�D0
1

pBB�D0
1

(2.3.36)

These two relations define the relation between the pAA and pBB parameters

for a given degree of disorder (D1 orD
0
1), independent of wA. If the latter param-

eter is varied, Eq. (2.3.36) allows drawing the dashed lines in the partial order-

ing domain (Fig. 2.3.4). Non-integral values of the short-range order parameter

S were sometimes used to describe the degree of ordering in mixed-layer struc-

tures with S¼1 (Reynolds, 1988; Yuan and Bish, 2010). The use of such non-

integral values should be avoided, however, and the degree of partial ordering

should be described either by a specific parameter (e.g. D1 or D
0
1) or by the set

of independent junction probabilities as recommended by the AIPEA nomen-

clature committee (Bailey, 1982; Guggenheim et al., 2006).

The degree of segregation in a two-component mixed-layer structure may

be defined in a similar way (Cesari et al., 1965), as

C1 ¼ 1�1�pAA
1�wA

when wA 	 pAA 	 1 (2.3.37)

As in the previous case, the C1 parameter may vary from 0 (random inter-

stratification, S¼0) to 1 (physical mixture, S¼1). Drits and Sakharov (1976)

introduced Eq. (2.3.35) into Eq. (2.3.37) to obtain a relation between the pAA
and pBB parameters for a given degree of segregation C1 independently of wA:

pBB ¼C1�pAAþ1 (2.3.38)

If wA is varied, Eq. (2.3.38) allows drawing the dashed lines in the segre-

gation domain (Fig. 2.3.4).

2.3.2.2.4 Mixed-Layer Structures with S¼1 and T¼3

For mixed-layer structures with more than two layer types, the analytical def-

inition of independent probability parameters has not been achieved yet

because of its intrinsic complexity. Even in comprehensive monographs

(Cesari and Allegra, 1967; Drits and Sakharov, 1976; Drits and Tchoubar,

1990), three-component mixed layers, for example, were described only for

particular cases. The same complexity exists for two-component mixed-layer

structures with S>1. To reduce this complexity, a priori assumptions are

commonly made on junction probabilities (Drits and Sakharov, 1976;

Reynolds, 1980; Bethke and Altaner, 1986; Drits and Tchoubar, 1990), thus

limiting the versatility of structure models for a given set of S and T values.

For example, a third layer type may be considered to randomly replace one

of the two ‘main’ components (Newmod—three components) rather than
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having its own independent set of junction probabilities. Similarly, for a two-

component structure with S¼2, MPDO is often assumed for the definition of

pij junction probabilities (pBB¼0 when wA>wB), thus automatically setting

some of the pijk probabilities (Drits and Tchoubar, 1990). These restrictive

assumptions have been excluded in the following description of a new algo-

rithm for the choice of independent probability coefficients. This logical pro-

cess is first described for mixed-layer structures with S¼1 and T¼3, and then

extended to any couple of T and S values.

Similar to Eqs. (2.3.27) and (2.3.28) for two-component mixed-layer struc-

tures, the following relations are valid for a three-component (A, B, and C
layer types) mixed-layer structure:

wAþwBþwC ¼ 1 (2.3.39)

pAAþpABþpAC ¼ 1

pBAþpBBþpBC ¼ 1

pCAþpCBþpCC ¼ 1

8<
: (2.3.40)

wA ¼wApAAþwBpBAþwCpCA
wB ¼wApABþwBpBBþwCpCB
wC ¼wApACþwBpBCþwCpCC

8<
: (2.3.41)

Because of Eq. (2.3.39), only two of the three relations in Eq. (2.3.41)

are independent, and the 12 probability coefficients wi and pij (i,j¼A, B,
C) are linked by six independent equations (Eqs. 2.3.39–2.3.41). Six inde-

pendent probability parameters are thus to be defined, two among the wi

and four among the pij parameters. If the three relations in Eq. (2.3.40) are

multiplied respectively by wA,wB, and wC, respectively, the left part of these

relations define the [Wij] matrix as wipij¼wij. The right part of the relations

may then be reported to the right of each line and to the top of each column,

that is,

Wij

� � ¼
wA wB wC

wAA wAB wAC

wBA wBB wBC

wCA wCB wCC

������
������

wA

wB

wC

(2.3.42)

The sum of the matrix elements in each column corresponds to the right

part of the relations in Eq. (2.3.41), whereas the left part of these relations

is given by the occurrence probabilities reported above these columns. Equa-

tions (2.3.40) and (2.3.41) indicate that the maximum value of any matrix ele-

ment in Eq. (2.3.42) is the lower of the wi occurrence probability parameters

for the line and column of this matrix element, reported to the right and above

this matrix element, respectively. Let us assume, for example, a mixed-layer

structure with wA¼0.60, wB¼0.24, and wC¼0.16, with all elements of the

[Wij] matrix initially having null values. Any of the matrix elements can be
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defined as the first independent parameter, which will be hereafter indicated

with bold characters, for example, wAB:

Wij

� � ¼
0:60 0:24 0:16
0 wAB 0

0 0 0

0 0 0

������
������

0:60
0:24
0:16

All elements of the first row and second column being initially null, the

maximum value for the wAB parameter is min(wA, wB)¼min(0.60, 0.24)¼
0.24, the values of wA and wB being those of the first row and the second

column, to the right and above the matrix, respectively. On the other hand,

the minimum value for wAB is given by the difference between wA (or wB)

and the sum of maximum values allowed for other elements in the first row

(or the second column):

wmin
AB ¼ max wA�wmax

AA �wmax
AC

� �
; wB�wmax

BB �wmax
CB

� �� �
¼ max 0:60�0:60�0:16ð Þ; 0:24�0:24�0:16ð Þf g¼�0:16:

Because occurrence probabilities can take only positive values,

wmin
AB ¼ max wA�wmax

AA �wmax
AC

� �
; wB�wmax

BB �wmax
CB

� �
;0

� �¼ 0:

Let us choose, for example, wAB¼0.12. It is then possible to choose any

other element of the [Wij] matrix as the second independent parameter follow-

ing a similar procedure if this second element, for example, wBC, does not

belong to the first row or the second column of the matrix. The range allowed

for wBC values ([0, 0.16]) may be defined in a similar way:

wmax
BC ¼ min wB�wBA�wBBð Þ; wC�wAC�wCCð Þf g

¼ min 0:24�0�0ð Þ; 0:16�0�0ð Þf g¼ 0:16,

and

wmin
BC ¼ max wB�wmax

BA �wmax
BB

� �
; wB�wmax

BB �wmax
CB

� �
;0

� �
¼ max 0:24�0:24�0:12ð Þ; 0:16�0:16�0:16ð Þ;0f g¼ 0,

and it is possible to choose wBC¼0.024. Any of the any remaining null ele-

ments may then be selected as the third independent probability parameter,

for example wAA.

Wij

� �¼
0:60 0:24 0:16
wAA 0:12 0

0 0 0:024
0 0 0

������
������

0:60
0:24
0:16

Extreme values of this parameter may be calculated as described above:

wmax
AA ¼ min wA�wAB�wACð Þ; wA�wBA�wCAð Þf g

¼ min 0:60�0:12�0ð Þ; 0:60�0�0ð Þf g¼ 0:48
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More generally, the maximum value of any element in the matrix can be

written as

wmax
ij ¼ min wi�

X
q 6¼j

wiq

 !
; wj�

X
q6¼i

wqj

 !( )
(2.3.43)

Similarly, wAA
min¼max{(wA�wAB�wAC

max),(wA�wBA
max�wCA

max),0}.

The values of wAC
max, wBA

max, and wCA
max need to be determined first from

Eq. (2.3.43):

wmax
AC ¼ minf wA�wAA�wABð Þ, wC�wBC�wCCð Þg

¼ minf 0:60�0�0:12ð Þ, 0:16�0:024�0ð Þg¼ 0:136

wmax
BA ¼ minf wB�wBB�wBCð Þ, wA�wAA�wCAð Þg

¼ minf 0:24�0�0:024ð Þ, 0:60�0�0ð Þg¼ 0:216

wmax
CA ¼ minf wC�wCB�wCCð Þ, wA�wAA�wBAð Þg

¼ minf 0:16�0�0ð Þ, 0:60�0�0ð Þg¼ 0:16

and

wmin
AA ¼ max wA�wAB�wmax

AC

� �
; wA�wmax

BA �wmax
CA

� �
;0

� �
¼ max 0:60�0:12�0:136ð Þ; 0:60�0:216�0:16ð Þ;0f g¼ 0:344

More generally, the minimum value of any element in the matrix can be

written as

wmin
ij ¼ max wi�

X
q6¼j

wmax
iq þwiq

	 
 !
; wj�

X
q 6¼i

wmax
qj þwqj

	 
 !
;0

( )

(2.3.44)

where wiq
max, wqj

max are the maximum possible values of null elements and wiq,

wqj are the previously determined occurrence probabilities.

Thus, 0.344	wAA	0.48, and it is possible to choose wAA¼0.36; some

additional probability parameters are then determined:

wAC ¼ wA�wAA�wABð Þ¼ 0:60�0:36�0:12ð Þ¼ 0:12
wCC ¼ wC�wAC�wBCð Þ¼ 0:16�0:12�0:024ð Þ¼ 0:016

To define only the independent parameters, it is essential to calculate

unknown occurrence probabilities in [Wij] as soon as they are fully deter-

mined. The fourth and last independent probability coefficient may then be

chosen among remaining null elements, for example, wBA:

Wij

� �¼
0:60 0:24 0:16
0:36 0:12 0:12
wBA 0 0:024
0 0 0:016

������
������

0:60
0:24
0:16
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It is first necessary to define the possible range [wBA
min, wBA

max] for this

parameter:

wmax
BA ¼ minf wB�wBB�wBCð Þ, wA�wAA�wCAð Þg

¼ minf 0:24�0�0:024ð Þ, 0:60�0:36�0ð Þg¼ 0:216
wmin
BA ¼ maxf wB�wmax

BB �wBC

� �
, wA�wAA�wmax

CA

� �
,0g

with

wmax
BB ¼ minf wB�wBA�wBCð Þ, wB�wAB�wCBð Þg

¼ minf 0:24�0�0:024ð Þ, 0:24�0:12�0ð Þg¼ 0:12
wmax
CA ¼ minf wC�wCB�wCCð Þ, wA�wAA�wBAð Þg

¼ minf 0:16�0�0:016ð Þ, 0:60�0:36�0ð Þg¼ 0:144

Then, wBA
min¼max{(wB�wBB

max�wBC),(wA�wAA�wCA
max),0}¼max{(0.24�

0.12�0.024),(0.60�0.36�0.144),0}¼0.096

Thus, 0.096	wBA	0.216, and it is possible to choose wBA¼0.12, all

other probability parameters being then determined: wBB¼0.096, wCB¼
0.024, and wCA¼0.12.

Wij

� �¼
0:60 0:24 0:24

0:36 0:12 0:12
0:12 0:096 0:024
0:12 0:024 0:016

������
������

0:60
0:24
0:16

The [Pij] matrix of junction probabilities can then be calculated by divid-

ing the three rows of matrix [Wij] by wA, wB, and wC, respectively:

Pij

� �¼ 0:60 0:20 0:20
0:50 0:40 0:10
0:75 0:15 0:10

������
������

The relations in Eqs. (2.3.43) and (2.3.44) can be used to determine inde-

pendent probability parameters through the same algorithm for any mixed-

layer structure with S¼1 and arbitrary T.

2.3.2.2.5 Mixed-Layer Structures with S¼2, T¼2

The algorithm described in the previous section to determine independent

probability parameters for mixed-layer structures with S¼1 and T¼3 can

be extended to any mixed-layer structure with arbitrary S, for example,

S¼2. In addition to the probability parameters wi and pij, it is then necessary

to define a set of pijk (i, j, k¼A, B) junction probabilities. In this example, wi

and pij coefficients have been determined: wA¼0.8, and pBB¼0.1

Thus, wB¼0.2, pBA¼0.9, pAB¼0.225, and pAA¼0.775, and the occur-

rence probabilities of the different layer pairs may be calculated: wAA¼0.62,

wAB¼wBA¼0.18, and wBB¼0.02.
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Additional independent probability coefficients are thus to be defined only

among the pijk parameters that are linked by the following relations:

pAAAþpAAB ¼ 1

pABAþpABB ¼ 1

pBAAþpBAB ¼ 1

pBBAþpBBB ¼ 1

8>>><
>>>:

(2.3.45)

wAA ¼wAApAAAþwBApBAA

wAB ¼wAApAABþwBApBAB

wBA ¼wABpABAþwBBpBBA

wBB ¼wABpABBþwBBpBBB

or

wAA ¼wAAAþwBAA

wAB ¼wAABþwBAB

wBA ¼wABAþwBBA

wBB ¼wABBþwBBB

8>>><
>>>:

8>>><
>>>:

(2.3.46)

wAAþwABþwBAþwBB ¼ 1 (2.3.47)

Among the eight relations (Eqs. 2.3.45 and 2.3.46), only six are indepen-

dent owing to Eqs. (2.3.28) and (2.3.47). As a consequence, only two of the

eight probability coefficients pijk (i, j, k¼A, B) are independent. To construct

the [Wijk] matrix, the four relations in Eq. (2.3.45) are multiplied by wAA,wAB,

wBA, and wBB, respectively, and these occurrence probabilities are reported to

the right of and above the matrix, as in Eq. (2.3.48). When the two j indices
are not identical, the value of the matrix element at the intersection of the ijth
row and jkth column is necessarily null and is not reported in Eq. (2.3.48) for

the sake of simplicity. When the two j indices are identical, coefficients wijk

possibly take non-zero values, but it is convenient to assume all elements of

the [Wijk] matrix having initially null values:

Wijk

� �¼
wAA wAB wBA wBB 0:62 0:18 0:18 0:02

wAAA wAAB

wABA wABB

wBAA wBAB

wBBA wBBB

���������

���������

wAA

wAB

wBA

wBB

¼
0 0

0 0

0 0

0 0

���������

���������

0:62

0:18

0:18

0:02

(2.3.48)

Any of the matrix elements can be defined as the first independent param-

eter, for example wABA. The possible range for this parameter can be defined

as described in the previous section:

wmax
ABA ¼min wAB�wABBð Þ; wBA�wBBAð Þf g¼min 0:18�0ð Þ; 0:18�0ð Þf g

¼ 0:18

On the other hand, wABA
min depends on wABB

max, and wBBA
max which cannot exceed

wBB¼0.02. Thus

wmin
ABA ¼ max wAB�wmax

ABB

� �
; wBA�wmax

BBA

� �
;0

� �
¼ max 0:18�0:02ð Þ; 0:18�0:02ð Þ;0f g¼ 0:16:
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Thus, 0.16	wABA	0.18, and it is possible to choose wABA¼0.171, some

additional probability parameters being then determined:

Wijk

� �¼
0:62 0:18 0:18 0:02
0 0

0:171 0:009
0 0

0:009 0:011

��������

��������
0:62
0:18
0:18
0:02

The fourth and last independent probability coefficient may then be chosen

from among the remaining null elements, for example, wAAB, and its possible

range [wAAB
min , wAAB

max] defined:

wmax
AAB¼ min wAA�wAAAð Þ; wAB�wBABð Þf g¼ min 0:62�0ð Þ; 0:18�0ð Þf g¼ 0:18

wmin
AAB¼ max wAA�wmax

AAA

	 

; wAB�wmax

BAB

	 

;0

n o
¼ max 0:62�0:62ð Þ; 0:18�0:18ð Þ;0f g¼ 0

It is possible to choose wAAB¼0.155, and all other probability parameters

can then be determined:

Wijk

� �¼
0:62 0:18 0:18 0:02
0:465 0:155

0:171 0:009
0:155 0:025

0:009 0:011

��������

��������
0:62
0:18
0:18
0:02

The general formulas in Eqs. (2.3.43) and (2.3.44) defining the maximum

and minimum values of a given matrix element for mixed-layer structures

with S¼1 and any T value can be extended to mixed-layer structures with

S¼2:

wmax
ijk ¼ min wij�

X
q 6¼k

wijq

 !
; wjk�

X
q 6¼i

wqjk

 !( )
(2.3.49)

wmin
ijk ¼ max wij�

X
q6¼k

wmax
ijq þwijq

	 
 !
; wjk�

X
q 6¼i

wmax
qjk þwqjk

	 
 !
;0

( )
,

(2.3.50)

wijq, wqjk being the previously determined occurrence probabilities.

The [Pijk] matrix of junction probabilities can then be calculated by divid-

ing the rows of matrix [Wijk] by the corresponding wij probabilities:

Pijk

� �¼
pAAA pAAB

pABA pABB
pBAA pBAB

pBBA pBBB

��������

��������
¼

0:75 0:25
0:95 0:05

0:861 0:139
0:45 0:55

��������

��������
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The same algorithm can be used for mixed-layer structures with S¼2 and

any T value. In this case, the relative proportions of the different layer types

(wi) should be defined first, and independent junction probability parameters

for nearest neighbours (S¼1, pij) next. As a third step, independent junction

probabilities for next-nearest neighbours (pijk) should be defined, and the

occurrence probability may then be calculated for any layer sequence in the

mixed-layer structure with S¼2.

The above algorithm may be extended to any mixed-layer structure with

any values of the short-range order factor (Reichweite) S and layer type num-

ber T. In this case, the range of values allowed for any matrix element can be

expressed as

wmax
ij���kl ¼ min wij���k�

X
q 6¼l

wij���kq

 !
; wj���kl�

X
q6¼i

wqj���kl

 !( )
(2.3.51)

wmin
ij���kl ¼ max wij���k�

X
q6¼l

wmax
ij���kqþwij���kq

	 
 !
; wj���kl�

X
q 6¼i

wmax
qj���klþwqj���kl

	 
 !
;0

( )
,

(2.3.52)

where the number of indices for probability parameters wij� � �kl
max ,wij� � �kl

min ,wij� � �kq
max ,

wqj� � �kl
max ,wij� � �kq,wqj� � �kl and wij� � �k,wj� � �kl are Sþ1 and S, respectively.
The S¼0 case is a special one as randomly interstratified mixed-layer

structures require only the definition of layer relative abundances wi (i¼1,

2, . . ., T), and there are (T�1) independent parameters. For mixed-layer struc-

tures with S�1, there are (T�1)2TS�1 independent parameters among wij� � �k
coefficients with Sþ1 indices. For example, in addition to the (T�1) inde-

pendent wi probability parameters, mixed-layer structures with S¼1 require

the definition of (T�1)2 independent wij probability parameters. Mixed-layer

structures with S¼2 require the additional definition of (T�1)2T independent

wijk probability parameters, and so on.

2.3.2.2.6 Ordering and Segregation in Mixed-Layer Structures
with S¼2, T¼2

Drits and Sakharov (1976) proposed a plot similar to that in Fig. 2.3.4 to dif-

ferentiate two-component mixed-layer structures with S¼2 and different

degrees of order/disorder in the stacking of A and B layers. For their descrip-

tion, these authors hypothesized that A layers were prevailing (wA>wB) and

that nearest neighbour ordering (S¼1) was characterized by maximum possi-

ble degree of ordering (MPDO, pBB¼0). In this case, wAA¼wA�wB, wAB¼
wBA¼wB, wBB¼0.
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The following relations can be deduced from Eq. (2.3.46):

wAA pAAB ¼wBA pBAAor wA�wBð ÞpAAB ¼wBA pBAA, or

1�pAAAð Þ¼ wB

wA�wB
1�pBABð Þ,

and the last relation can be modified to

pAAA ¼ wB

wA�wB
pBABþ1� wB

wA�wB
(2.3.53)

Equation (2.3.53) is analogous to Eq. (2.3.32) established for mixed-layer

structures with S¼1 and correlates linearly the junction probability parameters

pAAA and pBAB for a given wA value (Fig. 2.3.5). Mixed-layer structures with a

given wA value are thus located along straight lines originating from the upper

right corner of the diagram in Fig. 2.3.5. The relative abundance of A layers

increases clockwise from the vertical line to the right of the diagram (wA¼0.5)

to the top horizontal line (wA¼1.0), the line linking the upper right and lower left

corners corresponding to wA¼0.667. The physical mixture of periodic crystals

composed either of A layers or of AB layer pairs corresponds to the upper right

corner of the diagram with pAAA¼pBAB¼1 (Fig. 2.3.5). Both pAAA and pBAB axes

C2= 0.2

C2= 0.4

C2= 0.6

wA= 0.50

C2= 0.8

PAAA

PBAB
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
wA= 1.00

D�2= 0.2

D�2= 0.4

D�2= 0.6

D�2= 0.8
D2= 0.2

D2= 0.4

D2= 0.6

D2= 0.8

D2= 1.0
S = 1

wA= 0.571

wA= 0.615

wA= 0.667wA= 0.727

wA= 0.80

FIGURE 2.3.5 Junction probability diagram for two-component mixed-layer structures with

S¼2, and maximum possible degree of ordering at S¼1 (MPDO, wA>wB and pBB¼0). See text

for details. Adapted from Drits and Sakharov (1976).
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correspond to mixed-layer structures withMPDO, which corresponds to pBAB¼0

whenwA�0.667 or to pAAA¼0 for wA	 0.667 (S¼2). The first axis corresponds

to the random interstratification of AB layer pairs and AAB layer triplets, whereas

the second one corresponds to the random interstratification of AAB layer triplets

andA single layers (Reynolds, 1988; Drits et al., 1994). The lower left corner with

pAAA¼pBAB¼0 corresponds to the periodic AABAAB� � � layer sequence with a

2:1 ratio between A and B layers. The specific case of S¼1 with MPDO but ran-

dom interstratification at S¼2 corresponds to the linewhere pAAAþpBAB¼1, that

is, to the straight line linking the upper left and lower right corners of the diagram

in Fig. 2.3.5. In this case, it is possible to deduce the following relations, charac-

teristic of S¼1 with MPDO, using Eqs. (2.3.46) and (2.3.53):

pAAA ¼wA�wB

wA
¼ pAA, and pBAB ¼wB

wA
¼ pAB

The domain above this diagonal that is towards the physical mixture point

at the upper right corner corresponds to mixed-layer structures with a ten-

dency to segregation of A layers and AB layer pairs, whereas the domain

below this diagonal corresponds to partial ordering. Mixed-layer structures

with a similar tendency to ordering at S¼2 but with contrasting composition

(relative contents of A and B layers) share the following parameters:

D2 ¼wA

wB
pBAB for 0	 pBAB 	wB

wA
,wA � 2=3 (2.3.54)

and

D0
2 ¼

wA

wA�wB
pAAA for 0	 pAAA 	wA�wB

wA
and1=2	wA 	 2=3 (2.3.55)

The index 2 of D and D0 parameters indicates that the disorder parameters

describe mixed-layer structures with S¼2. Equation (2.3.53) can be trans-

formed to

wB

wA
¼ 1�pAAA
2�pAAA�pBAB

:

As a consequence,

D2 ¼ pBAB 2�pAAA�pBABð Þ
1�pAAA

, and pAAA ¼ 2pBAB�p2BAB�D2

pBAB�D2

:

Similarly : pBAB ¼ 2pAAA�p2AAA�D0
2

pAAA�D0
2

The last two equations were used in Fig. 2.3.5 to draw the dashed lines

corresponding to given values of the disorder parameters D and D0, that is, to
mixed-layer structures with a similar tendency to ordering. Similarly, the degree

of segregation of A layers and AB layer pairs in mixed-layer structures with
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S¼2 can be described by the parameter C2¼1� [(1�pBAB)/(1�wB/wA)] for
wB

wA
	 pBAB 	 1.

As a consequence, the relation pBAB¼1þC2�pAAA allows drawing in

Fig. 2.3.5 the straight dashed lines corresponding to a given degree of segre-

gation of A layers and AB layer pairs.

2.3.3 CALCULATION OF THE INTENSITY DIFFRACTED BY
MIXED-LAYER STRUCTURES: THE MATRIX FORMALISM

Using the expression in Eq. (2.3.10), Eq. (2.3.12) describing the intensity of

waves diffracted by a mixed-layered crystal can be written as

I Zð Þ¼A� Zð ÞA Zð Þ¼
XN
m¼1

XN
m0¼1

F�
m Zð ÞFm0 Zð Þexp2piZ rm� rm0ð Þ (2.3.56)

The terms with m¼m0 can be written separately, whereas the relation

n¼ |m0 �m| can be introduced to label the layers in (nþ1) layer sequences.

Similarly, rnj ¼ jrm� rm0j j and Eq. (2.3.56) can be written as

I Zð Þ¼
XN
m¼1

F�
m Zð ÞFm Zð Þþ

XN
m¼1
m 6¼m0

XN
m0¼1

F�
m Zð ÞFm0 Zð Þexp2piZ rm� rm0ð Þ

¼
XN
m¼1

F�
m Zð ÞFm Zð Þþ2Re

XN�1

n¼1

XN�n

m¼1

F�
m Zð ÞFmþn Zð Þexp2piZrn

(2.3.57)

A comparison of Eqs. (2.3.57) and (2.3.22) leads to

XN
m¼1

F�
m Zð ÞFm Zð Þ¼N

XT
s¼1

wsF
�
sFs ¼NF�

o Zð ÞFo Zð Þ, (2.3.58)

and to

2Re
XN�1

n¼1

XN�n

m¼1

F�
m Zð ÞFmþn Zð Þexp 2piZrn

¼ 2Re
XN�1

n¼1

N�nð Þ
XT
s¼1

XT
h1¼1

XT
h2¼1

� � �
XT

hn�1¼1

XT
t¼1

wsh1h2���hn�1tF
�
sFt exp i ’sþ’h1 þ’h2 þ���þ’hn�1

� �

¼ 2Re
XN�1

n¼1

N�nð ÞF�
o Zð ÞFn Zð Þexp 2piZrn (2.3.59)

And the intensity diffracted by a mixed-layer crystal can be expressed as

I Zð Þ¼NF�
o Zð ÞFo Zð Þ þ2Re

XN�1

n¼1

N�nð ÞF�
o Zð ÞFn Zð Þexp 2piZrn (2.3.60)
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This expression corresponds to the sum of the average intensity of waves

diffracted by single layers and of the average intensity of waves diffracted by

layers at both ends of (nþ1) layer sequences, taking into account the distance

between these layers.

Hendricks and Teller (1942) were the first to develop a matrix formalism to

calculate the intensity diffracted by 1D disordered lamellar crystals with infinite

thickness and random layer stacking. Kakinoki and Komura (1952, 1954a,b)

extended this approach further to mixed-layer crystals with a limited number of

layers. These authors introduced also the concept of range of interaction between

layers (Reichweite) proposed by Jagodzinski (1949a,b,c). Another approach,

which is based on the direct summation of the contributions to diffracted intensity

from waves scattered by all possible layer subsequences in crystals, was also

developed for the calculation of XRD patterns from mixed-layer structures

(Reynolds, 1967, 1980). The matrix formalism was refined by Allegra (1961,

1964), before its interest became evident with the onset of computer simulation

of XRD patterns (Sato, 1969a,b; Drits and Sakharov, 1976; Plançon, 1981;

Sakharov et al., 1982a,b, 1983; Drits and Tchoubar, 1990). Contrary to direct

summation, the matrix formalism allows, indeed, the straightforward calculation

of the contributions of n layer sequences to diffracted intensity if these contribu-
tions are known for (n�1) layer sequences. In addition, the matrix formalism is

extremely versatile as it sets no limitations on the number of layer types in mixed-

layer structures or on the actual extent of the short-range order factor (Reichweite;

Sakharov et al., 1982a,b, 1983; Drits and Tchoubar, 1990). Using a notation con-

sistent with this chapter, the intensity of X-rays diffracted by a mixed-layer crys-

tal (Kakinoki and Komura, 1952, 1954a,b) can be expressed as

I¼NSpur V½ � W½ �þ2Re
XN�1

n¼1

N�nð ÞSpur V½ � W½ � Q½ �n (2.3.61)

where [V] is a matrix containing the products of the structure amplitudes Fi*Fj

of the ith and jth layer types, respectively; [W] is the diagonal matrix of occur-

rence probabilities for single layers, layer pairs, triplets, and so on; [Q] is the
square matrix containing the products of the junction probability parameter

and the corresponding phase term; and Spur is the trace of the resulting

matrix, that is, the sum of its diagonal elements.

The order of matrices [V], [W], and [Q] depends, together with the location of
their elements, on the number T of layer types present in themixed-layer structure

and its Reichweite parameter S. It is shown in the following sections that

Eqs. (2.3.60) and (2.3.61) are equivalent and describe identical diffraction effects.

2.3.3.1 Mixed-Layer Structures with S¼1 or S¼0, and T¼2

If A and B layers alternate in a mixed-layer structure with S¼1, the above

matrices can be written as
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V½ � ¼ F�
AFA F�

BFA

F�
AFB F�

BFB

�����
�����, W½ � ¼ wA

wB

�����
�����, Q½ � ¼ pAA exp i’A pAB exp i’A

pBA exp i’B pBB exp i’B

�����
�����

(2.3.62)

and it is possible to deduce

NSpur V½ � W½ � ¼N wAF
�
AFAþwBF

�
BFB

� �¼XT
s¼1

wsF
�
sFs (2.3.63)

The first term of Eq. (2.3.61) is thus equivalent to Eq. (2.3.58). In addition

2Re
XN�1

n¼1

N�nð ÞSpur V½ � W½ � Q½ �n

¼ 2Re N�1ð Þ wApAAF
�
AFA exp i’AþwBpBAF

�
BFA exp i’B

�
þwApABF

�
AFB exp i’AþwBpBBF

�
BFB exp i’B

�
¼ 2Re N�1ð Þ

XT
s¼1

XT
t¼1

wspstF
�
sFt exp i’s

9>>>=
>>>;

forn¼ 1,

¼ 2Re N�2ð Þ wApAApAAF
�
AFA exp i ’Aþ’Að Þ�

þwBpBApAAF
�
BFA exp i ’Bþ’Að ÞþwApABpBAF

�
AFA exp i ’Aþ’Bð Þ

þwBpBBpBAF
�
BFA exp i ’Bþ’Bð ÞþwApAApABF

�
AFB exp i ’Aþ’Að Þ

þwBpBApABF
�
BFB exp i ’Bþ’Að ÞþwApABpBBF

�
AFB exp i ’Aþ’Bð Þ

þwBpBBpBBF
�
BFB exp i ’Bþ’Bð Þ�

¼ 2Re N�2ð Þ
XT
s¼1

XT
h1

XT
t¼1

wspsh1ph1tF
�
sFt exp i’s

9>>>>>>>>>=
>>>>>>>>>;

forn¼ 2, etc:

(2.3.64)

The second term of Eq. (2.3.61) is thus equivalent to Eq. (2.3.59) for all

values of n and for T¼2. For mixed-layer structures with S¼0, Eq. (2.3.61)

is unchanged, the junction probabilities in matrix [Q] being pAA¼pBA¼wA

and pAB¼pBB¼wB.

2.3.3.2 Mixed-Layer Structures with S¼1 and T¼3

If A, B, and C layers alternate in a mixed-layer structure with S¼1, matrices

[V], [W], and [Q] can be written as

V½ � ¼
F�
AFA F�

BFA F�
CFA

F�
AFB F�

BFB F�
CFB

F�
AFC F�

BFC F�
CFC

������
������, W½ � ¼

wA

wB

wC

������
������, and

Q½ � ¼
pAA exp i’A pAB exp i’A pAC exp i’A

pBA exp i’B pBB exp i’B pBC exp i’B

pCA exp i’C pCB exp i’C pCC exp i’C

������
������
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As for two-component mixed-layer structures, it is possible to demonstrate

that Eqs. (2.3.60) and (2.3.61) are equivalent.

2.3.3.3 Mixed-Layer Structures with S¼2 and T¼2

If A and B layers alternate in a mixed-layer structure with S¼2, matrices [V],
[W], and [Q] can be written as

V½ � ¼
F�
AFA F�

AFA F�
BFA F�

BFA

F�
AFA F�

AFA F�
BFA F�

BFA

F�
AFB F�

AFB F�
BFB F�

BFB

F�
AFB F�

AFB F�
BFB F�

BFB

��������

��������
, W½ � ¼

wAA

wAB

wBA

wBB

��������

��������
,

and

Q½ � ¼
pAAA exp i’A pAAB exp i’A

pABA exp i’A pABB exp i’A

pBAA exp i’B pBAB exp i’B

pBBA exp i’B pBBB exp i’B

��������

��������
(2.3.65)

Equation (2.3.61) can then be calculated for different values of n:

NSpur V½ � W½ � ¼N wAAF
�
AFAþwABF

�
AFAþwBAF

�
BFBþwBBF

�
BFB

� �
¼N wAF

�
AFAþwBF

�
BFB

� �¼XT
s¼1

wsFsF
�
s for n¼ 0,

2Re
XN�1

n¼1

N�nð ÞSpur V½ � W½ � Q½ �n

¼ 2Re N�1ð Þ wAApAAAF
�
AFA exp i’AþwBApBAAF

�
BFA exp i’B

�
þwAApAABF

�
AFA exp i’AþwBApBABF

�
BFA exp i’B

þwABpABAF
�
AFB exp i’AþwBBpBBAF

�
BFA exp i’B

þwABpABBF
�
AFB exp i’AþwBBpBBBF

�
BFA exp i’B

�
¼ 2Re N�1ð Þ wApAAF

�
AFA exp i’AþwBpBAF

�
BFA exp i’B

�
þwApABF

�
AFB exp i’AþwBpBBF

�
BFB exp i’B

�
¼ 2Re N�1ð Þ

XT
s¼1

XT
t¼1

wspstF
�
s Ft exp i’s

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

forn¼ 1,
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2Re
XN�1

n¼1

N�nð ÞSpur V½ � W½ � Q½ �n

¼ 2Re N�2ð Þ wAApAAApAAAF
�
A
FA exp i ’Aþ’A

	 

þwBApBAApAAAF

�
B
FA exp i ’Bþ’A

	 
h
þwABpABApBAAF

�
A
FA exp i ’Aþ’B

	 

þwBBpBBApBAAF

�
B
FA exp i ’Bþ’B

	 

þwAApAAApAABF

�
A
FA exp i ’Aþ’A

	 

þwBApBAApAABF

�
B
FA exp i ’Bþ’A

	 

þwABpABApBABF

�
A
FA exp i ’Aþ’B

	 

þwBBpBBApBABF

�
B
FA exp i ’Bþ’B

	 

þwAApAABpABAF

�
A
FB exp i ’Aþ’A

	 

þwBApBABpABAF

�
B
FB exp i ’Bþ’A

	 

þwABpABBpBBAF

�
A
FB exp i ’Aþ’B

	 

þwBBpBBBpBBAF

�
B
FB exp i ’Bþ’B

	 

þwAApAABpABBF

�
A
FB exp i ’Aþ’A

	 

þwBApBABpABBF

�
B
FB exp i ’Bþ’A

	 

þwABpABBpBBBF

�
A
FB exp i ’Aþ’B

	 

þwBBpBBBpBBBF

�
B
FB exp i ’Bþ’B

	 
i
¼ 2Re N�2ð Þ wApAApAAAF

�
A
FA exp i ’Aþ’A

	 

þwBpBApBAAF

�
B
FA exp i ’Bþ’A

	 
h
þwApABpABAF

�
A
FA exp i ’Aþ’B

	 

þwBpBBpBBAF

�
B
FA exp i ’Bþ’B

	 

þwApAApAABF

�
A
FB exp i ’Aþ’A

	 

þwBpBApBABF

�
B
FB exp i ’Bþ’A

	 

þwApABpABBF

�
A
FB exp i ’Aþ’B

	 

þwBpBBpBBBF

�
B
FB exp i ’Bþ’B

	 
i

¼ 2Re N�2ð Þ
XT
s¼1

XT
h1

XT
t¼1

wspsh1 ph1tF
�
s Ft exp i’s

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

forn¼ 2,

etc:

As for mixed-layer structures with S¼1, it is possible to demonstrate that

Eqs. (2.3.60) and (2.3.61) are equivalent.

2.3.3.4 Mixed-Layer Structures with S¼2 and T¼3

If A, B, and C layers alternate in a mixed-layer structure with S¼2, matrices

[V], [W], and [Q] become

V½ � ¼

F�
AFA F�

AFA F�
AFA F�

BFA F�
BFA F�

BFA F�
CFA F�

CFA F�
CFA

F�
AFA F�

AFA F�
AFA F�

BFA F�
BFA F�

BFA F�
CFA F�

CFA F�
CFA

F�
AFA F�

AFA F�
AFA F�

BFA F�
BFA F�

BFA F�
CFA F�

CFA F�
CFA

F�
AFB F�

AFB F�
AFB F�

BFB F�
BFB F�

BFB F�
CFB F�

CFB F�
CFB

F�
AFB F�

AFB F�
AFB F�

BFB F�
BFB F�

BFB F�
CFB F�

CFB F�
CFB

F�
AFB F�

AFB F�
AFB F�

BFB F�
BFB F�

BFB F�
CFB F�

CFB F�
CFB

F�
AFC F�

AFC F�
AFC F�

BFC F�
BFC F�

BFC F�
CFC F�

CFC F�
CFC

F�
AFC F�

AFC F�
AFC F�

BFC F�
BFC F�

BFC F�
CFC F�

CFC F�
CFC

F�
AFC F�

AFC F�
AFC F�

BFC F�
BFC F�

BFC F�
CFC F�

CFC F�
CFC

������������������

������������������

,

Handbook of Clay Science84



W½ � ¼

wAA

wAB

wAC

wBA

wBB

wBC

wCA

wCB

wCC

������������������

������������������

and

Q½ � ¼

pAAA’A pAAB’A pAAC’A

pABA’A pABB’A pABC’A

pACA’A pACB’A pACC’A

pBAA’B pBAB’B pBAC’B

pBBA’B pBBB’B pBBC’B

pBCA’B pBCB’B pBCC’B

pCAA’C pCAB’C pCAC’C

pCBA’C pCBB’C pCBC’C

pCCA’C pCCB’C pCCC’C

�������������������������

�������������������������

,

’j being equivalent to exp i’j.

2.3.3.5 Mixed-Layer Structures with S�3 and T�2

If A and B layers alternate in a mixed-layer structure with S¼3, matrices [V],
[W], and [Q] become

V½ � ¼

F�
AFA F�

AFA F�
AFA F�

AFA F�
BFA F�

BFA F�
BFA F�

BFA

F�
AFA F�

AFA F�
AFA F�

AFA F�
BFA F�

BFA F�
BFA F�

BFA

F�
AFA F�

AFA F�
AFA F�

AFA F�
BFA F�

BFA F�
BFA F�

BFA

F�
AFA F�

AFA F�
AFA F�

AFA F�
BFA F�

BFA F�
BFA F�

BFA

F�
AFB F�

AFB F�
AFB F�

AFB F�
BFB F�

BFB F�
BFB F�

BFB

F�
AFB F�

AFB F�
AFB F�

AFB F�
BFB F�

BFB F�
BFB F�

BFB

F�
AFB F�

AFB F�
AFB F�

AFB F�
BFB F�

BFB F�
BFB F�

BFB

F�
AFB F�

AFB F�
AFB F�

AFB F�
BFB F�

BFB F�
BFB F�

BFB

����������������

����������������

,
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W½ � ¼

wAAA

wAAB

wABA

wABB

wBAA

wBAB

wBBA

wBBB

����������������

����������������

,

and

Q½ � ¼

pAAAA’A pAAAB’A

pAABA’A pAABB’A

pABAA’A pABAB’A

pABBA’A pABBB’A

pBAAA’B pBAAB’B

pBABA’B pBABB’B

pBBAA’B pBBAB’B

pBBBA’B pBBBB’B

���������������������

���������������������

:

The same logical process can be used for any set of S and T values,

Eqs. (2.3.60) and (2.3.61) being equivalent in all cases.

2.3.3.6 Periodic Structures (T¼1)

When the crystal contains a single type of layer with a given scattering ampli-

tude F(Z ) and layer thickness x, the expression of matrices [V], [W], and [Q]
becomes F∗(Z )F(Z ), 1, and exp�2piZx, respectively, and Eq. (2.3.61) is

equivalent to Eq. (2.3.23).

2.3.4 INTENSITY DIFFRACTED BY A POWDER OF CRYSTALS
WITH CONTRASTING NUMBERS OF LAYERS

Equation (2.3.61) is valid for a set of crystals all of which have the same num-

ber of layers (N), whereas powder samples obviously include crystals with

contrasting numbers of layers. If the relative abundances of crystals with 1,

2, . . ., N layers are noted F(1), F(2), . . . , F(N), respectively, the overall inten-
sity diffracted by the powder may be written as the weighted (

P
m¼1
N F(m)¼1)

sum of the intensities scattered by crystals with 1, 2, . . ., N layers, that is,

I¼ I1þ I2þ�� �þ IN , with

I1 ¼F 1ð Þ 1SpurVW½ � for crystalswith1layer,

I2 ¼F 2ð Þ 2SpurVWþ2Re 1SpurVWQf g½ � for crystals with 2 layers,
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I3 ¼F 3ð Þ 3SpurVWþ2Re 2SpurVWQþ1SpurVWQ2
� �� �

for crystals with 3 layers, . . . ,
and

IN ¼F Nð Þ NSpurVWþ2Re N�1ð ÞSpurVWQþ . . .þ1SpurVWQN�1
� �� �

for crystals with N layers:

Thus

I¼
XN
m¼1

mF mð ÞSpurVW

þ 2Re

(XN
m¼2

m�1ð ÞF mð ÞSpurVWQþ�� �

þ
XN
m¼N

m� N�1ð Þð ÞF mð ÞSpurVWQN�1

)

¼NSpurVWþ2Re
XN�1

n¼1

XN
m¼nþ1

m�nð ÞF mð ÞSpurVWQn (2.3.66)

where N ¼
XN

m¼1
mFðmÞ is the average number of layers in the crystals.

Equations (2.3.61) and (2.3.66) differ only by the weight of the SpurVW and

SpurVWQn terms, which are N and cn¼ (N�n), respectively, in Eq. (2.3.61),

and N and cn¼
P

m¼nþ1
N (m�n)F(m), respectively, in Eq. (2.3.66).

2.3.4.1 Lognormal Distributions of Crystal Thickness

In nature, the distribution of occurrence probabilities of crystals with contrast-

ing numbers of layers F(m) with m¼1, 2, . . ., N can have distinct shapes

(Eberl et al., 1998), the thickness distribution of so-called illite fundamental

particles in natural illite and illite–smectite being essentially lognormal in

shape (Eberl et al., 1990; Srodon et al., 2000).

F mð Þ¼ 1ffiffiffiffiffiffi
2p

p
bm

exp� ln m�að Þ2
2b2

(2.3.67)

In addition, Drits et al. (1997c, 1998) have derived a unique relation linking

the a and b2 parameters of the coherent scattering domain (CSD) size lognormal

distribution reported for these clay minerals to the average thickness of the crys-

tals (N): that is, a¼ 0:9485lnN�0:017 and b2 ¼ 0:1032lnNþ0:034
A lognormal distribution of CSD sizes, with the above a and b2 parameters,

allowed a satisfactory fitting of the XRD data of various periodic and mixed-

layer clay minerals (Drits et al., 1997b, 2002a,b, 2004; Sakharov et al., 1999a,

b; Lindgreen et al., 2000, 2002, 2008; Claret et al., 2004; McCarty et al.,
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2004, 2008, 2009; Ferrage et al., 2005b, 2007, 2011b; Inoue et al., 2005;

Lanson et al., 2009). With the lognormal distribution, the contribution of very

thick crystals to the diffracted intensity becomes rapidly insignificant because

of their negligible proportion, and the maximum number of layers in crystals

(Nmax) may be set to � 5N for practical purposes.

2.3.4.2 Ergun’s Model

Ergun (1970) proposed a model in which the intensity is diffracted by large

defective domains rather than by small CSD diffracting incoherently with

respect to each other. Although this model corresponds essentially to the current

concept of defective megacrystals (see Section 2.3.7), Reynolds (1985) adapted

it in his well-known Newmod program to propose an alternative model of CSD

size distribution. According to this ‘defect-broadening’ model, the probability

of finding a defect-free domain in a crystal with N layers decreases exponen-

tially when the size of this domain is increased, owing to the occurrence of ran-

dom stacking faults along the Z direction. Equation (2.3.61) then becomes

I¼NSpur V½ � W½ �þ2Re
XN�1

n¼1

N�nð Þexp �n=dð ÞSpur V½ � W½ � Q½ �n (2.3.68)

where exp(�n/d) is the probability of finding a defect-free sequence of (nþ1)

layers; d is the parameter controlling the shape of the distribution and corre-

sponds to the average size of defect-free domains, expressed as a number—

possibly non-integral—of layers; and N is the total number of layers in a

crystal.

According to Reynolds (1985), realistic reflection profiles can be obtained

for clay minerals by using a crystal size N
5d. The above expression of the

‘defect-broadening’ model can be converted to a CSD size distribution F(m),
with m¼1, 2, . . ., N, by assuming at first that exp(�1/d)¼q. If Eq. (2.3.68) is

multiplied by
N

N
, its comparison with Eq. (2.3.66) leads to

N

N
N�nð Þqn ¼

XN
m¼nþ1

m�nð ÞF mð Þ with n¼ 0,1,2, . . . ,N�1 (2.3.69)

In the above summations over m (Eq. 2.3.69), it is possible to subtract the

summation for n¼kþ1 from that for n¼k [k¼0, 1, . . ., (N�1)]. By doing so

twice, it is possible to show that

F mð Þ¼N

N
qm�1 N�mþ1ð Þ�2 N�mð Þqþ N�m�1ð Þq2� �

with

m¼ 1,2, . . . ,N�1

and

F mð Þ¼N

N
qm�1 N�mþ1ð Þ�2 N�mð Þq½ � for m¼N:
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The ‘defect-broadening’ model thus corresponds to the following distribu-

tion of CSD sizes:

F mð Þ¼ 1�qð Þqm�1 1þ mq� m�1ð Þ½ �N
N

� 
with m¼ 1,2, . . . ,N�1 (2.3.70)

and

F Nð Þ¼N

N
qN�1 (2.3.71)

In Eq. (2.3.70), the expression within the square brackets is the correction

factor for the finite crystal thickness, whereas for infinite crystals

F mð Þ¼ 1�qð Þqm�1 with
X1
m¼1

F mð Þ¼ 1�qð Þ 1

1�qð Þ¼ 1, as N!1:

To perceive its physical meaning, q can be expressed as a function of N
and N. Subtracting the relation for n¼1 from that for n¼0 in Eq. (2.3.69),

it is possible to obtain q¼NðN�1Þ
ðN�1ÞN .

In this model, structural defects coincide systematically with interlayer spa-

cings, and N can be associated with the mean number of layers in one CSD.

Hence,
N

N
and (N�1) are the total number of CSD and the total number of inter-

layer spaces in a crystal, and ðN�1Þ is the number of defect-free interlayer spaces

in one CSD, respectively;
N

N
ðN�1Þ is the total number; and

NðN�1Þ
NðN�1Þ¼ q is the

mean fraction (relative number) of defect-free interlayer spaces in a crystal,

respectively. For a given value of fixed N¼ d, values of q resulting from this

hypothesis can differ slightly from that calculated directly from exp(�1/d)¼q
and depend on N. For example, q¼0.818731 for d¼5, whereas q¼0.816327

assuming N¼ 5 and N¼50, or q¼0.818605 for N¼ 5 and N¼44. As a conse-

quence, the parameter d can be expressed as

d¼� 1

lnq
¼ 1

ln N N�1ð Þ� �� ln N N�1
� �� �¼ 1

ln
N�1ð Þ
N � ln

N�1ð Þ
N

:

2.3.5 INFLUENCE OF SMALL VARIATIONS OF LAYER
THICKNESS (LAYER-TO-LAYER DISTANCE)

The possible variation of the layer-to-layer distance has long been recognized

for clay minerals (Kodama et al., 1971), and was, for example, related to the

incomplete filling of Kþ-deficient muscovite interlayer space. More recently,

such variations were evidenced in smectites (Ferrage et al., 2005a,b, 2010)

and in smectite-containing mixed-layer structures (Drits et al., 1997b,

2002b; Sakharov et al., 1999a; Lindgreen et al., 2000; Drits, 2003), and their

influence on XRD patterns was shown to be non-negligible. To model the
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influence of such fluctuations of the layer-to-layer distance in a periodic crys-

tal (T¼1), it is convenient to consider at first that this parameter follows a

normal distribution about a mean value x0. The occurrence probability of

layers with a thickness x is therefore

C xð Þ¼ 1ffiffiffiffiffiffi
2p

p
D
exp� x�x0ð Þ2

2D2
(2.3.72)

where D is the variance of the distribution, and the average value of the phase

term corresponding to layer thickness x isðþ1

�1
C xð Þexp �2piZxð Þdx¼ 1ffiffiffiffiffiffi

2p
p

D

ðþ1

�1
exp� x�x0ð Þ2

2D2
exp �2piZxð Þdx

¼ exp �2piZx0ð Þexp�2 pZDð Þ2
(2.3.73)

2.3.5.1 Defects of the First Type

Depending on the nature of the interactions between the layers and on the phys-

ical reasons for the translations’ variations, layer thickness fluctuations were

shown to be of two types (Guinier, 1964; Drits and Tchoubar, 1990). In the first

type, fluctuations follow a unique law for any layer pair, and this law thus

describes both short- and long-range order in a layer stack. As a result, the total

translation between two nth nearest-neighbour layers is equal to n times the

average translation and can be expressed as xn¼ (n�1)x0þx, with C(xn)¼C
(x), whatever the value of n, although the translation may vary from one layer

pair to the other.The initial expression of Eq. (2.3.23) then becomes

I Zð Þ¼
ðþ1

�1
C xð ÞF Zð ÞF� Zð Þ Nþ2 Re

XN�1

n¼1

N�nð Þexp�2piZxn

( )
dx

¼F Zð ÞF� Zð Þ
N

ðþ1

�1
C xð Þdx

þ2 Re
XN�1

n¼1

N�nð Þ
ðþ1

�1
C xð Þexp �2piZ n�1ð Þx0½ �exp �2piZxð Þdx

8>>>><
>>>>:

9>>>>=
>>>>;

¼F Zð ÞF� Zð Þ
N

ðþ1

�1
C xð Þdx

þ2 Re
XN�1

n¼1

N�nð Þexp �2piZ n�1ð Þx0½ �
ðþ1

�1
C xð Þexp �2piZxð Þdx

8>>>><
>>>>:

9>>>>=
>>>>;

¼F Zð ÞF� Zð Þ Nþ exp�2 pZDð Þ22 Re
XN�1

n¼1

N�nð Þexp�2piZnx0

( )

(2.3.74)
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where
Ð
�1
þ1C(x)dx¼1.

For a mixed-layer structure whose elementary layers are affected by such

fluctuations of the first type, the exponential factor exp�2(pZD)2 is intro-

duced in Eq. (2.3.61) ahead of the real part of the summation, as in

Eq. (2.3.74). Reflection intensity is thus decreased by this type of defect,

and the influence increases with Z (or the diffraction angle).

2.3.5.2 Defects of the Second Type

In the second type of fluctuations, there is no long-range correlation between

the defects, and the total translation between two nth nearest-neighbour layers

is no longer equal to n times the average translation. According to Guinier

(1964), this type of defect results, for example, from crystal growth when

new structural fragments are added to the crystal, leading to a loss of long-

range order in the structure, the loss increasing when new fragments are

added. As a result, the total translation between two nth nearest-neighbour

layers is equal to xn¼nx, with C(xn)¼ [C(x)]n. The initial expression of

Eq. (2.3.23) then becomes

I Zð Þ¼
ðþ1

�1
C xð ÞF Zð ÞF� Zð Þ Nþ2Re

XN�1

n¼1

N�nð Þexp�2piZxn

( )
dx

¼F Zð ÞF� Zð Þ N

ðþ1

�1
C xð Þdxþ2Re

XN�1

n¼1

N�nð Þ
ðþ1

�1
C xnð Þexp �2piZnxð Þdx

( )

¼F Zð ÞF� Zð Þ Nþ2Re
XN�1

n¼1

N�nð Þexp �2piZnx0ð Þexp�2n pZDð Þ2
( )

(2.3.75)

In contrast to Eq. (2.3.74), the exponential factor exp�2n(pZD)2 is

included in the summation of Eq. (2.3.75), and depends on n. In a mixed-layer

structure, elementary layers may exhibit different fluctuations of their layer

thickness, and Eq. (2.3.12), which describes the intensity of waves diffracted

by a mixed-layer crystal as the sum of contributions from single layers, layer

pairs, layer triplets and so on, thus becomes

X
i

wiFiF
�
i

ðþ1

�1
Ci xð Þdx¼

X
i

wiFiF
�
i for single layers,

X
i

X
j

wipijFiF
�
j

ðþ1

�1
Ci xð Þexp� 2piZxð Þdx

¼
X
i

X
j

wipijFiF
�
j exp� 2piZxið Þexp�2 pZDið Þ2 for layer pairs,
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X
i

X
j

X
k

wipijpijkFiF
�
k

ðþ1

�1
Ci xð Þexp� 2piZxð Þdx

ðþ1

�1
Cj xð Þexp� 2piZxð Þdx

¼
X
i

X
j

X
k

wipijpijkFiF
�
k exp� 2piZ xiþxj

� �� �
exp�2p2Z2 D2

i þD2
j

	 

for layer triplets, so on:

In turn, each Qjkl. . . element of the [Q] matrix in Eq. (2.3.61) will incorpo-

rate an exponential term exp� (ajþ ibj) where aj¼2(pZDj)
2 and bj¼2pZxj, Dj

being the variance of the normal layer thickness distribution for j-type layers.
As a consequence, defects of the second type also increasingly reduce reflec-

tion intensity with increasing values of Z, but, in addition, their impact

depends on n (the effect of both types of defects on the diffracted intensity

distribution is described in Appendix A3).

2.3.6 INFLUENCE OF THE OUTER SURFACE LAYERS
OF CRYSTALS

The occurrence on the outer basal surfaces of crystals of layers with a struc-

ture or composition different from that of the ‘core’ layers is another possible

disruption of crystal periodicity. Until recently, the influence of such defects

on calculated XRD patterns was assumed to be minor, and no specific effort

was made to integrate their description in programs allowing the calculation

of diffraction effects from mixed-layer structures. As a result, outer crystal

surfaces were not described specifically in these programs. In Newmod, the

outer surface layers were ‘naked’ 2:1 layers (Reynolds, 1985), whereas early

versions of the programs developed by the groups in Orléans (France) and

Moscow (Russia) were meant for asymmetrical crystals with all interlayer

species on one side of the crystal, or more generally for outer surface layers

(OSL) similar to the ‘core’ layers (Plançon, 1981; Sakharov et al., 1982a,b,

1983). However, high-resolution transmission electron microscopy (HRTEM)

revealed that OSL may differ in nature from the ‘core’ layers. Illite crystals

may terminate with a kaolinite layer (Tsipursky et al., 1992), whereas kaolin-

ite crystals may have pyrophyllite or smectite layers as surface terminations

(Ma and Eggleton, 1999). Kogure et al. (2001) also reported cronstedtite crys-

tals exhibiting chlorite OSL. As clay minerals often exhibit very minute crys-

tal sizes, the possible impact of these specific OSL on the diffracted intensity

thus becomes a relevant question, a formalism allowing these effects to be

taken into account (Sakharov et al., 2004b) is therefore described.

Let us first consider a periodic structure with a ‘core’ of N identical layers

and two OSL, whose structure factors are F, Fb, and Ft, respectively

(Fig. 2.3.6). OSL at the bottom and top of the crystal, labelled b and t, respec-
tively, can be considered as two layers in addition to the N ‘core’ layers of

the crystal. From Eq. (2.3.12), the intensity of X-rays diffracted by a crystal

corresponds to (i) the contribution from all individual layers and (ii) the
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contribution to intensity from the two external layers in all possible sub-

sequences consisting of two, three, . . ., (N�1), N layers, taking into account

the phase shift between these external layers. Thus

I¼A∗A¼F�
bFbþ F�

1F1þF�
2F2þ���þF�

NFN

� �þF�
t Ft

þ½F�
bF1 exp i’bþfF�

1F2 exp i’1þF�
2F3 exp i’2þ�� �

þF�
N�1FN exp i’N�1gþF�

NFt exp i’N�þ conjugate

þ½F�
bF2 exp i ’bþ’1ð ÞþfF�

1F3 exp i ’1þ’2ð ÞþF�
2F4 exp i ’2þ’3ð Þþ �� �

þF�
N�2FN exp i ’N�2þ’N�1ð Þg þF�

N�1Ft exp i ’N�1þ’Nð Þ�þ conjugate

..

.

þ½F�
bFN�1 exp i ’bþ’1þ�� �þ’N�2ð Þ

þ F�
1FN exp i ’1þ’2þ�� �þ’N�1ð Þ� �

þF�
2Ft exp i ’2þ’3þ�� �þ’Nð Þ�þ conjugate

þ F�
bFN exp i ’bþ’1þ�� �þ’N�1ð Þ

þF�
1Ft exp i ’1þ’2þ�� �þ’Nð Þ

� 
þ conjugate

þ F�
bFt exp i ’bþ’1þ’2þ�� �þ’Nð Þ� �þ conjugate (2.3.76)

’b being the phase shift induced by the thickness of the lower OSL.

The sum of the terms between curly brackets corresponds to the contribu-

tion of the crystal N-layer core to the intensity, while the other terms corre-

spond to the contribution of the two additional OSL. As all core layers are

identical, F1¼F2¼� � �¼FN¼F and ’1¼’2¼� � �¼’N¼’. If the different

terms of Eq. (2.3.76) are grouped as a function of the number of layers

between outer layers (Fi
*Fj) in layer sequences (i, j¼b, 1, 2, . . ., N, t), then

(OSL)t

(OSL)b

Crystal
core

Origin of the crystal

N–1

t

b

3

2

1

N

FIGURE 2.3.6 Schematic representation of a crystal with an N-layer core and (OSL)b and

(OSL)t layers at the bottom and top, respectively, of the crystal.
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I¼ NF�FþF�
bFbþF�

t Ft

� �
þ2Re

(XN�1

n¼1

N�nð ÞF�FþF�
bFexp i’bþF�Ft exp i’

� �
exp in’

þF�
bFexp i’bþF�Ft exp i’þF�

bFt exp i’b exp iN’

)
(2.3.77)

A similar approach may be used for mixed-layer structures with the fol-

lowing matrix formalism:

I¼ Spur N V½ �þ V0
b

� �þ V0
t

� �� �
W½ �

þ2ReSpur
XN�1

n¼1

N�nð Þ V½ � W½ �þ Vb½ � W½ � Qb½ �þ Vt½ � W½ � Qt½ �½ � Q½ �n
(

þ Vb½ � W½ � Qb½ �þ Vt½ � W½ � Qt½ �þ V0½ � W½ � Qb½ � Qt½ �N
)

(2.3.78)

Matrices [V], [W], and [Q] are identical to those in Eq. (2.3.61), whereas

matrices [V0], [Vb], [Vt], [V
0
b], and [V0

t] correspond to products of structure

amplitudes for core, bottom, and top layers; [Qb] contains the products of

junction probability parameters and the phase term induced by the thickness

of the OSL at the bottom of the crystal; and [Qt] contains the products of junc-

tion probability parameters and the phase term induced by the thickness of the

N core layers (Fig. 2.3.6). Compared to Eq. (2.3.61), Eq. (2.3.78) contains all

the terms describing diffraction effects from the core layers and additional

terms describing the contribution of the two OSL and of their interactions

with each core layer. When using the matrix formalism, a mixed-layer struc-

ture with T layer types may admit T types of OSL as crystal bottoms and tops

owing to intrinsic limitations, and Eq. (2.3.78) may be used to describe

mixed-layer structures differing from the occurrence probabilities of their

OSL, as described in the next section.

2.3.6.1 Model I: Occurrence and Junction Probabilities of OSL
are Identical to Those of the Core Layers

One may consider at first a two-component mixed-layer structure in which A
and B layers are interstratified with S¼1, with two layer types possibly occur-

ring on the crystal’s outer basal surfaces. Although the OSL may differ from

the core layers, it is convenient to label them Ab and Bb for the bottom layers

and At and Bt for the top ones, and it is possible to write the following

relations:

wAbþwBb ¼ 1, pAbAþpAbB ¼ 1, pBbAþpBbB ¼ 1,
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and

wAtþwBt ¼ 1, pAAtþpABt ¼ 1, pBAtþpBBt ¼ 1:

Model I considers that these occurrence and junction probability para-

meters are identical to those of core A and B layers:

wAb ¼wAt ¼wA, wBb ¼wBt ¼wB, pAbA ¼ pAAt ¼ pAA, pAbB ¼ pABt
¼ pAB, � � �, and pBbB ¼ pBBt ¼ pBB:

In this case, the expression of matrices [V], [W], and [Q] is given by

Eq. (2.3.62), and that of the additional matrices present in Eq. (2.3.78) are

V0
b

� �¼ F�
AbFAb

F�
BbFBb

����
����, V0

t

� �¼ F�
AtFAt

F�
BtFBt

����
����,

Vb½ � ¼ F�
AbFA F�

BbFA

F�
AbFB F�

BbFB

����
����, Vt½ � ¼ F�

AFAt F�
BFAt

F�
AFBt F�

BFBt

����
����,

V 0½ � ¼ F�
AbFAt F�

BbFAt

F�
AbFBt F�

BbFBt

����
����,

Qb½ � ¼ pAbA exp i’Ab pAbB exp i’Ab

pBbA exp i’Bb pBbB exp i’Bb

����
����¼ pAA exp i’Ab pAB exp i’Ab

pBA exp i’Bb pBB exp i’Bb

����
����,

and

Qt½ � ¼ pAAt exp i’A pABt exp i’A

pBAt exp i’B pBBt exp i’B

����
����¼ pAA exp i’A pAB exp i’A

pBA exp i’B pBB exp i’B

����
����

where FAb, FAt, FBb, and FBt are the structure amplitudes of Ab, At, Bb, and Bt
OSL, with ’Ab and ’Bb being the phase shifts corresponding to the thickness

of Ab and Bb OSL, respectively.

For a mixed-layer structure with S¼2, the expressions of matrices [V],
[W], and [Q] are given by Eq. (2.3.65), whereas those of the additional matri-

ces present in Eq. (2.3.78) are

½V0
b� ¼

F�AbFAb
F�AbFAb

F�BbFBb
F�BbFBb

���������

���������
, V0

t

� �¼
F�AtFAt

F�AtFAt
F�BtFBt

F�BtFBt

���������

���������
,

Vb½ � ¼

F�AbFA F�AbFA F�BbFA F�BbFA
F�AbFA F�AbFA F�BbFA F�BbFA
F�AbFB F�AbFB F�BbFB F�BbFB
F�AbFB F�AbFB F�BbFB F�BbFB

�����������

�����������
, Vt½ � ¼

F�AFAt F�AFAt F�BFAt F�BFAt
F�AFAt F�AFAt F�BFAt F�BFAt
F�AFBt F�AFBt F�BFBt F�BFBt
F�AFBt F�AFBt F�BFBt F�BFBt

�����������

�����������
,
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V0� �¼
F�AbFAt F�AbFAt F�BbFAt F�BbFAt
F�AbFAt F�AbFAt F�BbFAt F�BbFAt
F�AbFBt F�AbFBt F�BbFBt F�BbFBt
F�AbFBt F�AbFBt F�BbFBt F�BbFBt

�����������

�����������
,

Qb½ � ¼
pAAA exp i’Ab pAAB exp i’Ab

pABA exp i’Ab pABB exp i’Ab

pBAA exp i’Bb pBAB exp i’Bb

pBBA exp i’Bb pBBB exp i’Bb

���������

���������
,

and

Qt½ � ¼
pAAA exp i’A pAAB exp i’A

pABA exp i’A pABB exp i’A

pBAA exp i’B pBAB exp i’B

pBBA exp i’B pBBB exp i’B

��������

��������
The same logic can be used to determine the expression of the new matri-

ces for mixed-layer structures with T�2 and/or with S�2.

2.3.6.2 Model II: Occurrence Probabilities of OSL Depend
on the Nature of the Previous Layer

According to this model, the nature of the OSL is controlled by that of the

adjacent layer, and for a mixed-layer structure with T¼2 and S¼1

pAbA ¼ pBbB ¼ 1 or pAbB ¼ pBbA ¼ 1ð Þ, and pAAt ¼ pBBt ¼ 1 or pABt ¼ pBAt ¼ 1ð Þ:

In this case, the expression of matrices [Qb] and [Qt] from Eq. (2.3.78) is

Qb½ � ¼ exp i’Ab exp i’Ab

exp i’Bb exp i’Bb

����
����, Qt½ � ¼ exp i’A exp i’A

exp i’B exp i’B

����
����:

2.3.6.3 Model III: Systematic Occurrence of a Given OSL Type
at a Given End of the Crystals

According to this model, the same type of OSL is systematically present at a

given end of the crystals, and only two types (b and t) of OSL may occur. For

a mixed-layer structure with T¼2 and S¼1, the expressions of the additional

matrices present in Eq. (2.3.78) are

V0
b

� �¼ F�
bFb

F�
bFb

����
����, V0

t

� �¼ F�
t Ft

F�
t Ft

����
����, Vb½ � ¼ F�

bFA F�
bFA

F�
bFB F�

bFB

����
����,

Vt½ � ¼ F�
AFt F�

BFt

F�
AFt F�

BFt

����
����,
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V0½ � ¼ F�
bFt F�

bFt

F�
bFt F�

bFt

����
����, Qb½ � ¼ exp i’b exp i’b

exp i’b exp i’b

����
����, and Qt½ � ¼ exp i’A exp i’A

exp i’B exp i’B

����
����:

2.3.7 INFLUENCE OF INTER-CRYSTALLINE DEFECTS:
MEGACRYSTALS

For lamellar compounds, coherent scattering domains can be seen as a crystal

volume exhibiting layer parallelism and 2D periodicity within the layer plane.

Following this definition, interstratification of different layer types, even of

incommensurate layers, thus has no influence on the size of the CSD perpen-

dicular to the layer plane. On the other hand, the crystal size may differ from

the size of the CSD, as crystals are commonly composed mosaic blocks that

are slightly misoriented with respect to each other (Guinier, 1964) and thus

act as CSD, scattering X-rays independently. Accordingly, the sizes of CSD

determined from the analysis of diffraction line profiles (e.g. Drits et al.,

1997c) are often smaller than the particle sizes determined by other techni-

ques such as small-angle X-ray scattering (SAXS), transmission electron

microscopy (TEM), or HRTEM. For example, the XRD analysis of the

Rupsroth beidellite revealed an average CSD size of �15 layers (Besson,

1980), whereas a simultaneous SAXS study indicated crystals with up to

400 layers (Pons, 1980). Comparison of XRD patterns calculated with the

common hypothesis of a set of CSD all having small sizes (Fig. 2.3.7A;

Section 2.3.4) with those collected on natural and synthetic clay mineral sam-

ples revealed a similar tendency, with frequent discrepancies over the low-

angle region (2y<4–6� Cu Ka). The intensity calculated at low angle is

commonly higher than the experimental one (Fig. 2.3.8), indicating the need

for larger CSD sizes, despite high-quality fits over the high-angle region

(McCarty et al., 2009). Two models are described hereafter that allow con-

cealing this apparent discrepancy.

2.3.7.1 Model I (Plançon, 2002)

Plançon (2002) proposed a model in which a sample is composed of ‘quasi-

crystals’ or megacrystals whose average size is larger than that of the CSD

in the usual model (Fig. 2.3.7B). These megacrystals contain layer types iden-

tical to those in the usual XRD model. Their relative proportion and their

stacking sequences are also identical to those in the usual models. However,

adjacent parallel layers may be shifted with respect to each other along the

c*-axis, thus creating ‘pores’, according to an adjustable probability, and

the x-spacing between i-type and j-type layers can take nij values, instead of

one in the usual model. The presence of ‘pore’ defects affects the phase terms

that depend on the distance between layers, but does not modify the structure
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amplitude of individual layers. In Eq. (2.3.61) of the diffracted intensity,

only elements of the [Q] matrix should thus be modified as follows :
QijðZÞ¼

Pnij
q¼1pijq expð2piZxijqÞ, with pijq being the occurrence probability of

the qth spacing, xijq, among the nij possible values
Pnij

q¼1pijq ¼ pij

	 

.

If the smallest of the nij possible spacings is labelled xi, that is, if xi is the
smallest possible thickness of an i-type layer, any xijq spacing can be written

as xijq¼xiþDxijq with Dxijq�0. If the occurrence probability of an additional

distance Dxijq between i- and j-type layers is denoted p(Dxijq), then pijq¼pij
p(Dxijq), with

Pnij
q¼1pðDxijqÞ¼ 1, and the Qij(Z ) terms can be written as

Qij Zð Þ¼ pij exp 2piZxið Þ
Xnij
q¼1

p Dxijq
� �

exp 2piZDxijq
� �

:

A B

C

FIGURE 2.3.7 Schematic representation of a sample consisting either (A) of a set of coherent scat-

tering domains (CSD), or (B andC) of a set ofmegacrystals. Additional distancesmay occur between

parallel layers to create pores (Plançon, 2002; B), or between aggregated CSD (Sakharov, 2005; C).
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In the new model, Qij(Z ) terms differ from those in the usual model by the

factor
Pnij

q¼1pðDxijqÞexpð2piZDxijqÞ that characterizes the deviation from the

‘normal’ layer spacings. Additional distances Dxijq disrupt the coherence of

waves scattered by different layers, the loss of coherence depending on the

diffraction angle (Plançon, 2002), the coherence of diffracted waves, or the

apparent size of CSD, and increasing with decreasing 2y angles. Additional

distances are systematically positive and much lower than the normal xi
spacing (0	Dxijq<xi). The structure is thus equivalent to a mixed-layer

structure in which layers with similar structure amplitude and xijq>xi spacing
occur together with the ‘normal’ layers, and a significant positional shift,

towards lower angles, is thus expected for high-angle reflections compared

to the usual model (Plançon, 2002). This positional shift is expected to occur

even for periodic structures, in contradiction with experimental data, and this

alternative model is likely inappropriate for the description of natural samples.

2.3.7.2 Model II (Sakharov, 2005)

As an alternative to model I, it is possible to consider that CSD, or mosaic blocks,

with a size distribution identical to that of the usual model are aggregated to form

megacrystals (Fig. 2.3.7C). If these CSD are arranged in such a way that their

5 10 15 20 25 30 35 40 45 50

Position (�2q CuKα)

FIGURE 2.3.8 Simulation of the XRD pattern for Gulf Coast sample #496-002. Black crosses

are experimental data collected on an oriented preparation of the Ca-saturated and ethylene glycol

solvated <2-mm size fraction, the solid overplot being the calculated profile. The calculated pro-

file includes the contributions of an illite-expandable, discrete smectite, illite, and kaolinite

(68:28:2:2). The mixed-layer structure is composed of illite (9.98 Å), Exp1 (16.95 Å), and Exp2
(12.90 Å) layers (65:32:3), randomly interstratified (S¼0). Adapted from McCarty et al. (2008).
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layers are strictly parallel from one domain to the other and there is no distortion

(additional, positive or negative, distances) between these domains, the resulting

XRD pattern corresponds to a large monocrystal equivalent in size to the mega-

crystal. If the coherence of waves diffracted by the different CSD is lost because

of their arrangement in the megacrystal, then the resulting XRD pattern corre-

sponds to the usual model. The coherence of waves diffracted of the different

CSD can vary steadily between these two extreme cases.

A comprehensive description of this alternative model requires the definition

of inter-crystalline defects, of their occurrence frequency in a megacrystal, and of

the associated phase shifts for the calculation of their impact on the diffracted

intensity. For this purpose, it is convenient to consider first a large megacrystal

consisting of defect-free parallel CSD. In this case, defects are located only in

between OSL of different CSD and can be defined as the additional distances

between adjacent CSD, independent of the other inter-crystalline distances. The

additional distances between adjacent CSD can be positive or negative but

aremuch smaller than the CSD sizes. The latter condition implies that the distance

fluctuation is of the second type described in Section 2.3.5. IfM is the total num-

ber of layers in a megacrystal, andN andN the maximum and average numbers of

layers, respectively, in a CSD, then (M�1) is the maximum number of defects,

M=N the number of CSD, ððM=NÞ�1Þ the mean number of defects, and

ðM=NÞ�1
� �

= M�1Þð the occurrence probability of defects in this megacrystal.

In a sequence of (nþ1) layers, n is both the number of layers adjacent to a layer

arbitrarily chosen as the origin and the maximum number of defects in this

sequence. Defects being randomly distributed, it is possible to deduce that

n ðM=NÞ�1
� �

=ðM�1Þ is the number of defects in this (nþ1) layer sequence,

and ðM�nÞn M=N�1
� �

= M�1Þð the total number of defects in all (nþ1) layer

sequences, (M�n) being the number of (nþ1) layer sequences in a megacrystal

withM layers. If cn is the number of defect-free (nþ1) layer sequences (see later),

that is, of sequences of (nþ1) layers from the sameCSD, the number of defective

(nþ1) layer sequences is [(M�n)�cn ], and the average number of defects in

each of these sequences is kn ¼ ðM�nÞn½ M�NÞ� �
= ðM�1ÞNðM�n� cnÞ
� �

.

If N1, N2, . . ., NN are the numbers of CSD with 1, 2, . . ., and N layers,

respectively, in a megacrystal with M layers, then N1�1þN2�2þ� � �þ
NN�N¼M. Similarly, if the occurrence probabilities of these CSD are F(1)
[F(1)¼N1/

P
n¼1
N Nn], F(2), . . ., and F(N), respectively, then

PN
n¼1nFðnÞ¼N ,

with
P

n¼1
N F(n)¼1, and N1¼ rF(1), N2¼ rF(2), . . ., and NN¼ rF(N), r being

the number of CSD (M=N). As a consequence cn can be defined as

cn ¼
M

N

XN
m¼nþ1

m�nð ÞF mð Þ, if n<N

0, if n�N

:

8><
>:

The definition of phase shifts corresponding to different distributions of

arbitrary distances between CSD is described in the following sections.
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2.3.7.2.1 Exponential Distribution of Defects Between CSD

It is convenient to hypothesize at first that all layers in the CSD of a mega-

crystal are identical with a common layer-to-layer distance equal to x0, and
that Dx distances between adjacent and parallel CSD follow the exponential

law WðDxÞ¼ lexpð�lDxÞ, Dx� 0

0, Dx< 0

�
where Dx¼ 1=l, with l the decay rate of the distribution andð1

0

WðDxÞdðDxÞ¼ 1:

The average phase term for two layers separated by such a defect depends

on the (x0þDx) distance between these layers, and can be expressed as

ð1
0

W Dxð Þexp �2piz x0þDxð Þ½ �d Dxð Þ¼ lexp �2pizx0ð Þ
ð1
0

exp �2pizDxð Þexp �lDxð Þd Dxð Þ

¼ lexp �2pizx0ð Þ
ð1
0

exp �2piz�lð ÞDx½ �d Dxð Þ¼ exp �2pizx0ð Þ l
lþ2piz

¼ 1�2pizDx

1þ4p2z2Dx
2
exp �2pizx0ð Þ¼ Aþ iB½ �exp �2pizx0ð Þ

where A¼ 1

1þ4p2z2Dx
2
, and B¼ �2pzDx

1þ4p2z2Dx
2

The presence of one defect in a layer sequence thus induces the multipli-

cation of the phase term by the additional (Aþ iB) factor, this factor becoming

ðAþ iBÞkn in the presence of kn defects.

2.3.7.2.2 Normal (Gaussian) Distribution of Defects
Between CSD

A normal distribution of Dx distances between adjacent and parallel CSD can

be expressed as WðDxÞ¼ 1ffiffiffiffiffiffi
2p

p
s
exp �Dx2

2s2

� 
, where Dx¼x�x0, x0 being the

layer-to-layer distance within CSD, x the distance between adjacent CSD,

and s the standard deviation of Dx. In this specific case, no assumption is

made as to the nature of OSL, and negative Dx values are thus allowed.

The average value of the phase term for such a distribution can be expressed asð1
�1

W xð Þexp �2piZxð Þdx¼ exp �2piZx0ð Þexp �2p2Z2s2
� �

:

In contrast to the exponential distribution, this expression for a normal dis-

tribution of distances between CSD contains only the real part of the addi-

tional factor, that is, A¼ expð�2p2Z2s2Þkn when kn defects are present.
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2.3.7.2.3 Semi-Normal Distribution of Defects Between CSD

If only half of the previous normal distribution is considered, either negative

or positive additional distances (Dx¼x�x0) between adjacent CSD are taken

into account, and the distribution takes the following forms:

For x� x0 :

W Dxð Þ¼
ffiffiffi
2

pffiffiffi
p

p
s
exp �Dx2

2s2

2
4

3
5 forDx� 0

0 forDx< 0

:

8>><
>>:

The average value of the phase term for such a distance distribution becomesð1
0
W Dxð Þexp �2piZ x0þDxð Þ½ �d Dxð Þ

¼
ffiffiffi
2

p

vuut 1

s

ð1
0

exp �Dx2

2s2

2
4

3
5exp �2piZx0ð Þexp �2piZDxð Þd Dxð Þ

¼ exp �2piZx0ð Þ exp �2p2s2Z2
� �þ i � 2ffiffiffi

p
p exp �2p2s2Z2

� �ða=2
0

exp t2
� �

dt

2
4

3
5

8<
:

9=
;

with a=2¼ ffiffiffi
2

p
pZs. In this case, the A and B factors multiplying the phase term

become exp(�2p2s2Z2), and � 2ffiffiffi
p

p expð�2p2s2Z2ÞÐ a=2
0

expðt2Þdt, respectively.
For x	 x0 :

W Dxð Þ¼
ffiffiffi
2

pffiffiffi
p

p
s
exp �Dx2

2s2

2
4

3
5 forDx	 0

0 forDx> 0

8>><
>>:

The average value of the phase term for such a distance distribution becomesð1
0

W Dxð Þexp �2piZ x0þDxð Þ½ �d Dxð Þ

¼
ffiffiffi
2

p

s
1

s

ð0
�1

exp �Dx2

2s2

2
4

3
5exp �2piZx0ð Þexp �2piZDxð Þd Dxð Þ

¼ exp �2piZx0ð Þ exp �2p2s2Z2
� �þ i

2ffiffiffi
p

p exp �2p2s2Z2
� �ða=2

0

exp t2
� �

dt

2
4

3
5

8<
:

9=
;

with a=2¼ ffiffiffi
2

p
pZs. In this case, the A and B factors multiplying the phase term

become exp(�2p2s2Z2), and 2ffiffi
p

p expð�2p2s2Z2ÞÐ a=2
0

expðt2Þdt, respectively.

Handbook of Clay Science102



2.3.7.2.4 Uniform Distribution of Defects Between CSD

A uniform distribution of additional distances (Dx¼x�x0) between adjacent

CSD can be expressed as W(Dx)¼1/(xmax�x0), with xmax the maximum pos-

sible distance between two adjacent CSD. The average value of the phase

term for such a distance distribution becomes

ðxmax�x0

0

W Dxð Þexp �2piZ x0þDxð Þ½ �d Dxð Þ

¼ 1

xmax�x0

ðxmax�x0

0

exp �2piZx0ð Þexp �2piZDxð Þd Dxð Þ

¼ exp �2piZx0ð Þ sin2pZ xmax�x0ð Þ
2pZ xmax�x0ð Þ þ i

cos2pZ xmax�x0ð Þ�1

2pZ xmax�x0ð Þ

8<
:

9=
;

In this case, the A and B factors multiplying the phase term become

sin2pZðxmax�x0Þ
2pZðxmax�x0Þ

and
cos2pZðxmax�x0Þ�1

2pZðxmax�x0Þ
, respectively.

2.3.7.2.5 Overall Intensity Equation

If different layer types are interstratified in an M-layer megacrystal, the dif-

fracted intensity can be deduced from Eq. (2.3.61) as

IM ¼MSpur V½ � W½ �þ2Re
XN�1

n¼1

M�nð ÞSpur V½ � W½ � Q½ �n (2.3.79)

The first term of the equation corresponds to the contribution to intensity

of waves diffracted by individual layers, whereas the second term corresponds

to the contribution of sequences with 2, 3, . . ., M layers. If the megacrystal

contains inter-crystalline defects, the second term of Eq. (2.3.79) is split in

two terms corresponding to the intensity contributions from defect-free and

defective layer sequences, respectively, that is,

IM ¼MSpur V½ � W½ �þ2Re
XM�1

n¼1

cnþ M�n� cnð Þ Aþ iBð Þkn
h i

Spur V½ � W½ � Q½ �n

¼MSpur V½ � W½ �þ2Re
XM�1

n¼1

Mc�nþ M�n�Mc�n
� �

Aþ iBð Þkn
h i

Spur V½ � W½ � Q½ �n

(2.3.80)

where c�n ¼
1

N

XN
m¼nþ1

ðm�nÞFðmÞ, ifn<N

0, ifn�N

8><
>: .
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Megacrystals are most likely also distributed in size. If minimum and max-

imum sizes of the megacrystals are labelled Mmin and Mmax, respectively, the

megacrystal size distribution may be described by occurrence probability

coefficients G(Mmin),G(Mminþ1), . . .G(Mmax), with
PMmax

M¼Mmin
GðMÞ¼ 1, and

M ¼PMmax

M¼Mmin
MGðMÞ. Equation (2.3.80) then becomes

I¼
XMmax

M¼Mmin

G Mð ÞIM ¼
XMmax

M¼Mmin

G Mð ÞMSpur V½ � W½ �

þ2Re
XMmax

M¼Mmin

G Mð Þ
XM�1

n¼1

Mc�nþ M�n�Mc�n
� �

Aþ iBð Þk n;Mð Þh i
Spur V½ � W½ � Q½ �n

¼MSpur V½ � W½ �þ2Re
XMmax

M¼Mmin

G Mð Þ
XMmin�1

n¼1

Mc�nþ M�n�Mc�n
� �

Aþ iBð Þk n;Mð Þh i
Spur V½ � W½ � Q½ �n

þ2Re
XMmax

M¼Mmin

G Mð Þ
XMmax�1

n¼Mmin

M�nð Þ Aþ iBð Þk n;Mð Þ Spur V½ � W½ � Q½ �n

¼MSpur V½ � W½ �þ2Re
XMmin�1

n¼1

Mc�nþ
XMmax

M¼Mmin

G Mð Þ M�n�Mc�n
� �

Aþ iBð Þk n;Mð Þ
2
4

3
5 Spur V½ � W½ � Q½ �n

þ2Re
XMmax�1

n¼Mmin

XMmax

M¼nþ1

G Mð Þ M�nð Þ Aþ iBð Þk n;Mð Þ Spur V½ � W½ � Q½ �n

Finally,

I¼MSpur V½ � W½ �

þ2Re
XMmax�1

n¼1

Mc�nþ
XMmax

M¼
max Mmin,nþ1ð Þ

G Mð Þ M�n�Mc�n
� �

Aþ iBð Þk n;Mð Þ

2
6666664

3
7777775 Spur V½ � W½ � Q½ �n:

This particular model is equivalent to that proposed by Plançon (2002) if

all CSD contain a single layer, that is if N ¼ 1. The total number of defects

in all (nþ1) layer sequences is then equal to (M�n)n, cn¼0, and kn¼n.
As a consequence, the term (Aþ iB)n can be included in the [Q]n matrix,

and Eqs. (2.3.80) and (2.3.79) are equivalent. All other models can be

described with a single additional parameter (l, s, xmax) describing the distri-

bution W(Dx), which is the degree of coherence between CSD in megacrys-

tals. It should be noted (i) that the information about CSD size distribution

is kept when using this alternative model, and (ii) that there is no positional

shift of the reflections if a normal distribution is used.

2.3.8 DIFFRACTION BY A POWDER SAMPLE

Clay minerals occur as finely dispersed crystals whose size within the layer

plane is �1 mm, which restricts the methods allowing their routine structure

determination to powder diffraction. However, the actual experimental setting
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influences the intensity distribution for a given powder sample, and this influ-

ence should be taken into account in the calculation of diffraction effects if they

are to be compared with the data. The general theory of XRD by randomly ori-

ented crystal powders was described by von Laue (1932), Warren (1941), and

Wilson (1949b). XRD is conveniently described using the Ewald sphere. This

geometrical construction allows identifying points in the reciprocal space that

satisfy the Bragg diffraction condition. Intersection of the Ewald sphere (radius

1/l) with hk rods of a crystal rotated around the origin of reciprocal space is con-
sidered usually. The present description of mixed-layer structures is restricted to

the intensity distribution of basal 00l reflections, and only the rod with h¼0 and

k¼0 is to be considered. Data collection conditions for basal reflections are

schematized in Fig. 2.3.9 for the y–2y reflection configuration routinely avail-

able on diffractometers with Bragg–Brentano geometry. For a given sample

rotation y, vector s connects the vector tips of the primary (k0/l) and scattered

(k/l) beams that define the diffraction angle 2y. For this case, Fig. 2.3.9 shows
the intersection of the Ewald sphere (origin in O0, radius 1/l) with the h¼0, and

k¼0 rod, which is perpendicular to the basal surface p of a diffracting crystal

and passes through the origin O of the reciprocal space. Alternatively, powder

XRD can be described using a fixed crystal and the intersection of hk rods

with spheres centred at the origin of the reciprocal space and of a variable

radius s (Brindley and Méring, 1951). The intensity distribution i00(s) then cor-
responds to that of waves diffracted at a given angle 2y (s¼2sin y/l) by an

assembly of randomly oriented crystals. For a given value of s, the intensity

p

h = 0
k = 0

2q

l

X-ray source

Detector

Sample

q

O

O�

k0

l
k

s
n

ns

FIGURE 2.3.9 Schematic representation of the geometric configuration used for data collection in

y–2y reflection mode. ns is the normal to the sample surface, p is the basal surface of a crystal, 1/l is
the radius of the Ewald sphere, 2y is the diffraction angle, and O is the origin in the reciprocal space.
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i00(s) is proportional to the intersection of the rod 00 with a sphere of radius

s integrated over their common surface A (Fig. 2.3.10). From Eqs. (2.3.8) and

(2.3.23), this intensity can be written as

i00 sð Þ¼
ð
A

I00 sð Þ dA

4ps2
¼ 1

4psOs2
jF00 Zð Þj2G00 Zð Þ

ð
A

D X;Yð ÞD� X;Yð ÞdA
(2.3.81)

where I00(s) is the intensity within the 00 rod at the tip of vector s, dA is the

surface increment of the sphere of radius s, and s and O are the surface areas

of the layer and unit cell, respectively, in the a–b plane.

For large sizes of the layers in the a–b plane, the intersection of the 00 rod

with the sphere of radius s is close to a flat cross-section, except for very

small s values, and the spherical surface A can be approximated by the plane

A0, which is tangent to the sphere at its intersection with the Z-axis
(Fig. 2.3.10). In this caseð

A0
D X;Yð ÞD� X;Yð ÞdXdY¼ s, and i00 Zð Þ¼ 1

4pOZ2
jF00 Zð Þj2G00 Zð Þ

(2.3.82)

j

Y

s

Z

X

Y

r

O

A

jmax

A�

s

FIGURE 2.3.10 Schematic representation of the intersection of the 00 reciprocal rod by the Ewald

sphere (A) of radius s. The plane A0 is tangent to the sphere at its intersection with the 00 rod.
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The intensity of X-rays diffracted at a given Z¼2sin y/l value by a pow-

der of randomly oriented crystals is thus proportional to the product of the

unit-cell structure factor [|F00(Z )|
2] and the interference function [G00(Z )]; it

is also inversely proportional to the squared distance of the Z point from the

origin (1/Z2). The latter term is the Lorentz factor and will be discussed

hereafter.

Approximating the integration over the spherical surface by that over the

tangent plane (Eq. 2.3.82) is valid in most practical cases. The surface area

of the 00 rod intersection with the sphere of radius s and the tangent plane

can be expressed as SA ¼ p
R2

1þ1� cos’max

sin’max

� 
and SA0 ¼ p

R2
, respectively,

where R is the radius of disc-shaped layers (Fig. 2.3.10). This radius is equal

to several hundreds of angstroms for most clay minerals, and the difference

between the two expressions can be calculated for the 001 reflection of mica:
1� cos’max

sin’max

¼ 0:025 (’max¼arcsin(d/R)¼2.9� for d001¼10 Å, and

R¼200 Å). The planar approximation thus reduces the integration area by

�2.5%, this reduction decreasing for higher order reflections owing to the

decreasing values of ’max. The underestimation of the integration area reaches

�7.5% for the super-reflection of a mixed-layer structure with d¼30 Å and

R¼200 Å (’max¼8.6�).

2.3.8.1 Effect of the Crystal Partial Orientation

Structural investigation of clay minerals is commonly restricted to the analysis

of diagnostic basal reflections, and oriented preparations are thus preferred to

enhance their intensity while diminishing that of hkl reflections (Moore and

Reynolds, 1997). Crystal orientation is naturally favoured by the strong anisot-

ropy of clay particles, whose extension within the layer plane is usually much

larger than perpendicular to it. In addition, oriented preparations possess an

axial symmetry of crystal orientation normal to the sample surface. The influ-

ence of partial crystal orientation on the intensity distribution was described

in the literature for different experimental settings and particle shapes (Taylor

and Norrish, 1966; Ruland and Tompa, 1968, 1972; Reynolds, 1976, 1986;

Plançon and Tchoubar, 1977; de Courville et al., 1979; Plançon, 1980), and will

be hereafter described only for basal reflections.

For this purpose, a flat sample containing Np crystals with different orien-

tations is considered, the normal to the sample surface being ns, whereas the
cylindrically symmetrical function Np(a) describes the relative proportion of

crystals whose normal to their basal surface (n) deviates from ns by the angle

a (Fig. 2.3.11). If dNp is the number of crystals whose normal to their basal

surfaces lie in a zone of sphere dO, then dNp¼Np �Np(a)dO. As Ð dNp¼Np
and dO¼2p sin ada,

Ð
Np(a)dO¼2p

Ð
0
pNp(a)sin ada¼1.
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For a randomly oriented powder, Np(a) is independent of a, and 2pNp
(a)
Ð
0
p sin ada¼1, or Np(a)¼1/4p (or Np/4p when using absolute units). If

the powder is perfectly oriented, then Np(a) is a Dirac function and Np(0)¼1

(or Np when using absolute units).

For the geometry schematized in Fig. 2.3.9, directions of vectors s, ns, and
n are identical for crystals contributing to diffracted intensity at a given

2y angle and for an ideally narrow and perfectly parallel beam. In this ideal

case, a restricted set of crystals, corresponding to Np(0), contributes to the dif-

fracted intensity, whatever the 2y angle. The basal surfaces of these crystals

are strictly parallel to the sample surface and only their azimuthal orientation

in the a–b plane may differ. As a consequence, the relative intensities of basal

reflections do not depend on the orientation function Np(a), although the

absolute intensity will depend on Np�Np(0), the number of diffracting crys-

tals. However, the divergence of both incident and diffracted beams, coupled

to partial crystal orientation, noticeably modifies the experimental intensity

and profile of basal reflections (Reynolds, 1976, 1986; Drits et al., 1993).

Correction factors are described for partial orientation and for the main

experiment- and sample-induced modifications of the intensity distribution

with the usual Bragg–Brentano geometry. To allow a quantitative comparison

with the data, XRD patterns calculated for mixed-layer structures, or periodic

structures, should include these corrections or the data should be corrected, if

possible.

2.3.8.2 Sample Absorption

When collecting data in reflection mode with the Bragg–Brentano geometry,

incident and diffracted X-ray beams form a unique angle y with the flat sam-

ple surface. Penetration of the incident beam into the sample induces an inten-

sity decrease because of absorption, and the same effect is observed for the

a
da

dW
ns

n

FIGURE 2.3.11 Schematic representation of diffraction by a partially oriented sample. ns is the

normal to sample surface, and n is the normal to ‘misoriented’ crystal basal surface, a being the

‘misorientation’ angle.
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diffracted beam. For a thin element of thickness dx located at a distance x
from the sample surface (Fig. 2.3.12), the intensity decrease at a diffraction

angle 2y can be written as

dI¼ I0S0dx

siny
exp�2m�rx

siny
,

where I0 is the incident beam intensity per volume unit, S0 is the cross-section
of the incident beam at the centre of the goniometer, m* is the average mass

absorption coefficient of the sample and r is the average sample density.

The intensity diffracted by the whole volume of irradiated sample is then

I¼
ðx¼d

x¼0

dI¼ I0S0
siny

ðx¼d

x¼0

exp�2m�rx
siny

dx¼ I0S0
2m�r

1� exp �2m�rd
siny

� �� 
(2.3.83)

From this equation, the exponential term is infinitely small for thick (large

d value) samples, and the absorption of the X-rays is proportional to 1/2m*r,
and constant for all basal reflections. For thinner samples, the exponential

term in Eq. (2.3.83) cannot be neglected, and the relative intensities of basal

reflections vary with the diffraction angle 2y. However, reliable values are

difficult to obtain experimentally for both d and r, and it is convenient to

define V as the volume of sample irradiated and to write

I∗0 ¼ I0 V¼ I0
S0d

siny
:

It is then possible to deduce

I¼ I�0 siny
2m�rd

1� exp �2m�rd
siny

� �� 
¼ I�0 siny

2m�g
1� exp �2m�g

siny

� �� 
,

where I0
∗ is the intensity of the primary beam on the sample, and g is the experi-

mentally available surface density of the sample, with g¼rd¼md/V¼m/S;
m, V, and S are the mass, volume, and surface area, respectively, of the sample

with thickness d.

d
dx

S0

x

qq

FIGURE 2.3.12 Schematic representation of X-ray absorption by a thin sample element dx

when collecting XRD data in reflection mode.
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2.3.8.3 Beam Overflow

Clay minerals have large (7–20 Å) unit-cell parameters perpendicular to the

layer plane, and their first basal reflections thus occur at a low angle

(2y<15� for Cu or Co radiation). However, sample availability, or experi-

mental setting, may require the preparation of samples with a limited length

L, which would induce beam overflow for low diffraction angles

(Fig. 2.3.13; 2y1), while the whole cross-section S0 of the primary beam is

used for sample illumination when increasing the diffraction angle

(Fig. 2.3.13; 2y2). As a consequence, the relative intensity of low-angle reflec-

tions is reduced compared to high-angle ones:

I¼ I0Lsiny
2m�r

1� exp �2m�rd
siny

0
@

1
A

2
4

3
5

¼ ImLsiny
2m�

1� exp �2m�g
siny

0
@

1
A

2
4

3
5 if S0 > Lsiny low� angle reflectionsð Þ

I¼ I0S0
2m�r

1� exp �2m�rd
siny

0
@

1
A

2
4

3
5

¼ ImS0
2m�

1� exp �2m�g
siny

0
@

1
A

2
4

3
5 if S0 < Lsiny high� angle reflectionsð Þ

where Im¼ I0/r is the intensity per mass unit.

L

2q2

2q1

Lsinq1S0

FIGURE 2.3.13 Schematic representation of sample illumination for different 2y diffraction angles.
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2.3.8.4 Polarization of the Diffracted X-ray Beam

When emitted by the tube, the X-ray beam is not polarized: that is, its intensity is

independent of the angle of view, all other parameters being constant. In con-

trast, the intensity of the X-ray beam depends on the 2y angle after being scat-

tered by electrons in a crystal; the beam intensity is maximum in the direction

of the primary beam and in the inverse direction, whereas it is minimum in

directions perpendicular to the primary beam. The angular dependence, with

respect to the primary beam, of the intensity diffracted by a crystal is called

the polarization factor (Klug and Alexander, 1974) and can be expressed as

P 2yð Þ ¼ 1þ cos22y
2

(2.3.84)

When a monochromator, flat or bent, is added in the optical pathway, this

factor becomes

P 2yð Þ¼ 1þ cos22ycos22ym
1þ cos22ym

with ym being the reflection angle of the monochromator.

2.3.8.5 Lorentz Factor

The integration of the 00 rod (Eq. 2.3.81) induces further dependence of the

intensity on the y angle, the above-mentioned Lorentz factor. This factor

describes the evolution of the sample volume actually diffracting as a function

of the diffraction angle 2y, and its expression depends both on the sample state

(monocrystal, powder) and on the experimental geometry. The usual expres-

sions of the Lorentz factor are L¼1/sin 2y cos y and L¼1/sin ycos y, for ran-
domly and perfectly oriented powders, respectively (Klug and Alexander,

1974). These expressions are valid for integrated intensities but should be mod-

ified if intensities are calculated for all 2y angles to model XRD patterns. The

modified expressions are L¼1/sin 2y and L¼1/sin y for randomly and perfectly

oriented powders, respectively. Partial crystal orientation leads to values inter-

mediate between those corresponding to the two above cases. Reynolds (1976,

1986) derived the analytical expression of a correction factor c (powder ring

distribution factor) that accounts for both partial crystal orientation, assuming

a normal distribution, and beam collimation by Soller slits:

c¼ s1s2

s s�ð Þ2
ffiffiffiffiffiffi
2p

p
s�

2
erf Qð Þ�2 s�ð Þ2 siny

s
1� exp �Q2

� �� �" #
,

where s1 and s2 are the Soller slit divergence (in degrees) for the primary and

the diffracted beams, respectively, s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s21þ s22

p
, s* is the standard deviation

of the Gaussian orientation function (in degrees), Q¼ 2
ffiffiffi
2

p
s� siny, and

erf ðxÞ¼ 2ffiffiffi
p

p Ð t¼x
t¼0

expð�t2Þdt is the tabulated integral.
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Owing to their common dependence on the y diffraction angle, Lorentz

and polarization factors are usually combined to define the Lorentz polariza-

tion (LP) factor. For maximum intensities, this factor can be expressed as

1þ cos22y
siny

c.

The powder ring distribution factor c is proportional to 1/sin y for ran-

domly oriented powders and constant for single crystals (Reynolds, 1986).

In these two extreme cases, the complete correction factor is equivalent to

the LP factor for randomly oriented powders and monocrystals, respectively.

Taking into account both LP and powder ring distribution factors, and

neglecting constant factors, Eq. (2.3.82) becomes

i Zð Þ
 1

O
LPcjF Zð Þj2G Zð Þ: (2.3.85)

2.3.8.6 Intensity Scaling

Analysis of XRD intensities is usually performed on a relative basis. For nor-

malization purposes, it is, however, convenient to calculate intensities on a

given basis, for example, one unit cell, a volume unit, and so on. Several pos-

sible normalizations are thus described hereafter for calculated intensities. In

Eq. (2.3.85), the intensity Icol is calculated for a column of unit cells in a crys-

tal, and the intensity diffracted by the whole crystal is thus proportional to

Icrys ¼ Icol
s
O

 s
O2

LPcjF Zð Þj2G Zð Þ,
with s the surface area of the layers in the a�b plane:

On the other hand, the intensity calculated for one unit cell (Ic) is propor-
tional to

Ic ¼ Icol=N
 1

NO
LPcjF Zð Þj2G Zð Þ, with N the number of layers in a crystal:

The intensity calculated for one volume unit (Iv) is proportional to

Iv ¼ Ic=Vc 
 x
NV2

c

LPcjFðZÞj2GðZÞ, with Vc the volume of the unit cell and x

the layer thickness.

Similarly, the intensity per mass unit (Im) can be expressed as Im¼ Iv/r, r
being the crystal density. For thick enough crystals, the beam is totally

absorbed, and absorption is proportional to 1/2m*r (Eq. 2.3.83), thus leading

to the following expression for Im:

Im 
 x
NV2

cm�r
LPcjF Zð Þj2G Zð Þ

which is equivalent to the equation of Reynolds (1983–Eq. 8).
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To use the above equations for mixed-layer structures, fixed parameters

can be replaced by their average values subject to minor approximations.

For example

Im 
 x

V
2

cm
�r

LPc SpurVWþ2Re
1

N

XN�1

n¼1

XN
m¼nþ1

m�nð ÞF mð ÞSpurVWQn

( )

(2.3.86)

where N , Vc, m�, r, and x are the average values of the number of layers, vol-

ume of unit cells, mass absorption coefficient, density, and thickness of layers

in the crystals. The above normalizations are especially useful for quantitative

analysis of clay minerals including mixed-layer structures. The relative mass

contribution of smectite-containing compounds obviously varies with their

interlayer contents, and contrasting contributions are thus expected from

XRD patterns recorded under different experimental conditions, as required

for the multi-specimen technique (e.g. Drits et al., 1997b; Sakharov et al.,

1999a,b). The contrast is, however, minor owing to the relative ‘weights’ of

the 2:1 layer and of the interlayer space.

2.3.9 CONCLUSION

Drits (1997, 2003) stressed the remarkable ability of diffraction techniques to

extract average structural information from the profiles and intensities of dif-

fraction maxima arising from mixed-layer structures, and more generally from

crystals deprived of 3D periodicity. He also pointed out that a reliable deter-

mination of structural and chemical heterogeneity of layered structures

depends essentially on a reliable interpretation of diffraction data. Such an

interpretation relies necessarily on the previously described calculation of dif-

fraction effects from mixed-layer structures.

Because of the intrinsic complexity of the calculations, simplified methods

have been proposed in the literature that take advantage of the shift of reflec-

tion position as a function of the actual composition of the mixed-layer struc-

tures predicted by the pioneering work of Méring (1949). According to this

author, basal reflections corresponding to a randomly interstratified mixed-

layer structure (two components) are located between neighbouring 00l reflec-
tions corresponding to periodic structures whose layers are interstratified. The

actual position of these reflections depends on the relative proportions of the

interstratified layer types and on the intensity of the neighbouring 00l reflec-
tions. In addition, the breadth of the mixed-layer reflections increases with the

‘distance’ between the 00l reflections corresponding to periodic structures

whose layers are interstratified (‘Q-rule’ of Moore and Reynolds, 1997). More

generally, the positions of basal reflections corresponding to an ordered

mixed-layer structure containing A and B layers (wA>wB) with S¼1 or

S¼2 are located between neighbouring 00l reflections corresponding to
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periodic stacking sequences consisting of A and AB (S¼1), or AAB (S¼2),

fragments (Reynolds, 1988; Drits et al., 1994).

In natural environments, interstratification is especially widespread among

clay minerals which differ in the type of interstratified layers and in their

stacking sequences. Because of the reactivity of the frequently interstratified

expandable layers and of their resulting ability to evolve as a function of

physicochemical conditions, these mixed-layer structures have drawn special

attention for decades, and simplified peak-migration methods have been pro-

posed over the years for the identification of illite–smectite (Srodon, 1980,

1981, 1984; Watanabe, 1981, 1988; Velde et al., 1986; Tomita et al., 1988;

Inoue et al., 1989; Drits and Plançon, 1994; Drits et al., 1994; Plançon and

Drits, 1994, 2000; Dudek and Srodon, 1996) and other mixed-layer structures

(Drits and Sakharov, 1976; Tomita and Takashi, 1985; Drits et al., 1994;

Lanson and Bouchet, 1995; Moore and Reynolds, 1997). These methods rely

essentially on peak-migration curves linking the position of a given set of

reflections (or of a given reflection) to the composition (relative proportion

of the different layer types) and the layer stacking mode of the mixed-layer

structures. The curves were derived essentially from the calculation of XRD

patterns using either Newmod (Reynolds, 1985) or the program based on

the matrix formalism developed by Watanabe (1981, 1988). The intensity

ratio between some of these reflections, or between reflections and ‘back-

ground’, was used occasionally as an additional criterion to estimate the rela-

tive contents of the different layer types in the mixed-layer structures.

Despite their widespread use, these simplified identification methods have

major limitations (Lanson, 2011):

– The first of these limitations is the lack of direct comparison between

experimental and calculated patterns, which is intrinsic to the approach.

As a result, there is no way to assess the validity of the identification by

using a parameter measuring the ‘goodness of fit’ as is usual in structural

studies. However, direct comparison of experimental XRD patterns with

those calculated on the basis of the identification performed allowed refut-

ing peak position as a valid criterion for mixed-layer structure characteri-

zation (Claret et al., 2004; McCarty et al., 2008), and thus these simplified

identification methods.

– Another limitation of these methods comes from the use of a unique XRD

pattern for identification purposes, which does not allow the validation of

the proposed identification by independent XRD measurements on the

same sample submitted to different treatments. In addition, the profiles

of the diffraction lines, which are strongly affected by interstratification

effects, are not taken into account by these peak-position methods. As dis-

cussed by Lanson (2011), these additional constraints are especially useful

owing to the low sensitivity of diffraction to the actual nature of structural
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disorder as illustrated by the common possibility of fitting the data equally

well with different structure models (Drits, 1985; McCarty et al., 2008).

– Other limitations are linked to those of the programs used to calculate dif-

fraction effects arising from mixed-layer structures, and the limited range

used for variable parameters in order to (over)simplify the identification

process. Intrinsic limitations of the programs include, for example, their

inability to calculate diffraction effects from multi-component mixed-

layer structures, when heterogeneity, rather than homogeneity, is the rule

for smectite hydration even for homoionic specimens under controlled rel-

ative humidity conditions (Ferrage et al., 2005a,b, 2007, 2010; Karmous

et al., 2009). Consistently, all structural characterizations of natural sam-

ples performed with calculation algorithms allowing the calculation of

their XRD patterns have led to the identification of mixed-layer structures

that include more than two components owing to the systematic heteroge-

neity of the swelling/hydration behaviour of expandable layers (Drits

et al., 1997b, 2002a,b, 2004, 2007; Sakharov et al., 1999a,b, 2004a;

Lindgreen et al., 2000, 2002, 2008; Claret et al., 2004; McCarty et al.,

2004, 2008; Inoue et al., 2005; Aplin et al., 2006; Hubert et al., 2009;

Lanson et al., 2009). It should be noted that heterogeneity is present what-

ever the chemistry (both Fe- and Al-rich) of expandable layers (McCarty

et al., 2004). In addition, the hydration behaviour exhibited by expandable

layers in smectite is not restricted to the usual 0W (d001¼9.6–10.0 Å), 1W

(d001¼12.0–12.8 Å), and 2W (d001¼14.8–15.6 Å) states, and ‘unusual’

basal spacings were reported for hydrated expandable layers (e.g.

Lindgreen et al., 2002; Lanson et al., 2009) as suggested by Bailey et al.

(1982). Heterogeneity is not restricted to expandable layers, and the co-

existence of different mica-like layers in a given mixed-layer structure

was also reported, thus substantiating the inability of these methods to pro-

vide a satisfactory identification of mixed-layer structures. In particular,

the co-existence of Kþ- and NH4
þ-mica layers was repeatedly demon-

strated in the context of burial diagenesis in the vicinity of source rocks

(Drits et al., 1997a, 2001, 2002a, 2005, 2007; Sakharov et al., 1999a;

Lindgreen et al., 2000).

– In addition, most methods include calculations only for randomly inter-

stratified mixed-layer structures (S¼0, pii¼wi) and for the sole MPDO

case for higher values of the Reichweite parameter S despite the key role

of junction probabilities in the profiles of XRD patterns calculated for

mixed-layer structures (see Appendix A1). The high frequency of natural

and synthetic mixed-layer structures exhibiting junction probabilities dif-

ferent from the usual S¼0 and MPDO cases (i.e. partial segregation or

partial ordering; Drits et al., 1997b, 2002b, 2004; Sakharov et al., 1999a,

b; Claret et al., 2004; Inoue et al., 2005; McCarty et al., 2008, 2009;

Hubert et al., 2009, 2012; Lanson et al., 2009; Ferrage et al., 2011b)
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clearly demonstrates that XRD profile modelling is the unique tool that

can provide an accurate structure characterization of mixed-layer struc-

tures, as peak migration curves are not available for junction probabilities

different from the ‘ideal’ cases.

– Finally, essential adjustable parameters that are insufficiently varied

include the size and distribution of the CSD, as the calculations are most

often restricted to a single mean value, and the crystal chemistry (layer

thickness, coordinates and occupancies of the different sites, chemistry,

etc.) of elementary layers.

Although the systematic calculation of XRD patterns for a variety of mixed-

layer models allows an improved prediction of these complex diffraction

effects, such a description is not included in this chapter. The effect on calcu-

lated XRD patterns of junction probability parameters and of various defects

described in the previous sections to emphasize their potential importance for

the XRD identification of mixed-layer structures is rather illustrated in the

Appendix. As discussed by Lanson (2011), the modelling approach represents,

indeed, the optimum, and at present the sole, quantitative method allowing a

thorough structure determination of mixed-layer structures, even on polypha-

sic and/or natural samples. This approach allowed revealing the intrinsic

complexity of defective lamellar structures and improving their structural

characterization.

Available calculation routines thoroughly renewed the description of

mixed-layer structures, and a key point when using these tools is thus

IMAGINATION: the search for possible structure models should not be

restricted to what has been reported previously in the literature but should

include all models with realistic crystal chemistry.

This approach requires a quantitative comparison of XRD data with cal-

culated patterns and benefits from additional constraints to assess the valid-

ity of structure models in an effort to overcome the major intrinsic

limitation of the XRD identification of clay minerals resulting from the

tendency of XRD to average parameters describing crystal structure. The

resulting low sensitivity of XRD to variation in local disorder can allow

for the existence of several structure models giving rise to similar diffrac-

tion effects for a given set of experimental conditions. To determine the

actual structure model, additional constraints obtained from the analysis

of different XRD patterns collected from the same sample after different

treatments are thus essential (multi-specimen approach; Drits et al.,

1997b; Sakharov et al., 1999a,b; McCarty et al., 2004). Complementary

computational or experimental (microscopies, spectroscopies, chemical

and thermal analyses, etc.) approaches may also be used to obtain unambig-

uous and comprehensive structure models (Drits, 1983, 2003; Ferrage et al.,

2011a,b; Lanson, 2011).
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APPENDIX INFLUENCE OF VARIOUS ADJUSTABLE
PARAMETERS ON XRD PATTERNS CALCULATED FOR MIXED-
LAYER STRUCTURES

A1 XRD Patterns Calculated for two-Component Mixed-Layer
Structures with Contrasting Junction Probabilities

XRD patterns shown in Fig. 2.3.14 were all calculated for a 0.7:0.3 ratio

between illite and smectite with two planes of ethylene glycol (EG) molecules

and S¼1, but with different junction probability parameters (pSS). Basal reflec-
tions systematically exhibit non-rational series of d values. Depending on the

junction probability parameters, XRD patterns calculated for a unique compo-

sition (wI:wS¼0.7:0.3) differ considerably by the number, positions, profiles,

and relative intensities of the basal reflections. The positions of these reflec-

tions are reminiscent of a rectorite-like structure (a regular illite–smectite with

a 50:50 illite:smectite ratio) when the degree of ordering is maximum (S¼1

with MPDO, pSS¼0; Fig. 2.3.14A), or of a physical mixture of finely dispersed

smectite and mica for the highly segregated model (pSS¼0.6; Fig. 2.3.14E),

despite their identical wI:wS ratios. The pattern corresponding to random inter-

stratification (S¼0, pSS¼0.3; Fig. 2.3.14C) is only weakly modulated in the

low-angle region (2y<10� Cu Ka).
XRD patterns shown in Fig. 2.3.15 were calculated for the same wI:wS ratio

(0.7:0.3) and different junction probability parameters at S¼2, and MPDO at

S¼1 (pSS¼pSSS¼pISS¼pSSI¼0). XRD patterns differ only by their value of

the pSIS coefficient that may take any value from 0 to 1, but systematically exhibit

non-rational series of d values for basal reflections. Similar to Fig. 2.3.14, the first

two patterns exhibit a tendency to ordering at S¼2 (pSIS¼0.0 and 0.2 for

Fig. 2.3.15A and B, respectively), and reflection positions are close to that of

the periodic IISIIS. . . stacking when the degree of ordering is maximum (S¼2

with MPDO, pSS¼pSSS¼pSIS¼0; Fig. 2.3.15A). Random layer stacking at

S¼2 is obtained for pSIS¼pIS¼0.429, and corresponds to the S¼1 with MPDO

case (Figs. 2.3.14A and 2.3.15C). Segregation of I layers and of IS pairs is illu-

strated in Fig. 2.3.15D and E (pSIS¼0.5 and 0.7, respectively), the latter pattern

being similar to that of a mixture of mica- and rectorite-like structures.

Similar calculations can be performed as a function of pSIS for mixed-layer

structures with S¼2 and the same wI:wS ratio (0.7:0.3) but with junction prob-

ability parameters differing from the MPDO case at S¼1 (i.e. with pSS>0).

XRD patterns displayed in Fig. 2.3.16 were calculated for pSS¼pSSS¼0.15;

their resolution within the low-angle region (2y<10� Cu Ka) is strongly

degraded compared to the case with MPDO at S¼1 (Fig. 2.3.15), especially

when the tendency to ordering of I layers and of IS pairs is high. This effect

is significantly enhanced when the occurrence probability of smectite layer

pairs and triplets is increased (Figs. 2.3.17 and 2.3.18 were calculated for
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FIGURE 2.3.14 XRD patterns calculated for two-component illite–smectite having a unique

composition (wI:wS¼0.7:0.3) and contrasting degrees of ordering at S¼1. (A) Maximum possible

degree of ordering, pSS¼0; (B) partial ordering, pSS¼0.15; (C) random interstratification,

pSS¼wS¼0.3 (S¼0); (D) partial segregation, pSS¼0.45; (E) partial segregation, pSS¼0.60. Layer

thicknesses of illite and smectite (with two sheets of interlayer ethylene glycol molecules) layers

are 9.98 and 16.9 Å, respectively. Peak positions are given in angstroms (Å).
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FIGURE 2.3.15 XRD patterns calculated for two-component illite–smectite with identical com-

position (wI:wS¼0.7:0.3) and junction probability at S¼1 (MPDO; pSS¼0) but contrasting

degrees of ordering at S¼2. In all cases, pISS¼pSS¼0. (A) Maximum possible degree of ordering,

pSIS¼0; (B) partial ordering, pSIS¼0.20; (C) random interstratification, pSIS¼0.429 (equivalent to

the S¼1 with MPDO case; Fig. 2.3.14A); (D) partial segregation, pSIS¼0.50; (E) partial segrega-

tion, pSIS¼0.70. Other parameters as in Fig. 2.3.14.
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FIGURE 2.3.16 XRD patterns calculated for two-component illite–smectite having identical

composition (wI:wS¼0.7:0.3) and junction probability at S¼1 (pSS¼0.15) but contrasting degrees

of ordering at S¼2. In all cases, pISS¼pSS¼0.15. (A) Maximum possible degree of ordering,

pSIS¼0; (B) partial ordering, pSIS¼0.15; (C) random interstratification, pSIS¼0.364 (equivalent

to the S¼1 case; Fig. 2.3.14B); (D) partial segregation, pSIS¼0.45; (E) partial segregation,

pSIS¼0.60. Other parameters are as in Fig. 2.3.14.

Handbook of Clay Science120



14.42

3.347

1.999

17.9

12.48

9.382
5.242

3.347

3.346

3.346

3.346

2.004

2.033

2.037

2.039
1.951

18.2

9.407
5.252

1.955
16.4

9.448
5.277

25.7

15.13

9.869
5.353

26.1

10.05
9.099 5.405

5.050 2.717 2.067 1.915

A

B

C

D

E

Position (�2q CuKα)

0 5 10 15 20 25 30 35 40 45 50

FIGURE 2.3.17 XRD patterns calculated for two-component illite–smectite having identical

composition (wI:wS¼0.7:0.3) and junction probability at S¼1 (pSS¼0.30) but contrasting degrees

of ordering at S¼2. In all cases, pISS¼pSS¼0.30. (A) Maximum possible degree of ordering,

pSIS¼0; (B) partial ordering, pSIS¼0.15; (C) random interstratification, pSIS¼0.364 (equivalent

to the S¼0 case; Fig. 2.3.14C); (D) partial segregation, pSIS¼0.45; (E) partial segregation,

pSIS¼0.60. Other parameters are as in Fig. 2.3.14.
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FIGURE 2.3.18 XRD patterns calculated for two-component illite–smectite having identical

composition (wI:wS¼0.7:0.3) and junction probability at S¼1 (pSS¼0.45) but contrasting degrees

of ordering at S¼2. In all cases, pISS¼pSS¼0.45. (A) Maximum possible degree of ordering,

pSIS¼0; (B) partial ordering, pSIS¼0.15; (C) random interstratification, pSIS¼0.236 (equivalent

to the S¼1 case; Fig. 2.3.14D); (D) partial segregation, pSIS¼0.35; (E) partial segregation,

pSIS¼0.45. Other parameters are as in Fig. 2.3.14.
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mixed-layer structures with S¼2, the same wI:wS ratio (0.7:0.3), and

pSS¼pSSS¼0.30 and 0.45, respectively). Additional XRD patterns can be cal-

culated for mixed-layer structures with S¼2 and the same wI:wS ratio

(0.7:0.3) by varying the junction probability parameter pSSS for a given set

of pSS and pSIS parameters. One such series of calculated patterns is shown

in Fig. 2.3.19 for pSS¼0.30 and pSIS¼0.15, with a significant impact on peak

position, profile, and relative intensity, except for the low-angle reflections. In

all XRD patterns calculated for a mixed-layer structures with the same wI:wS

ratio (0.7:0.3), neither the position nor the profile of the reflection with

d¼3.346–3.347 Å seems to be affected by modification of junction probabil-

ity parameters, owing to the close basal spacings of reflections corresponding

to illite [dI(003)¼3.327 Å] and smectite [dS(005)¼3.380 Å] in this region.

A2 XRD Patterns Calculated for Multi-Component Mixed-Layer
Structures

The co-existence of Kþ- and NH4
þ-mica layers in mica–smectite was repeat-

edly evidenced in the context of burial diagenesis in the vicinity of source rocks.

In addition to tobelite (NH4
þ-mica), paragonite, margarite, or aluminocelado-

nite may also occur in mica-containing mixed-layer structures. The contrasting

layer-to-layer distance of these mica varieties (�10.33, �9.65, �9.56, and

�9.86 Å, respectively) compared to illite (9.98 Å) induces a subtle but signifi-

cant peak shift. The co-existence of different types of mica layers in mica–

smectite (e.g. illite–tobelite–smectite) is best evidenced after saturation of the

sample with Kþ ions and subsequent heating at �300 �C (Drits et al., 1997a,

2005). Such treatment decreases the layer-to-layer distance of smectite layers

to that of illite layers (9.98 Å), and the relative abundance of tobelite (e.g.)

layers can be estimated from the accurate modelling of reflection positions. This

ability is illustrated in Fig. 2.3.20, which compares the XRD patterns calculated

for illite–smectite and illite–tobelite–smectite having the same mica:smectite

ratio and differing by the composition and thickness of mica layers. Experimen-

tally, the addition of Si powder (NIST SRM 640c) as an internal standard is

helpful for the accurate determination of experimental d values.

When adapted calculation routines were used, mixed-layer structures con-

taining expandable layers were described systematically as multi- (three- or

four-) component mixed-layer structures owing to the intrinsic hydration/

swelling heterogeneity of expandable layers. Saturation with polar organic

compounds such as EG likely reduces this heterogeneity but the actual beha-

viour of expandable interlayer spaces in mixed-layer structures remains poorly

constrained (Bailey et al., 1982). The impact of swelling heterogeneity on

XRD patterns is illustrated in Fig. 2.3.21, which compares the XRD patterns

calculated for illite—expandable with a 0.7:0.3 wI:wExp ratio. Compared to

the calculations performed with no swelling heterogeneity (Fig. 2.3.14), the

presence of 8% smectite layers swelling to 12.9 Å (one plane of interlayer EG
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FIGURE 2.3.19 XRD patterns calculated for two-component illite–smectite having identical

composition (wI:wS¼0.7:0.3) and junction probability at S¼1 (pSS¼0.30) but contrasting degrees

of ordering at S¼2. In all cases, pSIS¼0.15. (A) pSSS¼0; (B) pSSS¼0.15; (C) pSSS¼0.30;

(D) pSSS¼0.45; (E) pSSS¼0.60. Other parameters are as in Fig. 2.3.14.
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molecules) together with 22% smectite layers hosting two planes of interlayer

EG (d value: 16.9 Å) induces major modifications of the calculated profiles,

especially in the low-angle region (2y<10� Cu Ka).

A3 XRD Patterns Calculated for Mixed-Layer Structures with
Different Types of Defects

Figure 2.3.22 compares XRD patterns calculated for illite–smectite in which

all ‘core’ expandable layers host two planes of interlayer EG. The occurrence

of different types of layers (either ‘naked’ 2:1 layers as in Newmod, or 2:1

layers with one interlayer plane of EG) on the external edges of the crystals

(OSL) significantly modifies the diffraction pattern over the low-angle region

(2y<10� Cu Ka).
The influence of layer thickness fluctuations is illustrated in Fig. 2.3.23

and is visible essentially over the high-angle region (2y>20� Cu Ka). From
the diffraction point of view, defects of the first type are similar to atomic

thermal motion. For a similar Dx value, the intensity reduction, compared to

a defect-free model, within the high-angle region appears stronger for defects

of the second type compared to defects of the first type (see Section 2.3.5 for

10.08

5.015

3.338

2.507

2.002

(10.04)

(4.996)

(3.326)

(2.498)

(1.996)

Position (�2q CuKα)

0 5 10 15 20 25 30 35 40 45 50

FIGURE 2.3.20 XRD patterns calculated for mica–smectite having identical composition (wM:

wS¼0.95:0.05) but different interlayer composition for the mica interlayers. The black and grey

lines are calculated for 85:10 and 95:0 ratios between K-(illite) and NH4-(tobelite) micas, respec-

tively. Layer thicknesses of tobelite (NH4-mica), illite, and smectite (following K-saturation and

heating to 300 �C) layers are 10.35, 9.98, and 9.98 Å, respectively. In all cases, interstratification

is random (S¼0). Other parameters are as in Fig. 2.3.14.
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FIGURE 2.3.21 XRD patterns calculated for illite-expandable having identical composition

(wI:wExp1:Exp2¼0.70:0.22:0.08) but contrasting junction probabilities at S¼1. The grey

patterns are systematically calculated with homogeneous smectite interlayers (wI:wExp1:
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a description; Fig. 2.3.23A and B). In addition, defects of the second type

induce peak broadening that increases with increasing y values, compared to

a defect-free model. For a similar Dx value, peak broadening is lower for

defects of the first type. Finally, if the distribution of layer thicknesses is

not symmetrical with respect to the average value, for example, if layer thick-

ness can only take values larger than the ‘usual’ d-spacings, reflections are

Exp2¼0.70:0.30:0.00) and correspond to the patterns shown in Fig. 2.3.14. (A) Maximum

possible degree of ordering (MPDO), pExp1Exp1¼pExp2Exp1¼pExp1Exp2¼pExp2Exp2¼0;

(B) pExp1Exp1¼pExp2Exp1¼0.11, pExp1Exp2¼pExp2Exp2¼0.04; (C) pExp1Exp1¼pExp2Exp1¼0.22,

pExp1Exp2¼pExp2Exp2¼0.08; (D) pExp1Exp1¼pExp2Exp1¼0.33, pExp1Exp2¼pExp2Exp2¼0.12;

(E) pExp1Exp1¼pExp2Exp1¼0.44, pExp1Exp2¼pExp2Exp2¼0.16. Peak positions are indicated for

mixed-layer structures with heterogeneous smectite behaviour (wI:wExp1:Exp2¼0.70:0.22:0.08).

Position (�2q CuKα)
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FIGURE 2.3.22 XRD patterns calculated for two-component illite–smectite with identical com-

position (wI:wS¼0.7:0.3) and junction probability at S¼1 (MPDO; pSS¼0) but different outer

surface layers. The grey pattern is systematically calculated with an asymmetrical model with a

naked 2:1 layer on the crystal bottoms, and two sheets of ethylene glycol molecules or K-mica

interlayers on crystal tops. (A) The black line is calculated with naked 2:1 layers on both crystal

bottoms and tops. (B) The black line is calculated with one sheet of ethylene glycol molecules on

both crystal bottoms and tops.
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shifted (in this case towards larger d values and lower diffraction angles) com-

pared to the position calculated for defect-free layers (Fig. 2.3.23C).

Figure 2.3.24 shows that XRD patterns calculated for the same average

CSD size but different distributions are essentially similar. However, a minor

effect may be observed on the relative intensity of the different reflections. In

particular, reflection intensity decreases faster with increasing diffraction

angle when a lognormal distribution is used compared to Ergun’s model

(see Section 2.3.4 for details regarding the different distributions).
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3.345
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13.26

30.5

30.6

4.594

4.632

30.7

1.954 

A

B

C

Position (�2q CuKα)

FIGURE 2.3.23 XRD patterns calculated for two-component illite–smectite with identical com-

position (wI:wS¼0.7:0.3) and junction probability at S¼1 (MPDO; pSS¼0) but contrasting fluc-

tuations of layer thickness (see Section 2.3.5 for details). The grey pattern is systematically

calculated with no fluctuation of layer-to-layer distances. (A) The black line is calculated with

a Gaussian distribution of defects of the second type for S layers (D(x)¼0.3). (B) The black line

is calculated with a Gaussian distribution of defects of the first type for S layers (D(x)¼0.3). (C)

The black line is calculated with a semi-normal distribution of defects of the second type for S

layers (D(x)¼þ0.3).
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Plançon, A., Drits, V.A., 1994. Expert system for structural characterization of phyllosilicates. I.

Description of the expert system. Clay Miner. 29, 33–38.
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Reynolds Jr., R.C., 1967. Interstratified clay systems: calculation of the total one-dimensional dif-

fraction function. Am. Mineral. 52, 661–672.

Reynolds Jr., R.C., 1976. The Lorentz factor for basal reflections from micaceous minerals in ori-

ented powder aggregates. Am. Mineral. 61, 484–491.

Reynolds Jr., R.C., 1980. Interstratified clay minerals. In: Brindley, G.W., Brown, G. (Eds.), Crys-

tal Structures of Clay Minerals and Their X-ray Identification. The Mineralogical Society,

London, pp. 249–359.

Reynolds Jr., R.C., 1983. Calculation of absolute diffraction intensities for mixed-layered clays.

Clays Clay Miner. 31, 233–234.

Reynolds Jr., R.C., 1985. NEWMOD: A Computer Program for the Calculation of One-

Dimensional Patterns of Mixed-Layered Clays. Hanover, NH.

Reynolds Jr., R.C., 1986. The Lorentz-polarization factor and preferred orientation in oriented

clay aggregates. Clays Clay Miner. 34, 359–367.

Reynolds Jr., R.C., 1988. Mixed layer chlorite minerals. In: Bailey, S.W. (Ed.), Hydrous Phyllo-

silicates (Exclusive of Micas). Reviews in Mineralogy, vol. 19. Mineralogical Society of

America, Washington, DC, pp. 601–630.

Ruland, W., Tompa, H., 1968. Effect of preferred orientation on intensity distribution of hk inter-

ferences. Acta Crystallogr. A 24, 93–99.

Ruland, W., Tompa, H., 1972. Influence of preferred orientation on line width and peak shift of hk

interferences. J. Appl. Crystallogr. 5, 225–230.

Sakharov, B.A., 2005. Improved model for simulation of experimental XRD patterns for clays

including mixed-layer clay minerals. Proceedings of the Clay Minerals Society 42nd Annual

Meeting, Burlington, Vermont, pp. 95.

Sakharov, B.A., Naumov, A.S., Drits, V.A., 1982a. X-ray diffraction by mixed-layer structures

with random distribution of stacking faults. Dokl. Akad. Nauk 265, 339–343 (in Russian).

Sakharov, B.A., Naumov, A.S., Drits, V.A., 1982b. X-ray intensities scattered by layer structures

with short-range ordering parameters S�1 and G�1. Dokl. Akad. Nauk 265, 871–874

(in Russian).

Sakharov, B.A., Naumov, A.S., Drits, V.A., 1983. X-ray scattering by defect layer structures.

Kristallografia 28, 951–958 (in Russian).

Sakharov, B.A., Lindgreen, H., Salyn, A., Drits, V.A., 1999a. Determination of illite-smectite

structures using multispecimen X-ray diffraction profile fitting. Clays Clay Miner. 47,

555–566.

Handbook of Clay Science134



Sakharov, B.A., Lindgreen, H., Salyn, A.L., Drits, V.A., 1999b. Mixed-layer kaolinite-illite-

vermiculite in North Sea shales. Clay Miner. 34, 333–344.

Sakharov, B.A., Dubinska, E., Bylina, P., Kozubowski, J.A., Kapron, G., Frontczak

Baniewicz, M., 2004a. Serpentine-smectite interstratified minerals from Lower Silesia (SW

Poland). Clays Clay Miner. 52, 55–65.
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