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X-ray ldentification of Mixed-Layer Structures

Mixed-layer structures are remarkable examples of the order/disorder observed
in natural (e.g. clay minerals and layered oxides) and synthetic (e.g. carbons,
layered double hydroxides, layered dichalcogenides, and high-temperature super-
conductors) lamellar crystals. Mixed-layer structures consist in the alternation
either of layers exhibiting contrasting structures, compositions, and basal dis-
tances or of layers having similar basal distances but differing by their internal
structures or stacking mode, that is exhibiting different layer displacement or rota-
tion between consecutive layers. The different layer types can co-exist in variable
proportions within the crystal and define a variety of layer stacking sequences.

Two main categories of mixed-layer structures can be singled out depending
on the actual distribution of interstratified layer types. The first corresponds to
regular structures in which different layer types alternate periodically, usually
along the axis perpendicular to the layer plane (the c*-axis). When they were
naturally occurring, such mixed-layer structures were often given mineral
names, as they had strictly periodic structures and were also often considered
as distinct phases. Chlorites and corrensite are two examples of such structures
that can be described as regular talc—brucite and chlorite—smectite, respectively.
Within the material chemistry community, these regular alternations of dif-
ferent layer types are known as the ‘staging’ phenomenon, the nth staging
corresponding to the systematic occurrence of a given layer type at every nth
layer (Fogg et al., 1998; Ijdo and Pinnavaia, 1998). When the different layer
types have the same structure but differ in their layer displacement, their regular
alternation defines polytypic variants of a given mineral/species.

In the second type of mixed-layer structures, the different layer types either
alternate at random or tend to some sort of ordering (avoiding, for example, the
existence of pairs of the minor layer type) or segregation (clustering layers of a
given type). In this case, and if interstratified layers have significantly different
thicknesses and structures, the resulting reflection positions do not obey Bragg’s
law but form a non-rational series (dyo; 7 X dyg;) leading to an apparent lack of
physical meaning for the observed peak positions. The second type of mixed-
layer structures also includes structures in which the respective thicknesses of
interstratified layers are multiples of each other (e.g. chlorite—serpentine). In this
case, the positions of reflections corresponding to the mixed-layer structure form
a rational series, and the identification of the interstratified character of the struc-
ture then requires a more detailed analysis of peak position, profiles (especially
width), and relative intensities for different reflections (Moore and Reynolds,
1997; Drits, 2003). Finally, the second type of mixed-layer structures includes
structures in which interstratified layers have approximately the same thickness
but distinct structures or layer displacement. In this case, only the positions of
non-basal reflections are affected. These reflections form non-rational series
as basal reflections for mixed-layer structures in which interstratified layers have
significantly different thicknesses and structures. Within this last type of mixed-
layer structures, additional variety can arise from the possible incommensurabil-
ity of the interstratified layers within the a—b plane.
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The sustained interest in mixed-layer structures arises from their reactiv-
ity, which is reinforced by their anisotropic character. In particular, the inter-
calation properties of lamellar compounds, including clay minerals, have
drawn the attention of the material chemistry community for the last few dec-
ades with the view to prepare polyfunctional materials. Similarly, the reactiv-
ity of natural layered silicates in response to their environmental conditions
was thoroughly investigated both for its potential ability to record temperature
and/or pressure paleo-conditions, and for assessing the possible impact of
these minerals on their environment, in particular in the context of waste stor-
age. Lanson (2011) recently reviewed the efforts dedicated to the structural
characterization of mixed-layer structures, essentially using X-ray diffraction
(XRD) in the fields of materials chemistry and (clay) mineralogy (layered sili-
cates, layered oxides, and layered double hydroxides). This author stressed the
necessity of a direct quantitative comparison between experimental and calcu-
lated XRD patterns to determine the crystal chemistry of mixed-layer struc-
tures. He also showed that mixed-layer structures containing three, or more,
layer types may be extremely common, the main reasons for their scarce
description in the literature being the lack of adapted calculation routines.

This chapter thus proposes a thorough description of theoretical concepts
allowing the calculation of diffraction effects from mixed-layer structures
with any layer types and ordering parameters using the matrix formalism. It
also includes algorithms allowing a comprehensive determination of the prob-
ability parameters required to describe layer stacking in mixed-layer struc-
tures. Finally, all recent developments that have proved to be necessary to
fit XRD data from mixed-layer structures (fluctuations of layer thickness,
presence of inter-crystalline defects, contrasting nature of crystal external
edges, etc.) are described, and the equations necessary for the calculation of
induced diffraction effects derived.

2.3.1 DIFFRACTION INVESTIGATION OF MIXED-LAYER
STRUCTURES

2.3.1.1 Diffraction Fundamentals

A scattering entity may be considered as an ensemble of elementary scatterers or
atoms, with an individual scattering power." When interacting with the primary
X-ray beam, these elementary scatterers act as a source of scattered waves.
According to the kinematic theory of diffraction, the wavelength of these second-
ary waves is unaffected by the scattering, and their amplitude is much lower than
that of the primary waves. Secondary waves are scattered in all directions, their

1. The scattering power of an atom, particle, or object is the amplitude ratio of X-rays scattered in
a given direction and with a given wavelength by this element to that scattered by a free electron.
The scattering power of an atom is known as its ‘atomic scattering amplitude’ and expressed in
electron units.
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relative phases in a given direction depending on the mutual arrangement of ele-
mentary scatterers in the scattering entity. Constructive, or destructive, interfer-
ences of secondary waves induce a modulation of the diffracted intensity as a
function of the direction considered. Figure 2.3.1A shows two elementary scat-
terers, one at the origin of the coordinate system (in C) and the other shifted by
vector r (in B). The directions of incident and scattered waves are indicated by
the unit vectors kg and k, respectively. The distances covered by the waves scat-
tered at the origin and at the end of vector r differ in their length:
A=(AB —CD)=—[(k—Kko) - r], where [(k—Ko)-r] is the scalar product of the
two vectors. The path difference between the two waves determines their phase
shift: o =224 = —28[(k — ko) r].

Waves scattered at the origin (in C) are thus ahead of phase by (¢ compared
to those scattered at the end of vector r (in B). Vector s= (k —Kg)/A is defined
symmetrically with respect to the incident and diffracted beams (Fig. 2.3.1B),
thus leading to s=2 sin 0/4, 6 being half of the diffraction angle. The scalar

Ko/

FIGURE 2.3.1 (A) Schematic representation of incident (ky) and diffracted (k) beams for two
elementary scatterers located at the origin and at the end of vector r (C and B, respectively).
(B) Definition of vector s=(k —Kkg)// and of the path difference between waves diffracted by
planes perpendicular to s and located in C and B.



Handbook of Clay Science

product (s-r) implies that the phase shift is related solely to the component of r
along the s direction. The component of r perpendicular to the s direction does
not contribute to the phase shift, and all elementary scatterers located along the
dotted lines on Fig. 2.3.1B thus share a common phase term, and diffraction
may be considered as the reflection of X-rays by the set of planes shown by
these lines. Vector s is perpendicular to these reflecting planes, and the path dif-
ference between waves diffracted by these planes can be expressed as

[(k—Kko)r] = A(s'r) = A[s||r|cos (s:r) = 2d sin 0,

where d=Irlcos(s-r) is the interplanar distance (d-value). When the value of
this path difference is a multiple of A, that is, when 2d sin 0 =ni (Bragg’s
law), interferences of secondary waves are constructive and the sum of their
amplitudes is maximum.

Thus, if f; is the scattering power of the atom whose position is defined by
vector r;, its scattered amplitude is

frexp —2mi(s-r)) (2.3.1)
and the amplitude of waves scattered by a set of atoms can be written as
A(s)=>_ frexp—2mi(sr;) 23.2)
J

To obtain a dimensionless term in the exponential, the dimensions of s and
r are reciprocal. If the distribution of scatterers is described by r in the real
space, then the scattered amplitude A(s) can be described by vector s in the
reciprocal space. In turn, the intensity of the scattered waves is the product
of A(s) and its conjugate value, that is,

1(8) =A(S)A™(8) =D ffjexp—2nils (1 —1;)]. (2.3.3)

Equation (2.3.3) allows the calculation of diffraction effects arising from a set of
atoms if their scattering powers and mutual arrangement are known. Scattering
centres may be not only atoms but also a set of scatterers. For example, the con-
cept of a crystal lattice is often used to describe diffraction by crystalline mate-
rials. According to this concept, each of the lattice nodes has a scattering power
corresponding to the unit cell. In this case, f; should be replaced in Eq. (2.3.2) by
the scattering power of the unit cell, named structure amplitude (F), and vector
r; defines the origin of the jth unit cell. The structure amplitude can be written as
F(s)= Z fiexp —2zi(s-r;), the sum over i being limited to a single unit cell.

l

2.3.1.2 Calculation of Diffraction Effects from Mixed-Layer
Structures

It will be assumed hereafter that layers constitutive of mixed-layer structures
have a two-dimensional (2D) periodicity. Mixed-layer structures can thus be
considered as one-dimensionally (1D) disordered structures in which layers
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differing by their thickness and/or scattering power alternate along the perpen-
dicular to the layer plane with different degrees of order/disorder. Diffraction
effects will be calculated first for a single layer, then for a set of layers (crys-
tal), and finally for a set of crystals (powder sample).

The single layer has an orthogonal unit cell with parameters a, b, and ¢, the a
and b lattice vectors being defined within the layer plane while ¢, represents the
layer thickness or the layer-to-layer distance in a crystal. The origin of the nth unit
cell in the layer is located at r,,=n;a -+ n,b. Similarly, the position of the jth atom
in this unit cell is at r;=x;a+yb+z;co, x;, y;, with z; being the relative coordi-
nates of this atom in the unit cell. The position of any atom in the layer may thus
be determined from the sum of vectors r,, and r;, while, according to Eq. (2.3.1),
the amplitude of X-rays scattered by this atom can be written as:

frexp—2mi[s:(r, +1;)].

In turn, the amplitude of X-rays scattered by a single layer can be obtained
by summing this amplitude over all j atoms of the unit cell and over all unit
cells of the layer: that is,

QZZijexp 2mifs(r,+1))]

ny ny
—ZZ exp — 2mi(s-r,) E fiexp —2mi(sr;), (2.3.4)
n m

the double sum over n; and n, being normalized by the surface area of the unit
cell within the a—b plane (£2).

It is then convenient to define vector s in the coordinate system of the
reciprocal lattice. Vectors a*, b*, and ¢* are reciprocal of a, b, and ¢ in the
real space: that is, (a-a*)=(b-b*)=(c-c*)=1 and (a-b*)=(b-a*)=
(a-c*)=(c-a*)=(b-c*)=(c-b*)=0. The axes of the reciprocal coordinate
system are thus perpendicular to the planes of the coordinate system in
the real space. If a, 8, and y are the coordinates of s in the reciprocal space
(s=waa*+ fb*+yc*), then

(rys) =njo+np and (r;s) =xo+y,B+z. (2.3.5)
By combining Eqgs. (2.3.4) and (2.3.5):

Ao, QZZ exp — 2mi(njo+nyff) ijexp Zm(xjochyjﬂJrzjy)

n ny
(2.3.6)

The amplitude of X-rays scattered by a single layer is thus a function of
the o, ff, and y coordinates of vector s in the reciprocal space. If this layer
is rectangular with an extension of Ny and N, unit cells along the a and b axes,
respectively, the first two sums in Eq. (2.3.6) are geometric progressions with
common ratios equal to exp-2mia and exp-2mif}, respectively, and Eq. (2.3.6)
can be expressed as
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1 sinzN o sinN, 8

A(O(,ﬁ,')))z exp_ni[<Nl_1)a+(N2_1)ﬁ]

Q sinmo  sinnf

Z frexp —2mi(xjo+y; B +z7).
J

In turn, the intensity, normalized to a unit cell, of X-rays scattered by
atoms of this layer becomes

Q.
:;A (OC,ﬁ,'}))A(OC,B,'}))
1 sin?zaN,o sin’nN,f

Qo sin?mo  sin?nf

(o, B,7)

2
> fiexp—2mi(xjo+yf+z)| . 23.7)
J

where ¢ is the surface area of the layer in the a—b plane.

sin?zN; o sin?aN, B .
is the interference func-

In this equation, the product — -
q P sinzoc  sin?nf

tion @(a,f) and depends on the size and shape of the layer, while the squared
expression is the structure factor of a unit cell |F (oc,ﬁ,y)lz.

For high values of N; and N, (~103—104), the interference function exhi-
bits the major maxima for integer values a=h, f=k, while the intensity
decreases rapidly when a#h and f#k. If o, ff, and y are expressed as
h+X, k+Y, and Z, respectively, Eq. (2.3.7) may be written as

1
Ii(X.Y.2) = o= (X.Y)|Fu(X. Y. Z) .

In the reciprocal space, the intensity maxima are thus located along the rods
parallel to the c¢*-axis and crossing the reciprocal lattice at 4k nodes (Fig. 2.3.2).
Within the X, Y range over which the interference function (®,,(X,Y)) is intense,
the structure factor (IF,u(X,Y,Z)P%) varies slowly and may be satisfactorily
approximated by IF,,.(Z)I?, leading to the following expression for the intensity
distribution within %k rods:

1
In(X.Y.2) = 5 @u(X.Y)|Fiu(2)". (2.3.8)

The intensity distribution within a rod is thus described by two indepen-
dent functions, namely, the structure factor |F(Z )2 along a rod and the inter-
ference function @,,(X,Y) across that rod. Because only waves scattered by
planes parallel to the layer surface are involved, the sole rod with #=0 and
k=0 needs to be considered for the calculation of basal reflection intensity.
In this case, the amplitude of X-rays scattered by one layer is proportional
to the product of the structure amplitude F(Z) and the shape factor D(X,Y ).2

2. The shape factor D(X,Y) is the Fourier transform of the layer shape function g(x,y),which is
equal to 1 and 0 within and outside the layer, respectively (Ewald, 1940).
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FIGURE 2.3.2 Schematic intensity distribution in the reciprocal space for a single layer. Intensity
maxima are located along the rods parallel to the ¢*-axis and crossing the reciprocal lattice at 1k nodes.

1
A(X.Y.Z) = GFZ)D(X.Y) with F(Z)= > Kifiexp—2mizZ,
J

where z; is the coordinate along the normal to the layer of the jth atom in the
unit cell (in A) K; is the occupancy of the z; posmon by the j atoms; and Z is
the coordinate in the reciprocal space along ¢* (in A h.

The function D(X,Y) depends on the size and shape of the layer. It is rea-
sonable to assume that in a crystal, all layers have the same shape and size in
the a-b plane. Consequently, the terms D(X,Y) are similar for all layers and
may be omitted in the following developments. A mixed-layer crystal with
N layers may thus be considered as a column parallel to the c*-axis (or to
the Z direction) and consisting of N unit cells of different types with a com-
mon basis. To calculate the intensity of waves scattered by such a column
along Z, it is convenient to choose the origin of the coordinate system on
the lower surface of the crystal and to number layers from bottom to top
(Fig. 2.3.3). The position of the mth layer in the crystal is thus defined by vec-
tor r,,. X-rays scattered by the unit cell of the mth layer are thus ahead of
phase with respect to those scattered by the unit cell at the origin of the coor-
dinate system, and their amplitude is

Fp(Z)exp —2niZry, (2.3.9)

where F,, is the structure amplitude of the unit cell for the mth layer, and r,,
the distance from the origin of the crystal to the origin of the mth layer.
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FIGURE 2.3.3 Schematic representation of a mixed-layer crystal composed of N layers (or unit
cells), labelled from 1 to N from bottom to top. The position of the mth layer (or unit cell) in the
crystal is defined by vector r,, and its thickness is &,,.

The summation of Eq. (2.3.9) over all unit cells of the column is the
amplitude of waves scattered by the whole crystal:

N
A(Z)= " Fu(Z)exp —2miZr, (2.3.10)
m=1

Equation (2.3.10) may be further modified by introducing the phase shift
;= —2nZ¢; between the ith and (i + 1)th layers, which depends on the layer
thickness (¢;), as

A(Z)=F 1 +Fyexpip; +Fsexpi(p; +@;) + -
+Fyexpi(o;+oa+-+oy_1) (2.3.11)

Fi, F»,, ..., Fy being the structure amplitudes of the first, second, ..., and
Nth layers, and ¢y, ¢,, ..., @oy_1 the phase shifts induced by the thicknesses
of the first, second, ..., and (N—1)th layers (&, &, ..., and &y,
respectively).

The intensity of the diffracted waves is the product of this structure ampli-
tude and its conjugate value (Wilson, 1949a):
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1(Z)=A*(Z2)A(Z)=FF\+FiFy+---+FyFy
+FiFyexpip, +F5F3expip, +---+Fy_Fyexpipy_; +conjugate
FFIF3expi(py +¢y) +FoFaexp (o +3) + -+
+Fy_oFnexpi(py_, +py_y) +conjugate

+F{Fnexpi(p) +p, +- -+ @y_y) +conjugate
(2.3.12)

The different terms of Eq. (2.3.12) are arranged in the way that the products
of structure amplitudes are calculated for single layers in the first line, for layer
pairs in the second line, layer triplets in the third line, etc. Terms of the first line
thus correspond to the contribution to intensity of waves diffracted by single
layers. Terms of the second line and their conjugates correspond to the contribu-
tion to intensity of waves diffracted by pairs of adjacent layers taking into
account the path difference between rays scattered by external layers of each
pair, etc. The last term and its conjugate value are the contribution to intensity
of waves diffracted by the crystal’s outer layers taking into account the path dif-
ference between scattered rays. The intensity of X-rays diffracted by a lamellar
crystal thus sums the contributions from individual layers and those from the
two external layers in all possible subsequences consisting of two, three, .. .,
(N —1), N layers, taking into account the distance between these external layers.

In mixed-layer structures, the occurrence probability of a layer with a
given nature (structure amplitude) and thickness as the first, second, ...,
and Nth layers, which are needed in Eq. (2.3.12), is defined by a set of proba-
bility parameters. If the probability of finding an s-type layer (s=1, 2, ..., T)
at position g (¢g=1, 2, ..., N) is wy, the intensity of waves diffracted by this
layer is wF “F.. For a mixed-layer structure with T layer types, ZST:IWS: 1,
and the average intensity of waves diffracted by layer ¢ in a crystal can be
expressed as

T
> wiFiF=FyFo, (2.3.13)

s=1

where the index 0 indicates that this average intensity is calculated for a single
layer. It is possible to hypothesize that w, does not depend on ¢ and that
Eq. (2.3.13) is valid for all layers. Consequently, the intensity of waves dif-
fracted, independently of each other, by all individual layers in a crystal is
equal to

T
N> wiF;Fy=N FiF,. (2.3.14)

s=1
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By analogy with the second line of Eq. (2.3.12), the contribution to intensity
of waves diffracted by an st pair of layers can be calculated by defining the prob-
ability wy, to find a pair of s and ¢ layers in positions ¢ and (¢ + 1), respectively:

wyF Frexpip, + conjugate = 2Rew F F,expiyp,, (2.3.15)

where Re is the real part of the complex.

As for the contribution of single layers, Ele Ethlth: 1, and the aver-
age intensity of X-rays scattered by pairs of adjacent layers in positions ¢
and (¢+ 1) can be written as

T T
2Re) > wyFiFiexpip, =2Re FiF expi{p},, (2.3.16)

s=1 t=1

where F is the structure amplitude of the nearest neighbour layer of the F
layer, and {}, the phase shift induced by the layer-to-layer distance between
their origins (thickness of the F layer). As for the contribution of single
layers, Eq. (2.3.16) is assumed to be valid for all (N — 1) layer pairs in a crys-
tal consisting of N layers, and the total contribution to intensity of waves dif-
fracted by pairs of adjacent layers can be expressed as

T T
2Re(N—1)) > wyFiFexpio,=2Re(N — 1) FgFiexpi{p},. (23.17)
s=1 t=1
A similar logic can be used to calculate the contribution to intensity of a
layer sequence in which s and ¢ layers occur as nth nearest neighbours
(n=2,3, ..., (N—1)), that is, in position ¢ and g+ n, respectively:

Wity .y 1P s Frexpi(py+ @y, @y, +-+py, ) +conjugate (23.18)
= 2Rews‘h]/’12.../’tn,1IF:FteXpi(SDs + Sohl + (phz +F @hn,]) o

where Wgp,pn,..n,_,+ 1S the occurrence probability of the shjh,...h, ¢ layer

sequence, g, wy, »Pp,» -y, the phase shifts induced by the corresponding
layer thicknesses &, &g, Epys -2 Ep, -

Again, 232122:1222:1“-Zil,lzlZthlwsmhz.uhn,.f =1, and the average
intensity of waves diffracted by a (n+41) layer sequence with s and ¢ layers
in positions ¢ and (g +n) is

T T T T T
2ReZZZ--- Z Zwshlhzmh,z,ltF;Ft

s=1 h=1h=1 hy_1=1 t=1
expi(p,+ @y, + o+ -+ o ) =2Re FiF expi{e}, (2.3.19)

For a given value of n, the index ¢ may vary from 1 to (N —n) as there are
(N —n) sequences of (n+ 1) layers in an N-layer crystal. Equation (2.3.19) is
valid for all these sequences, and the total contribution to intensity of waves
diffracted by sequences of (n+ 1) layers can be expressed as
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T T T T T
2Re(N —n) ZZZ Z Z Wehih...hy 1[F F,
s=1 in=1i=1

ha1=1 t=1
expi(py+ @ + o, + e, )
=2Re(N —n) FiF,expi{y}, (2.3.20)
Index n may vary from 1 (layer pairs) to (N — 1), the n=0 case corresponding
to individual layers (Eq. 2.3.14).

The summation of Eq. (2.3.20) for n values ranging from 1 to (N — 1) allows
calculating the contribution to intensity of all layer sequences in a crystal, that is,

N-1 T T T
2Rez (N—n ZZZ Z Zw‘vhlhz.“hn,ltF:Ft
n=1 =

expi(p+y, o+t ,)
—2Rez —n) FyF,expi{¢}, (2.3.21)

The total intensity of diffracted waves is obtained by taking into account
the contributions of individual layers (Eq. 2.3.14).

T

I= NZwFFJrzReZN ”ZZZT: i

s=1h=1hy=1 hy_1=1t=

T
Wty 1t F 3 Ft
1

expi(py+op, + o, +o ey )
N—1
=NFFo+2Re> (N —n) FoF,expi{p}, (2.3.22)

n=1

A periodic structure is a specific case of Eq. (2.3.22) with T=1,
F.Y:Fhlehzz'“:thq:Ff F, Ps=Cn =P, =" =Ph,_, — > and
Ws = Wgp, =+ = Wsphyh,_;+ = 1, leading to a simplified expression of the dif-
fracted intensity, as

N-1
1(Z) —F*F{N—i—ZReZ(N —n)exp ingo}
n=1

N-1

=F*"(Z)F(Z) {N + 2ReZ(N —n)exp 2niZné}
n=1

5 Sin?aNZE

. 2
ntze ~IFOI6@) (2.3.23)

=|F(2)|

In this case, the intensity distribution along the Z-axis is the product of the
structure factor of the unit cell IF(Z)I* and of the interference function G(Z).
For a mixed-layer structure, the occurrence probabilities of the different layer
sequences introduced in Eq. (2.3.22) remain to be determined.
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2.3.2 STATISTICAL DESCRIPTION OF LAYER STACKING IN
MIXED-LAYER STRUCTURES

The intensity of X-rays diffracted by a single crystal (Eq. 2.3.12) can be calcu-
lated as the sum of the contributions from individual layers, layer pairs, layer tri-
plets, and so on. For periodic crystals, the expression is much simplified
(Eq. 2.3.23), whereas for a mixed-layer structure, the occurrence probability
of the different layer sequences introduced in Eq. (2.3.22) should be deter-
mined. In addition, natural mixed-layer structures usually occur as finely dis-
persed powders whose individual crystals differ by the number, content, and
distribution of the different layer types. Diffraction by such an ensemble of
crystals can be described statistically, the frequency of individual layers, layer
pairs, layer triplets, etc. being described by a set of probability parameters.
The Markovian model is widely used for this purpose (Hendricks and Teller,
1942; Wilson, 1942; Jagodzinski, 1949a,b,c, 1954; Méring, 1950; Kakinoki
and Komura, 1952, 1954a; MacEwan, 1958; Allegra, 1961, 1964; Reynolds,
1967, 1980; Drits and Sakharov, 1976; Bethke and Altaner, 1986; Drits and
Tchoubar, 1990), as it allows calculating the occurrence probability of any layer
sequence. These sequences may be composed of one, two, three, ... layers
whose positions in the crystal are known. The Markovian model allows also tak-
ing into account different order—disorder models with the common Reichweite
parameter S and a reduced set of probability parameters for each S value.

The Markovian model assumes that the probability of finding a given layer
type at a given position in the crystal only depends on the nature of its neigh-
bours. The essential parameter of the various order—disorder models used to
describe layer stacking is the number of layers that influence the occurrence
probability of a layer type at a given position. This parameter is the ‘short-range
order factor’, or ‘Reichweite’, S, and was first introduced by Jagodzinski
(1949a,b,c, 1954). For random layer stacking, the occurrence probability of a
layer at a given position does not depend on adjacent layers and S=0. If this
probability depends on a unique preceding layer, then S=1, and, when the
occurrence probability of a layer in position n depends on layers with positions
(n—1),(n—-2),...,(n—m), then S=m. Here, n and m are the numbers of layers
in an arbitrary but fixed direction along the layer stack, and S can only have inte-
ger values (Lanson, 2011). The following section essentially reviews the set of
probability parameters required to describe thoroughly layer stacking for differ-
ent values of the S parameter, and the logical procedures to determine them.

2.3.2.1 Occurrence Probability of Any Layer Sequence
2.3.2.1.1 Randomly Interstratified (S=0) Mixed-Layer Structures
with Two Layer Types (T=2)

If the alternation of A and B layers is random (S =0), the occurrence probabil-
ity of layer type i (i=A, B) at a given position in the crystal does not
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depend on the adjacent layers and is equal to its abundance w;, with the
following relation:

wa +wp =1 (2.3.24)

The occurrence probability of any layer sequence is then equal to the prod-
uct of the relative abundances of its building layers, that is,

WAA = W/Z;’WAB =WBA =WAWB,WBB = leg
WAAA = WivaAB = WABA = WBAA = W,24 WB,WABB = WBAB = WBBA = WAWIZ;,WBBB = W?;
WAAAA = Wi »yWAAAB = WAABA = WABAA = WBAAA = Wf\ wB
WAABB = WABAB = WABBA — WBAAB — WBABA — WBBAA = W‘% W%
WBBBA = WBBAB = WBABB = WABBB = WAW3. WBBBB = W, €(C.

As for the relative abundances of elementary layers, the occurrence prob-
abilities of the different layer pairs, triplets, etc., are linked by specific
relations:

WaA +Wap +wpa +wpp =1

(2.3.25)
WaaA +WaaB +Wapa +Wapp +Wpaa +Wpap +wapa +wppp = 1, etc.

2.3.2.1.2 Mixed-Layer Structures with S=1 and Two Layer Types
(T=2)

When S=1, the occurrence probability of a j-type layer at a given position
depends on the nature of the preceding layer i. In addition to the relative abun-
dance parameters w, and wg, a new set of junction probability coefficients
(Paa> Pass Ppas Ppp) 1s necessary to determine the occurrence probability of
a layer sequence. The p;; (i, j=A, B) parameter describes the probability of
finding a j-type layer after an i-type one. With these two sets of parameters,
the occurrence probability of any layer sequence can be described as follows:

WAA = WAPAAWAB = WAPAB>WBA = WBPBA,WBB = WBDPBB
WAAA = WAPAAPAA>WAAB = WAPDAAPAB>WABA = WAPABPBA> - - - sWBBB — WBPBBPBB
WAAAA = WAPAAPAAPAA>WAAAB = WAPAAPAAPAB>WAABA= WAPAAPABPBA»
WABAA = WAPABPBAPAA»

WAABB = WAPAAPABPBB>WABAB = WAPABPBAPAB - - - »WBBBB = WBPBBPBBPBB €C.

2.3.2.1.3 Mixed-Layer Structures with S>2 and T=2

For a mixed-layer structure with S=2, the probability of finding a k-type
layer at a given position depends on the nature of the preceding layer pair
ij. In addition to the relative abundances w; and junction probabilities p;;, a
new set of junction probabilities p;y (i, j, k=A, B) is needed to describe the
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layer stacking sequence. The p;j coefficients define the probability of finding
a k-type layer following an ij layer pair. In turn,
WAA = WAPAA,WAB = WAPAB>WBA = WBPBA,WBB = WBPBB

as in the S=1 case, and

WAAA = WADAADAAA>WAAB = WADPAAPAAB>WABA = WAPABPABA, - - - »WBBB = WBPBBPBBB
WAAAA = WAPAAPAAADAAA > WAAAB = WAPAAPAAADAAB
WAABA = WAPAAPAABPABA>WABAA — WAPABPABAPBAA»
WAABB = WAPAAPAABPABB>WABAB = WAPABPABADPBAB> - - - »

WBBBB = WBDBBPBBBPBBBCIC.

Mixed-layer structures with §=3 can be described with the same guide-
lines after the introduction of an additional set of junction probabilities pj
defining the probability of finding an /-type layer after an ijk layer triplet:

WAA = WAPAA>WAB = WAPAB>WBA = WBDPBA>WBB — WBDPBB
WAAA = WAPAAPAAA>WAAB = WADAAPAAB>WABA = WAPABPABA> - --»WBBB — WBPBBPBBB
WAAAA = WAPAAPAAADAAAA>WAAAB = WADAADAAAPAAAB
WAABA = WAPAAPAABPAABA>WABAA = WAPABPABAPABAA
WAABB = WAPAAPAABPAABB:> - - -»

WBAAA = WBPBAPBAAPBAAA - - -sWBBBB — WBPBBPBBBPBBBB

2.3.2.1.4 Mixed-Layer Structures: General Case

The same guidelines can be used to determine the occurrence probabilities of
the different layer sequences for a mixed-layer structure consisting of T layer
types. These probabilities are systematically linked by the following relations:

T T

T T T
ZW, =LY > wi=1Y "3 > wip=1,...etc. (2.3.26)

i=1 j=1 i=1 j=1 k=1

Accordingly, a randomly interstratified mixed-layer structure (S=0)
appears as a specific case (p;=w;) of mixed-layer structures with §=1. Simi-
larly, a mixed-layer structure with S=1 is a specific case of a mixed-layer
structure with §=2 where p;z=pj,... which can be written as (§=0)¢&
§=1)e(S=2)--- using the mathematical formalism. Despite misleading
uses in the literature, the Reichweite parameter S defines only the extent of
the influence of a given layer, but provides no indication as to the nature of
this influence, which is characterized by junction probabilities. For S >0,
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these junction probabilities can be varied to describe mixed-layer structures
with a tendency to either layer ordering, or layer segregation.

The complete calculation of occurrence probabilities for the different layer
sequences in mixed-layer structures with S =m requires the junction probability
parameters W, pj, Pijks - - -» Pijk- - -1» Where the number of indexes ijk- - -/ is equal to
(m+ 1), to be known. When using the Markovian model, specific relationships
link w and p parameters, and only a fraction of them are independent. The fol-
lowing section describes these relations and lists the sets of independent proba-
bility parameters for mixed-layer structures with different values of S and T.

2.3.2.2 Determination of Independent Probability Parameters
2.3.2.2.1 Randomly Interstratified Mixed-Layer Structures (S=0)

As described above, the occurrence probability of any layer sequence in a two-
component mixed-layer structure with S =0 is equal to w*wi®, ns and np being
the numbers of A and B layers, respectively, in this sequence. From Eq. (2.3.24),
a two-component (T'=2) mixed-layer structure randomly interstratified is thus
fully described by one of the coefficients w, or wg. From Eq. (2.3.26), the num-
ber of independent probability coefficients is (T — 1) for a randomly interstrati-
fied mixed-layer structure consisting of T layer types. The relative abundance of
the first layer type, for example may be defined without restrictions within the
[0, 1] range, but the range available for the other occurrence probability para-
meters depends on the values of the previously defined coefficients. For
example, the relative abundance of the second layer type should be defined
within the range [0, (1 —w;)], that of the third layer type within the range
[0, (1 —wy —wy)].... and wr=1-3""w,.

2.3.2.2.2 Mixed-Layer Structures with S=1 and T=2

In this case, the six probability parameters (Wa, Wg, Paa> PaB> PBa> PBB)
required to characterize thoroughly the mixed-layer structure are linked by
the following relations:

wa+wp=1, paa+pap=1, and pps+ppp=1 (2.3.27)

The first relation is obvious, the other two meaning that a given layer (A or B)
is followed by either an A or a B layer, which is also evident for a two-component
mixed-layer structure. In addition, the six probability parameters are related by
the following relations:

W4 =Wapaa +wpppa, and wp =wapap +wpppsp (2.3.28)

The products wspas and wgppgs describe the occurrence probabilities of AA
and BA pairs, that is wa4 and wp,, respectively, whereas the overall relations
assert that a given layer (A or B, respectively) follows either an A or a B layer
in a two-component mixed-layer structure. By combining the second relation
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Of Eq (2327) (pAB: 1 _pAA) Wlth the first Of Eq (2328) [WA(l _pAA):
wgpgal, it is possible to deduce that

WADAB = WBPBA, O WAB = WpA (2.3.29)

The four relations in Egs. (2.3.27) and (2.3.29) thus reduce to two the
number of independent probability parameters required to characterize thor-
oughly a mixed-layer structure with =1 and T=2. One of these parameters
should be w, or wg. If w, is chosen and if w, >wjp, then Eq. (2.3.29) leads to

DB = @pBA :E(l —pag) and By (2.3.30)
WA WA WA

It is thus convenient to choose pg4 or ppp as the second independent prob-
ability parameter, as there are no restrictions on the value of either, which can
range from O to 1. If pgp is chosen as the second independent parameter, all
other probability parameters can be calculated as

I—WA I—WA

(1—pss)
(2.3.31)

wp=1—wa,ppa =1 —ppp.pap = (1—pg),paa=1-—

23.22.3 Ordering and Segregation in Mixed-Layer Structures
with S=1 and T=2

Among mixed-layer structures with S=1, two main types can be differen-
tiated depending on the relative values of the w, and ps4 probability para-
meters. For example, when pa4 >w,, the occurrence of AA pairs is favoured
compared to random interstratification; A layers are thus clustered and the
mixed-layer structure is said to be segregated. On the other hand, when
Paa <Wy, the occurrence of AB and BA pairs is favoured compared to random
interstratification, and interstratification is considered to be ordered. As pro-
posed first by Sato (1965), the degree of segregation, or of ordering, may be
described from the last relation in Eq. (2.3.31):

w w
A PAAJFI— A
l—WA l—WA

DBB = (2.3.32)
and the derived Fig. 2.3.4.

Equation (2.3.32) indicates that ppp and pa, are linearly correlated for a
given w, value. Mixed-layer structures with a given w, value are thus located
along straight lines originating from the upper right corner of the diagram in
Fig. 2.3.4. Both paa and ppp axes correspond to mixed-layer structures with
the maximum possible degree of ordering (MPDO), which corresponds to
pe=0 when w, >wpg or to pss =0 for wy < wp (S=1). The physical mixture
of periodic crystals composed either of A or of B layers corresponds to the
upper right corner of the diagram with pss =pgp=1 (Fig. 2.3.4). The specific
case of randomly interstratified mixed-layer structures (S =0) corresponds to
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Pss w,=0.00
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FIGURE 2.3.4 Junction probability diagram for two-component mixed-layer structures with
S=1. See text for details. Adapted from Drits and Sakharov (1976).

the line where p;;=wj, that is to the straight line linking the upper left and
lower right corners of the diagram in Fig. 2.3.4. The domain above this diag-
onal, that is, towards the physical mixture point at the upper right corner, cor-
responds to mixed-layer structures with a tendency to segregation, whereas
the domain below this diagonal corresponds to partial ordering. The lower left
corner with wy=wp=0.5 and pss=ppp=0 corresponds to the periodic
ABAB. .. layer sequence with a 1:1 ratio between A and B layers.

Cesari et al. (1965) defined simple parameters to characterize the degree
of ordering, or of segregation, in two-component mixed-layer structures with
S=1. In the first case, the parameter aims at quantifying the degree of ran-
domness (or disorder) in the stacking of A and B layers, and can be defined as

D1 =paa/wa when wy <wgand0 <pas <wy (2.3.33)

and
D', =ppp/wg when wy >wgand0 <ppp <wp (2.3.34)
The index 1 of D and D’ parameters indicates that the disorder parameters
describe mixed-layer structures with S=1. Both D and D{ parameters may

vary from 0 (MPDO case, S=1) to 1 (random interstratification, S=0).
Drits and Sakharov (1976) transformed Eq. (2.3.32) into
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1 —ppp

Wp=——""—"— (2.3.35)
2—paa —pBs
and introduced this relation into Eqs. (2.3.33) and (2.3.34) to obtain
2 —_p2 —D 2 _ 2 _Dl
ppp =LA TPIMTEL yng =BT DB 2L (2.3.36)
paa — D pee —Dj

These two relations define the relation between the p,4 and pgp parameters
for a given degree of disorder (D, or D), independent of w,. If the latter param-
eter is varied, Eq. (2.3.36) allows drawing the dashed lines in the partial order-
ing domain (Fig. 2.3.4). Non-integral values of the short-range order parameter
S were sometimes used to describe the degree of ordering in mixed-layer struc-
tures with S=1 (Reynolds, 1988; Yuan and Bish, 2010). The use of such non-
integral values should be avoided, however, and the degree of partial ordering
should be described either by a specific parameter (e.g. D, or D) or by the set
of independent junction probabilities as recommended by the AIPEA nomen-
clature committee (Bailey, 1982; Guggenheim et al., 2006).

The degree of segregation in a two-component mixed-layer structure may
be defined in a similar way (Cesari et al., 1965), as

L =paa
~ wa

Ci=1 when wy <pga <1 (2.3.37)

As in the previous case, the C| parameter may vary from O (random inter-
stratification, S=0) to 1 (physical mixture, S=1). Drits and Sakharov (1976)
introduced Eq. (2.3.35) into Eq. (2.3.37) to obtain a relation between the p4
and ppp parameters for a given degree of segregation C; independently of w:

pes=C1—paa+1 (2.3.38)

If wy is varied, Eq. (2.3.38) allows drawing the dashed lines in the segre-
gation domain (Fig. 2.3.4).

2.3.2.2.4 Mixed-Layer Structures with S=1 and T=3

For mixed-layer structures with more than two layer types, the analytical def-
inition of independent probability parameters has not been achieved yet
because of its intrinsic complexity. Even in comprehensive monographs
(Cesari and Allegra, 1967; Drits and Sakharov, 1976; Drits and Tchoubar,
1990), three-component mixed layers, for example, were described only for
particular cases. The same complexity exists for two-component mixed-layer
structures with S>1. To reduce this complexity, a priori assumptions are
commonly made on junction probabilities (Drits and Sakharov, 1976;
Reynolds, 1980; Bethke and Altaner, 1986; Drits and Tchoubar, 1990), thus
limiting the versatility of structure models for a given set of S and T values.
For example, a third layer type may be considered to randomly replace one
of the two ‘main’ components (Newmod—three components) rather than
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having its own independent set of junction probabilities. Similarly, for a two-
component structure with §=2, MPDO is often assumed for the definition of
p;j junction probabilities (ppg=0 when w, >wp), thus automatically setting
some of the p;; probabilities (Drits and Tchoubar, 1990). These restrictive
assumptions have been excluded in the following description of a new algo-
rithm for the choice of independent probability coefficients. This logical pro-
cess is first described for mixed-layer structures with S=1 and T=3, and then
extended to any couple of T and § values.

Similar to Egs. (2.3.27) and (2.3.28) for two-component mixed-layer struc-
tures, the following relations are valid for a three-component (A, B, and C
layer types) mixed-layer structure:

wa+wg+we=1 (2.3.39)

Daa +Dpag +pac=1
PBa~+pee+psc=1 (2.3.40)
Dpca+pc+pcc=1

Wa =Wapaa +WwpPpa +WePca
Wp =Wapap +WapPas +WcpPcs (2.3.41)
We =WaPpac +WsPsc +WcPcc

Because of Eq. (2.3.39), only two of the three relations in Eq. (2.3.41)
are independent, and the 12 probability coefficients w; and p; (ij=A, B,
C) are linked by six independent equations (Eqs. 2.3.39-2.3.41). Six inde-
pendent probability parameters are thus to be defined, two among the w;
and four among the p; parameters. If the three relations in Eq. (2.3.40) are
multiplied respectively by w4, wp, and wc, respectively, the left part of these
relations define the [W;;] matrix as wjp;=w;;. The right part of the relations
may then be reported to the right of each line and to the top of each column,
that is,

wa W W¢
WaA WAB WaAC wa
W] = (2.3.42)
WpA WBB WBC wa
wca WcB Wcece wc

The sum of the matrix elements in each column corresponds to the right
part of the relations in Eq. (2.3.41), whereas the left part of these relations
is given by the occurrence probabilities reported above these columns. Equa-
tions (2.3.40) and (2.3.41) indicate that the maximum value of any matrix ele-
ment in Eq. (2.3.42) is the lower of the w; occurrence probability parameters
for the line and column of this matrix element, reported to the right and above
this matrix element, respectively. Let us assume, for example, a mixed-layer
structure with wy, =0.60, wp=0.24, and w-=0.16, with all elements of the
[W;;] matrix initially having null values. Any of the matrix elements can be
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defined as the first independent parameter, which will be hereafter indicated
with bold characters, for example, wyp:

0.60 0.24 0.16
0 wqp 0 | 0.60
0 0 0] 024
0 0 0] 016

i) -

All elements of the first row and second column being initially null, the
maximum value for the w,p parameter is min(w,, wg) =min(0.60, 0.24)=
0.24, the values of w, and wp being those of the first row and the second
column, to the right and above the matrix, respectively. On the other hand,
the minimum value for w,p is given by the difference between w, (or wp)
and the sum of maximum values allowed for other elements in the first row
(or the second column):

min __

Wap = max{ (WA — WA — Wfrxncax)v (WB —wgg* — W[Cngx) }
= max{(0.60 — 0.60 —0.16), (0.24 —0.24 — 0.16)} = —0.16.

Because occurrence probabilities can take only positive values,
i = max { (4 — ). (g — g —w).0} =0,

Let us choose, for example, wsp=0.12. It is then possible to choose any
other element of the [W;;] matrix as the second independent parameter follow-
ing a similar procedure if this second element, for example, wgc, does not
belong to the first row or the second column of the matrix. The range allowed
for wpe values ([0, 0.16]) may be defined in a similar way:

wper = min{(wg —wga —wgg), (Wec —wac —wee)

= min{(0.24—0—0),(0.16—0—0)} =0.16,

and
min __

wpe' = max{ (WB —wgiX — wg“Ba"), (WB —wpgX — W’C“l'g”‘) ,0}
= max{(0.24 - 0.24 —0.12),(0.16 —0.16 — 0.16),0} =0,

and it is possible to choose wgc=0.024. Any of the any remaining null ele-
ments may then be selected as the third independent probability parameter,
for example wy,.

0.60 0.24 0.16

waq 012 0 0.60
0 0 0.024| 0.24
0 0 0 0.16

Wy =

Extreme values of this parameter may be calculated as described above:

wﬁ“{f" = min{(wA — WyB — wAc)7 (Wa —wpa — WCA)}

= min{(0.60 — 0.12— 0),(0.60 — 0 —0)} =0.48
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More generally, the maximum value of any element in the matrix can be

written as
wit = mln{ (wi - Zwi‘1> , (wj — quj) } (2.3.43)
q#i 97

Similarly, wii"=max{(ws —wap — WIeD),(wa — wES* — wi),0}.
The values of Wi&*, wia', and wiy* need to be determined first from
Eq. (2.3.43):

WX‘EX = min{ WA — Wpa — WAB)» (WC —WBC — ch)}

(
= min{(0.60 —0—0.12),(0.16 —0.024 — 0)} = 0.136
wipt* = min{(wg —wgg —Wac), (Wa —Waa —wca) }
= min{(0.24 —0—0.024),(0.60—0—0)} =0.216
wea = min{(wc —weg —wee), (Wa —Waa —wga) }
= min{(0.16—0—-0),(0.60—0—0)} =0.16
and

win' = max{ (wa —wap —wie"), (wa —wpp* —wey), 0}

= max{(0.60 —0.12—0.136), (0.60 — 0.216 — 0.16),0} = 0.344

More generally, the minimum value of any element in the matrix can be
written as

ol ) o)

q#i q#i
(2.3.44)

where wi;™, wg;™* are the maximum possible values of null elements and w;,,

w,; are the previously determined occurrence probabilities.
Thus, 0.344 <w,4 <0.48, and it is possible to choose w4 =0.36; some
additional probability parameters are then determined:

wac = (Wa —was —wag) = (0.60—0.36 —0.12) =0.12
wee = (we —wac —wae) = (0.16 —0.12 = 0.024) = 0.016

To define only the independent parameters, it is essential to calculate
unknown occurrence probabilities in [W;;] as soon as they are fully deter-
mined. The fourth and last independent probability coefficient may then be
chosen among remaining null elements, for example, wga:

0.60 0.24 0.16
~ 1036 0.12 0.12 | 0.60
[ ’7]_ wga O 0.024| 0.24
0 0 0.016| 0.16



Handbook of Clay Science

It is first necessary to define the possible range [wai', waiX] for this
parameter:

wpa = min{(wp —wpp —wpc),(Wa —waa —wca) }

= min{(0.24 —0—0.024),(0.60 —0.36 —0)} =0.216
wia® = max{ (WB —wpp* — WBC), (WA — W — wg‘j"),O}

with

max __

WBB = mln{ (WB — WA — Wgc), (WB — WAB _WCB)}
= min{(0.24 —0—0.024),(0.24 —0.12— 0)} =0.12
wi* = min{ (we —weg —wee), (Wa — Waa —wpa) }

= min{(0.16 —0—0.016),(0.60 —0.36 — 0)} = 0.144

Then, wii® = max{(wg — Was* — wgc),(Wa — Was — WE),0} =max{(0.24 —
0.12—-0.024),(0.60 —0.36 — 0.144),0} =0.096

Thus, 0.096 <wg, <0.216, and it is possible to choose wgy=0.12, all
other probability parameters being then determined: wgg=0.096, wcp=
0.024, and wcya=0.12.

0.60 0.24 0.24

036 0.12 0.12| 0.60
0.12 0.096 0.024| 0.24
0.12 0.024 0.016| 0.16

i) -

The [P;;] matrix of junction probabilities can then be calculated by divid-
ing the three rows of matrix [W;;] by wa, wg, and wc, respectively:

0.60 0.20 0.20
[P,] =10.50 0.40 0.10
0.75 0.15 0.10

The relations in Egs. (2.3.43) and (2.3.44) can be used to determine inde-
pendent probability parameters through the same algorithm for any mixed-
layer structure with S=1 and arbitrary 7.

2.3.2.2.5 Mixed-Layer Structures with S=2, T=2

The algorithm described in the previous section to determine independent
probability parameters for mixed-layer structures with S=1 and T=3 can
be extended to any mixed-layer structure with arbitrary S, for example,
S§=2. In addition to the probability parameters w; and p;, it is then necessary
to define a set of p;; (i, j, k=A, B) junction probabilities. In this example, w;
and p;; coefficients have been determined: w,=0.8, and ppg=0.1

Thus, wg=0.2, ppa=0.9, pap=0.225, and psy =0.775, and the occur-
rence probabilities of the different layer pairs may be calculated: wss =0.62,
Wap =Wpga = 0.1 8, and Wpp= 0.02.
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Additional independent probability coefficients are thus to be defined only
among the p;j; parameters that are linked by the following relations:

paaa+paap =1
PABA +Ppaps =1

(2.3.45)
DPBAA +Pppa =1
DPBBA +ppe =1
WAA = WAAPAAA + WBADBAA WAA = Waaa +Wpaa
Wap =W, +w WAB =WaaB +W
'AB AAPAAB BAPBAB or 'AB 'AAB 'BAB (2.3.46)
WBA = WABPABA + WBBDBBA WBA = WaBA + WBBA
Wpg = WaBPaBB + WBBDPBBB Wpp = WaBB + WBBB
Waa +Wap +wpa +wpp =1 (2.3.47)

Among the eight relations (Egs. 2.3.45 and 2.3.46), only six are indepen-
dent owing to Egs. (2.3.28) and (2.3.47). As a consequence, only two of the
eight probability coefficients p;; (i, j, k=A, B) are independent. To construct
the [W;j] matrix, the four relations in Eq. (2.3.45) are multiplied by wa4, Wag,
wga, and wpp, respectively, and these occurrence probabilities are reported to
the right of and above the matrix, as in Eq. (2.3.48). When the two j indices
are not identical, the value of the matrix element at the intersection of the ijth
row and jkth column is necessarily null and is not reported in Eq. (2.3.48) for
the sake of simplicity. When the two j indices are identical, coefficients w;j
possibly take non-zero values, but it is convenient to assume all elements of
the [W;j;] matrix having initially null values:

WAA  WAB WA  WBB 0.62 0.18 0.18 0.02
WAAA WAAB WAA 0 0 0.62
(W] = WABA WABB| WAB = 0 0| 018
WBAA WBAB WBA 0 0 0.18
WBBA WBBB| WBB 0 0 0.02

(2.3.48)

Any of the matrix elements can be defined as the first independent param-
eter, for example w4p4. The possible range for this parameter can be defined
as described in the previous section:

WXEX = min{ (WAB — WABB)7 (WBA — WBBA)} = m1n{(018 — 0)7 (018 — 0)}
=0.18

On the other hand, wiiiy depends on whis, and wiay which cannot exceed
wpp=0.02. Thus
wigs = max{ (was —wigs ), (Wsa —wgps ), 0}
= max{(0.18 —0.02), (0.18 — 0.02),0} =0.16.
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Thus, 0.16 <wyz4 <0.18, and it is possible to choose wyps =0.171, some
additional probability parameters being then determined:

0.62 0.18 0.18  0.02

0 0 0.62
Wix] = 0.171  0.009| 0.18
0 0 0.18

0.009 0.011] 0.02

The fourth and last independent probability coefficient may then be chosen
from among the remaining null elements, for example, waap, and its possible
range [Wiag, Waag] defined:

WX}:‘E = min{(wAA - WAAA)v (WAB - WBAB)} = min{(0.62 *0), (0.18 - 0)} =0.18

wipin = max{ (waa —wir), (was —wiiy ) 0} = max{(0.62-0.62),(0.18 - 0.18),0} =0

It is possible to choose w445 =0.155, and all other probability parameters
can then be determined:

0.62 0.18 0.18 0.02

0.465 0.155 0.62
(W] = 0.171 0.009| 0.18
0.155  0.025 0.18

0.009 0.011| 0.02

The general formulas in Egs. (2.3.43) and (2.3.44) defining the maximum
and minimum values of a given matrix element for mixed-layer structures
with S=1 and any T value can be extended to mixed-layer structures with

S=2:
Wi — min{ (w,-j - Zw,-jq> , <W_jk - quik> } (2.3.49)
q#k q#i
Wi = max{ (Wij - (W;'Zzax + Wiﬂl)) ; (W/‘k -2 (W;;'/?X + quk)) ’0}’

g7k g7
(2.3.50)

Wijq» Wgjk being the previously determined occurrence probabilities.
The [P;;] matrix of junction probabilities can then be calculated by divid-
ing the rows of matrix [W;;] by the corresponding w;; probabilities:

DAAA PAAB 0.75 0.25
[P-- ] _ PABA PABB| _ 0.95 0.05
o PBAA DBAB 0.861 0.139

PBBA DPBBB 0.45 0.55
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The same algorithm can be used for mixed-layer structures with =2 and
any T value. In this case, the relative proportions of the different layer types
(w;) should be defined first, and independent junction probability parameters
for nearest neighbours (S=1, p;;) next. As a third step, independent junction
probabilities for next-nearest neighbours (p;;) should be defined, and the
occurrence probability may then be calculated for any layer sequence in the
mixed-layer structure with S=2.

The above algorithm may be extended to any mixed-layer structure with
any values of the short-range order factor (Reichweite) S and layer type num-
ber T. In this case, the range of values allowed for any matrix element can be
expressed as

wg?ff’k‘,, = min{ (w,j.“k — ZWU“"“1> , (wj.“k[ — quju.kl> } (2.3.51)

q#l qFi
W;j““}d = max{ (W,'jz..k — Z (W;;uzq + W,‘j..,kq)> s (ijkl — Z (W;}dxk[ + ij-»»k/)) ,0},
q#l q#i
(2.3.52)

where the number of indices for probability parameters Wi, Wit 1, Wit 1,
WZ}??H,W,:,'A kg Waj- - -kl and Wije . ks Wj. . g AT€ S+1 and S, respectively.

The S=0 case is a special one as randomly interstratified mixed-layer
structures require only the definition of layer relative abundances w; (i=1,
2, ..., T), and there are (T — 1) independent parameters. For mixed-layer struc-
tures with §>1, there are (T — 1)2T§_1 independent parameters among w;;.. .k
coefficients with S+ 1 indices. For example, in addition to the (T'— 1) inde-
pendent w; probability parameters, mixed-layer structures with S=1 require
the definition of (T— 1)* independent w;; probability parameters. Mixed-layer
structures with § =2 require the additional definition of (T — DT independent
w;ix probability parameters, and so on.

2.3.2.2.6 Ordering and Segregation in Mixed-Layer Structures
with S=2, T=2

Drits and Sakharov (1976) proposed a plot similar to that in Fig. 2.3.4 to dif-
ferentiate two-component mixed-layer structures with S=2 and different
degrees of order/disorder in the stacking of A and B layers. For their descrip-
tion, these authors hypothesized that A layers were prevailing (w4 >wp) and
that nearest neighbour ordering (S=1) was characterized by maximum possi-
ble degree of ordering (MPDO, pgg=0). In this case, wap=ws —Wwp, Wap=
WA =Wpg, Wpp— 0.
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The following relations can be deduced from Eq. (2.3.46):

WAA PAAB =WBA PBAA OT(WA —Wp )PAAB = WBA PBAA, OT
WpB

1-— =—(1- ,
(1 =Ppaaa) WA_WB( PBAB)

and the last relation can be modified to

wp

w
Pasa =———ppag +1— (2.3.53)
Wwpa —Wp

WA —Wp

Equation (2.3.53) is analogous to Eq. (2.3.32) established for mixed-layer
structures with S=1 and correlates linearly the junction probability parameters
Paaa and ppap for a given w, value (Fig. 2.3.5). Mixed-layer structures with a
given w, value are thus located along straight lines originating from the upper
right corner of the diagram in Fig. 2.3.5. The relative abundance of A layers
increases clockwise from the vertical line to the right of the diagram (w4 =0.5)
to the top horizontal line (w4 = 1.0), the line linking the upper right and lower left
corners corresponding to w, =0.667. The physical mixture of periodic crystals
composed either of A layers or of AB layer pairs corresponds to the upper right
corner of the diagram with pssa =ppap =1 (Fig. 2.3.5). Both psa4 and ppap axes

Paaa w,=1.00
1.0
"o | wy=0.80 .
08— - C=0.8
1 “ s s S= N
V[ D=1.0 | Wam0727
064— “. — - ~fc=08
oL s W= 0615 /-
v A D08 A .. w,= 0.50
¥ v D,=06 | . .

0.4 o T < S < N C2= 0.4
v D,=04 o . .

. ' Dy=0.8 w,= 0.571
D,=02 * <. . .
o Dy=0.6 _ . .

0.2 — : S IRV A C,=02
. Dy=04 -~/ _ . IR
TTT1TDy=02 -4l AR

0.0 BRI N PN

0.0 0.2 0.4 0.6 0.8 1.0 ¢

FIGURE 2.3.5 Junction probability diagram for two-component mixed-layer structures with
§=2, and maximum possible degree of ordering at S=1 (MPDO, w, >wp and ppp=0). See text
for details. Adapted from Drits and Sakharov (1976).
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correspond to mixed-layer structures with MPDO, which corresponds to pgap =0
when wy > 0.667 or to psaa =0 for wy < 0.667 (S =2). The first axis corresponds
to the random interstratification of AB layer pairs and AAB layer triplets, whereas
the second one corresponds to the random interstratification of AAB layer triplets
and A single layers (Reynolds, 1988; Drits et al., 1994). The lower left corner with
Paaa=psag=0 corresponds to the periodic AABAAB- - - layer sequence with a
2:1 ratio between A and B layers. The specific case of S =1 with MPDO but ran-
dom interstratification at S = 2 corresponds to the line where p 44 + pgap =1, that
is, to the straight line linking the upper left and lower right corners of the diagram
in Fig. 2.3.5. In this case, it is possible to deduce the following relations, charac-
teristic of S =1 with MPDO, using Egs. (2.3.46) and (2.3.53):

WA —Wp

wp
Pasa = =paa, and ppap=—=pap
WA
The domain above this diagonal that is towards the physical mixture point
at the upper right corner corresponds to mixed-layer structures with a ten-
dency to segregation of A layers and AB layer pairs, whereas the domain
below this diagonal corresponds to partial ordering. Mixed-layer structures
with a similar tendency to ordering at S=2 but with contrasting composition
(relative contents of A and B layers) share the following parameters:

D, ZEPBAB for 0 <ppap < @,WA >2/3 (2.3.54)
wg WA

and

WA —Wp

DIZ = PAAA for 0 SPAAA S and 1/2 S Wp S 2/3 (2355)

WA —Wp

The index 2 of D and D’ parameters indicates that the disorder parameters
describe mixed-layer structures with S=2. Equation (2.3.53) can be trans-
formed to

Wp 1 —paaa
WA 2—pasa —Ppas
As a consequence,

2 — 2 —pt..—D
:pBAB( DAAA pBAB)’ and paas = PBAB — Ppap 2.

D,
1 —paaa pBa — D>

2 —p2 D
Similarly : ppag = PAAA pAAA/ 2
pAAA _D2

The last two equations were used in Fig. 2.3.5 to draw the dashed lines
corresponding to given values of the disorder parameters D and D’, that is, to
mixed-layer structures with a similar tendency to ordering. Similarly, the degree
of segregation of A layers and AB layer pairs in mixed-layer structures with
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S=2 can be described by the parameter C, =1 — [(1 —pgag)/(1 —wp/w,)] for
]
— <ppap < 1.
Wa
As a consequence, the relation pgsp=14Cy—pass allows drawing in

Fig. 2.3.5 the straight dashed lines corresponding to a given degree of segre-
gation of A layers and AB layer pairs.

2.3.3 CALCULATION OF THE INTENSITY DIFFRACTED BY
MIXED-LAYER STRUCTURES: THE MATRIX FORMALISM

Using the expression in Eq. (2.3.10), Eq. (2.3.12) describing the intensity of
waves diffracted by a mixed-layered crystal can be written as

1(Z)=A"(Z Z ZF* Z)exp2niZ(ry — Fur) (2.3.56)
m=1m'=1

The terms with m=m' can be written separately, whereas the relation
n=Im' —ml can be introduced to label the layers in (n+ 1) layer sequences.
Similarly, |r,|=|ry —rw| and Eq. (2.3.56) can be written as

= iF N2D)Fu(Z Z ZF . Z)exp2miZ(ry — rur)
m=1

m=1 m'=
mi#nl (2.3.57)
N N—1N—n
= ZF " (Z Z)+ ZReZZF Fin(Z)exp2mniZr,
m=1 n=lm=

A comparison of Egs. (2.3.57) and (2.3.22) leads to

N T

> Fo(DFu(Z)=NY wiFiF,=NF,(Z)F,(2), (2.3.58)
m=1 s=1

and to

—IN—n

2ReZZFm(Z)Fm+,, exp 2miZr,

n=lm=
T

N—-1 T T T T
=2ReD_(N=m)D D D D0 D Woheo S Froxpiloct ou +iomt 4 1,)
n=1 hy=1 =1t=

s=1hi=1hy= hy1=11=1

_ 2Re2(N — W)F(Z)Fy(Z)exp 2niZr, (2.3.59)
n=1

And the intensity diffracted by a mixed-layer crystal can be expressed as

N-1
I(Z) =NF}(Z)F,(Z) +2ReY (N —n)F;(Z)F,(Z)exp 2niZr,  (2.3.60)
n=1
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This expression corresponds to the sum of the average intensity of waves
diffracted by single layers and of the average intensity of waves diffracted by
layers at both ends of (n+ 1) layer sequences, taking into account the distance
between these layers.

Hendricks and Teller (1942) were the first to develop a matrix formalism to
calculate the intensity diffracted by 1D disordered lamellar crystals with infinite
thickness and random layer stacking. Kakinoki and Komura (1952, 1954a,b)
extended this approach further to mixed-layer crystals with a limited number of
layers. These authors introduced also the concept of range of interaction between
layers (Reichweite) proposed by Jagodzinski (1949a,b,c). Another approach,
which is based on the direct summation of the contributions to diffracted intensity
from waves scattered by all possible layer subsequences in crystals, was also
developed for the calculation of XRD patterns from mixed-layer structures
(Reynolds, 1967, 1980). The matrix formalism was refined by Allegra (1961,
1964), before its interest became evident with the onset of computer simulation
of XRD patterns (Sato, 1969a,b; Drits and Sakharov, 1976; Plancon, 1981;
Sakharov et al., 1982a,b, 1983; Drits and Tchoubar, 1990). Contrary to direct
summation, the matrix formalism allows, indeed, the straightforward calculation
of the contributions of n layer sequences to diffracted intensity if these contribu-
tions are known for (n — 1) layer sequences. In addition, the matrix formalism is
extremely versatile as it sets no limitations on the number of layer types in mixed-
layer structures or on the actual extent of the short-range order factor (Reichweite;
Sakharov et al., 1982a,b, 1983; Drits and Tchoubar, 1990). Using a notation con-
sistent with this chapter, the intensity of X-rays diffracted by a mixed-layer crys-
tal (Kakinoki and Komura, 1952, 1954a,b) can be expressed as

1= NSpur[V][W]+2Re Y (N — n)Spur(V]W][0]" (2.3.61)

where [V] is a matrix containing the products of the structure amplitudes F}F;
of the ith and jth layer types, respectively; [W] is the diagonal matrix of occur-
rence probabilities for single layers, layer pairs, triplets, and so on; [Q] is the
square matrix containing the products of the junction probability parameter
and the corresponding phase term; and Spur is the trace of the resulting
matrix, that is, the sum of its diagonal elements.

The order of matrices [V], [W], and [Q] depends, together with the location of
their elements, on the number T of layer types present in the mixed-layer structure
and its Reichweite parameter S. It is shown in the following sections that
Egs. (2.3.60) and (2.3.61) are equivalent and describe identical diffraction effects.

2.3.3.1 Mixed-Layer Structures with S=1 or $=0, and T=2

If A and B layers alternate in a mixed-layer structure with S=1, the above
matrices can be written as
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FiFy FpFy wa PAACXDPIP, DABEXPIPy
- s« s« b = b [Q] = . .
FiFg FyFp wp PBACXDPiYp DpREXPipp
(2.3.62)
and it is possible to deduce
T
NSpur[VI[W] =N (waF3Fa+wsFyFp) = w,FiF, (2.3.63)
s=1

The first term of Eq. (2.3.61) is thus equivalent to Eq. (2.3.58). In addition

N-1

2ReY (N —n)SpurlV]WI[Q)"

n=1
=2Re(N—1) [wApAAFZFA expiy, +weppaFpFaexpipg
+wapasFiFpexpip, +weppsFyFpexpipg)

T T
=2Re(N— 1)) > ‘wipuFiFexpie,

s=1 t=1
=2Re(N —2) [wapaspasFiFaexpi(p,+¢4)
FWePBAPAAF FAXPi(p +Pa) +WapasPBAF jFaexpi(ps + 0p)
+weppsPBAF 3 FAexpi(pp +@p) +WaparpaF yFpexpi(p, +¢4)
+WePBAPABF 3 Fexpi(p +@a) +WapaspssF s Fpexpi(oa+08) 4 forn—2. etc.
+wppsspesF s Fpexpi(og +¢p)]

forn=1,

T T T
=2Re(N—=2)D > > wipapuiFiFiexpic,

s=1 h t=1

(2.3.64)

The second term of Eq. (2.3.61) is thus equivalent to Eq. (2.3.59) for all
values of n and for T=2. For mixed-layer structures with §=0, Eq. (2.3.61)
is unchanged, the junction probabilities in matrix [Q] being pas =pps=wa

and psp=ppp=ws.

2.3.3.2 Mixed-Layer Structures with S=1 and 7=3

If A, B, and C layers alternate in a mixed-layer structure with S =1, matrices
[V], [W], and [Q] can be written as

FZFA FZFA szFA Wp
[V]: FZFB FZFB szFB ,[W}: Wwpg . and
F,T\FC FZFC Fch wc

DAACKDIQ, DaBCXPiYs PACeXPiQy
[O] = | paexpipy pppexpipg ppcexpipg
DcACXPiYe PceXpive PoceXpive
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As for two-component mixed-layer structures, it is possible to demonstrate
that Egs. (2.3.60) and (2.3.61) are equivalent.

2.3.3.3 Mixed-Layer Structures with $=2 and T=2

If A and B layers alternate in a mixed-layer structure with §=2, matrices [V],
[W], and [Q] can be written as

F:FA F:FA FZFA FZFA Waa

_ FZFA F:FA FEFA FEFA [W]: WAB
FZFB FZFB FEFB FEFB ’ WBA ’
FZFB FZFB FEFB FEFB WBB

4

and

PAAACXPIpP, PAABCXPipy

0] = PABACXPIQ, PaBBCXPipy (2.3.65)
PBAACXPIQR DABCXPipp
PBBACXPiYp PpBBCXPiYp

Equation (2.3.61) can then be calculated for different values of n:
NS[JMI[V] [W} = N(WAAFZFA + WABFZFA + WBAF;;FB -+ WBBFZFB)

T
=N (WaFFa+wpFyFg) = Z wyF,F* for n=0,

s=1

N—1
2Re " (N —)SpurlV]W][)"

=1
=2Re(N — 1) [waapaaaFFaexpip, +wpappaaFyFaexpipp
+waapaapFyFaexpipy +wpappapFpFaexpipg
+wapaAF 4 Fpexpios +wpppppaF pFaexpipg
+wappagsFFpexpip, +wepppssFyFaexpiop)
=2Re(N — 1) [wapaaF s Faexpioy +wpppaFjFaexpipp

+wapaFFpexpio, +wppppFyFpexpiop)
T T
=2Re(N — I)ZZwspS,Fg‘Ftexpigas

s=11=1

forn=1,




2Rez N —n)Spur[VI[W][Q]"

=2Re(N -2) {WAAPAAAVAAAFZFA‘:XWQPA +¢A) +WBAPBAAPAAAF§FA expi(th +LpA>

TWABPABAPBAAF 4F A exPi (oa+ VB) +WBBPBBAPBAAF pF A expi (WB + WB)
TWAAPAAAPAABF 4FA expilpp + “/A) +WBAPBAAPAABF jF A expilvp +04
+wABPABAPBABF yFAexpilpp + 993) +wpBPBRAPBABF pF A cxpilvp +vp
+WAAPAABPABAF 4Fpexpi

+WABPABBPBBAF A FBexpilpa + %73) +wpBPBRBPBBAF pFBexpilvp +vp

(5 + )
(5 +05)
A +¢A> +WBAPBABPABAFRF B eXPI(»PB +5"A)
(e5+e5)
(e5+a)

TWAAPAABPABBF yFBexpilpa + WA) +WwWBAPBABPABBF pFBexpilvp +04

+WABPABBPBBBF yFBexpilpa + 403) +wpBPBRBPBBBF pF B expi (PB +op )]

=2Re(N — 2)[”’APAAPAAAF FAexpz< A+¢A)+prBApBAAFZFAepr( B+¢A>

+wAPABPABAF }FA eXPi(WA + %03) +wBPBBPBBAFF A CXPI‘(% + WB)

+WAPAAPAABF 4 FBexpi (WA + ‘PA) +wpppAPBABF pFBexpi (%93 + @A)

+wAPABPABBF 4 FB e"Pi(sﬁA + ‘PB) +wpppBPBBBFRFB eXPi(‘PB + @3)]

T T T
:2Re(N—2)ZZZwSpshlphlthFtexpigas

s=1h t=

1
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forn=2,
etc.

As for mixed-layer structures with S =1, it is possible to demonstrate that
Egs. (2.3.60) and (2.3.61) are equivalent.

2.3.3.4 Mixed-Layer Structures with $=2 and T=3

If A, B, and C layers alternate in a mixed-layer structure with §=2, matrices

[V1, [W], and [Q] become

FiFy
FiF,
FiF,
F'Fg
V] = |FiFs
F'\Fg
FiFe
FiFc
FiF¢

FiFy
FiF4
FFy
F'\Fg
F'\Fg
F'\Fg
FiFc
FiFc
FiFc

FiF,
FiF,
FiF,
F'Fg
F'\Fg
F'\Fg
FiFe
FiFc
FiFc

FyF
FyFy
FFy
F,Fg
FyFg
FyFg
FiFe
FiFe
FiFc

F3Fy
FyFy
FiF,
F}Fg
F3Fg
F3Fg
FiFc
FiFe
FiFc

FF 4
FyF 4
FiF,
FFg
FyFg
FyFg
FiFe
FiFe
FiFc

FiFy
FiF,
FiF,
FiFg
FiFg
FiFg
FiFe
FiFe
FiFc

FiFy
FiF,
FiF,
FiFg
FiFg
FiFg
FiFe
FiFe
FiFc

FiFy
FiFy
FiF,
FiFg
FiFg
FiFg
FiFe
FiFe
FiFc
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and

WaA
WAB

PAAAPA PAABYA PAACYA

PBAA¥YB PBABYB PBACY¥B

PCAA¥YC PCAB¥C PCACYC

Wac

WBA

WBB

WBC

wca

PABAYA PABBYA PABCYA

PACA®YA PACB¥YA PACCY¥A

PBBAYB PBBBYB PBBCY¥B

PBCAYB PBCB¥B PBCCY¥B

PCBAYC PCBBYC PCBC¥C

; being equivalent to exp iy;.

PCCA¥C PCCB¥C Pccc¥c

wce

Wce

2.3.3.5 Mixed-Layer Structures with $>3 and 7>2

If A and B layers alternate in a mixed-layer structure with §=3, matrices [V],
[W], and [Q] become

FiFy
FiF,
FFy
FiF,
F'\Fg
F'\Fg
F'\Fg
F'\Fg

FiF,
FiF,
FiF,
FiFy
F'\Fg
F'\Fg
F'Fg
F’\Fp

FiF,
FiF,
FiF,
F'iFy
F'\Fg
F’\Fg
F'Fg
F’Fp

FiF,
FiF,
FiF,
F'iFy
F'\Fg
F'Fg
F’Fg
F’Fp

FF,
FiF,
FiF,
FiFy
FiFg
FiFg
FFg
FiFp

FF,
FiF,
FiF,
FiFy
F,Fg
FiFg
FiFg
FiFp

FjFy
FiF,
FiF,
FFy
FFg
FFg
FiFg
FiFp

FjFy
FiF,
FiF,
FFy
FFg
F3Fg
F}Fg
FiFp
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WAAA
WAAB
WABA
[W] _ WABB
WBAA
WBAB
WBBA
WBBB

and

PAAAAPA PAAAB¥A
PAABA¥YA PAABB¥A
PABAAYA PABABYA
0] PABBA¥YA PABBBY¥A ]
PBAAAYB PBAABY¥B
PBABA¥YB PBABBYB
PBBAAYB PBBAB¥B
PBBBA¥YB PBBBBYB

The same logical process can be used for any set of S and T values,
Egs. (2.3.60) and (2.3.61) being equivalent in all cases.

2.3.3.6 Periodic Structures (T=1)

When the crystal contains a single type of layer with a given scattering ampli-
tude F(Z) and layer thickness ¢, the expression of matrices [V], [W], and [Q]
becomes F*(Z)F(Z), 1, and exp—2miZ&, respectively, and Eq. (2.3.61) is
equivalent to Eq. (2.3.23).

2.3.4 INTENSITY DIFFRACTED BY A POWDER OF CRYSTALS
WITH CONTRASTING NUMBERS OF LAYERS

Equation (2.3.61) is valid for a set of crystals all of which have the same num-
ber of layers (IV), whereas powder samples obviously include crystals with
contrasting numbers of layers. If the relative abundances of crystals with 1,
2, ..., N layers are noted F(1), F(2), ..., F(N), respectively, the overall inten-
sity diffracted by the powder may be written as the weighted (3 I,XZIF (m)=1)
sum of the intensities scattered by crystals with 1, 2, ..., N layers, that is,

I=L+L+---+1Iy, with
L =F(1)[1SpurVW] for crystalswith1layer,
I, =F(2)[2SpurVW +2Re{1SpurVWQ}| for crystals with 2 layers,
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I;=F(3) [3SpurVW + 2Re{2SpurVWQ + 1SpurVwQ? }]

for crystals with 3 layers, ...,
and

Iy =F(N)[NSpurVW +2Re{(N — 1)SpurVWQ + ...+ 1SpurVWQ" ' }]
for crystals with N layers.
Thus

N
I= ZmF(m)SpurVW
m=1

N
—|—2Re{z m)SpurVWQ + - -

m=2

+Z VE(m)SpurVw QN ! }

m=N
. N—-1 N
=NSpurVW +2Re> ~ Y (m—n)F(m)SpurVWQ" (2.3.66)

n=1m=n+1

where N = Z ) is the average number of layers in the crystals.

Equations (2.3.61) and (2.3.66) differ only by the weight of the SpurVW and
SpurVWQ" terms, which are N and c¢,= (N — n), respectively, in Eq. (2.3.61),
and N and ¢, = Zm ar1(m—n)F(m), respectively, in Eq. (2.3.66).

2.3.4.1 Lognormal Distributions of Crystal Thickness

In nature, the distribution of occurrence probabilities of crystals with contrast-
ing numbers of layers F(m) with m=1, 2, ..., N can have distinct shapes
(Eberl et al., 1998), the thickness distribution of so-called illite fundamental
particles in natural illite and illite—smectite being essentially lognormal in
shape (Eberl et al., 1990; Srodon et al., 2000).

1 ex _(lnm—oc)2
Vanpm P op

In addition, Drits et al. (1997c, 1998) have derived a unique relation linking
the o and 8> parameters of the coherent scattering domain (CSD) size lognormal
distribution reported for these clay minerals to the average thickness of the crys-
tals (N): that is, o = 0.9485InN — 0.017 and > =0.1032InN + 0.034

A lognormal distribution of CSD sizes, with the above « and * parameters,
allowed a satisfactory fitting of the XRD data of various periodic and mixed-
layer clay minerals (Drits et al., 1997b, 2002a,b, 2004; Sakharov et al., 1999a,
b; Lindgreen et al., 2000, 2002, 2008; Claret et al., 2004; McCarty et al.,

F(m)=

(2.3.67)
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2004, 2008, 2009; Ferrage et al., 2005b, 2007, 2011b; Inoue et al., 2005;
Lanson et al., 2009). With the lognormal distribution, the contribution of very
thick crystals to the diffracted intensity becomes rapidly insignificant because
of their negligible proportion, and the maximum number of layers in crystals
(Nmax) may be set to ~ 5N for practical purposes.

2.3.4.2 Ergun’s Model

Ergun (1970) proposed a model in which the intensity is diffracted by large
defective domains rather than by small CSD diffracting incoherently with
respect to each other. Although this model corresponds essentially to the current
concept of defective megacrystals (see Section 2.3.7), Reynolds (1985) adapted
it in his well-known Newmod program to propose an alternative model of CSD
size distribution. According to this ‘defect-broadening’ model, the probability
of finding a defect-free domain in a crystal with N layers decreases exponen-
tially when the size of this domain is increased, owing to the occurrence of ran-
dom stacking faults along the Z direction. Equation (2.3.61) then becomes
N-1
I=NSpur[V]|[W]+ 2Rez (N —n)exp(—n/d)Spur[V]W][Q]"  (2.3.68)
n=1
where exp(—n/d) is the probability of finding a defect-free sequence of (n+ 1)
layers; 0 is the parameter controlling the shape of the distribution and corre-
sponds to the average size of defect-free domains, expressed as a number—
possibly non-integral—of layers; and N is the total number of layers in a
crystal.

According to Reynolds (1985), realistic reflection profiles can be obtained
for clay minerals by using a crystal size N~50. The above expression of the
‘defect-broadening” model can be converted to a CSD size distribution F(m),
withm=1, 2, ..., N, by assuming at first that exp(—1/0)=gq. If Eq. (2.3.68) is

N
multiplied by N its comparison with Eq. (2.3.66) leads to

N N
—(N—n)q"= E (m—n)F(m) withn=0,1,2,...,.N—1 (2.3.69)
N m=n+1

In the above summations over m (Eq. 2.3.69), it is possible to subtract the
summation for n=k+ 1 from that for n=k [k=0, 1, ..., (N—1)]. By doing so
twice, it is possible to show that

N m—1 2 .
F(m) =1 [(N—=m+1)—2(N—m)qg+(N—m—1)g*] with
m=12,....N—1

and

F(m) :%q"’_l[(N—m—&— 1)—2(N—m)q] for m=N.
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The ‘defect-broadening’” model thus corresponds to the following distribu-
tion of CSD sizes:

F(m)=(1—q)g™" 1+[mq—(m—1)]% with m=1,2,...,N—1 (2.3.70)
and .
N N1
F(N) =4 23.71)

In Eq. (2.3.70), the expression within the square brackets is the correction
factor for the finite crystal thickness, whereas for infinite crystals

Fm)=(1— )" with S F(m)=(1—q)
m=1

1
=1,asN —o0.
(1—-q)
To perceive its physical meaning, ¢ can be expressed as a function of N
and N. Subtracting the relation for n=1 from that for n=0 in Eq. (2.3.69),

N(N -1
it is possible to obtain g = (4)
(N-1)N
In this model, structural defects coincide systematically with interlayer spa-

cings, and N can be associated with the mean number of layers in one CSD.

N
Hence, ﬁ and (N — 1) are the total number of CSD and the total number of inter-

layer spaces in a crystal, and (N — 1) is the number of defect-free interlayer spaces

in one CSD, respectively; Z(N — 1) is the total number; and w

N N(N-1)
mean fraction (relative number) of defect-free interlayer spaces in a crystal,
respectively. For a given value of fixed N = §, values of g resulting from this
hypothesis can differ slightly from that calculated directly from exp(—1/0)=g¢
and depend on N. For example, ¢=0.818731 for 6 =5, whereas ¢=0.816327
assuming N =5 and N=50, or ¢=0.818605 for N =5 and N=44. As a conse-
quence, the parameter d can be expressed as

1 1 1

" g WNN-1)]-m[NE-1)] o1

=g isthe

2.3.5 INFLUENCE OF SMALL VARIATIONS OF LAYER
THICKNESS (LAYER-TO-LAYER DISTANCE)

The possible variation of the layer-to-layer distance has long been recognized
for clay minerals (Kodama et al., 1971), and was, for example, related to the
incomplete filling of K™ -deficient muscovite interlayer space. More recently,
such variations were evidenced in smectites (Ferrage et al., 2005a,b, 2010)
and in smectite-containing mixed-layer structures (Drits et al., 1997b,
2002b; Sakharov et al., 1999a; Lindgreen et al., 2000; Drits, 2003), and their
influence on XRD patterns was shown to be non-negligible. To model the
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influence of such fluctuations of the layer-to-layer distance in a periodic crys-
tal (T=1), it is convenient to consider at first that this parameter follows a
normal distribution about a mean value &,. The occurrence probability of
layers with a thickness ¢ is therefore

L (S <)
Vard TP T o

where 4 is the variance of the distribution, and the average value of the phase
term corresponding to layer thickness & is

v(&) =

(2.3.72)

J+m V(&) exp(—2miZE)dE = ! JJrOC expfwexp(,zmzi)dg
—o0 V2rA ) 24

= exp(—2miZ&y) exp — 2(nZA)?
(2.3.73)

2.3.5.1 Defects of the First Type

Depending on the nature of the interactions between the layers and on the phys-
ical reasons for the translations’ variations, layer thickness fluctuations were
shown to be of two types (Guinier, 1964; Drits and Tchoubar, 1990). In the first
type, fluctuations follow a unique law for any layer pair, and this law thus
describes both short- and long-range order in a layer stack. As a result, the total
translation between two nth nearest-neighbour layers is equal to n times the
average translation and can be expressed as &, =(n—1)&y+ &, with P(&,)=¥
(&), whatever the value of n, although the translation may vary from one layer
pair to the other.The initial expression of Eq. (2.3.23) then becomes

-0 n=1

1(Z2)= r% Y(EYF(Z)F*(Z) {N +2 Rei(N —n)exp —2miZ¢é, }dﬁ

+00
V|

=F(2)F(Z) N1 .
+2Red (N— n)J_ V(&) exp|—2miZ(n — 1)&] exp(—2miZ&)dé

IRGEE
:F(Z)F*(Z) N-1 oo
+2 Red (N —n)exp[—2miZ(n— l)éO]J, WP(&)exp(-2miz¢)dE

n=1

N-1
=F(Z)F*(2) {N + exp—2(nZ4)*2 ReZ(N —n)exp — ZnichfO}

(2.3.74)
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where [TXP(&)dE=1.

For a mixed-layer structure whose elementary layers are affected by such
fluctuations of the first type, the exponential factor exp —2(nZA)* is intro-
duced in Eq. (2.3.61) ahead of the real part of the summation, as in
Eq. (2.3.74). Reflection intensity is thus decreased by this type of defect,
and the influence increases with Z (or the diffraction angle).

2.3.5.2 Defects of the Second Type

In the second type of fluctuations, there is no long-range correlation between
the defects, and the total translation between two nth nearest-neighbour layers
is no longer equal to n times the average translation. According to Guinier
(1964), this type of defect results, for example, from crystal growth when
new structural fragments are added to the crystal, leading to a loss of long-
range order in the structure, the loss increasing when new fragments are
added. As a result, the total translation between two nth nearest-neighbour
layers is equal to &,=né, with Y(&,)=[P(&)]". The initial expression of
Eq. (2.3.23) then becomes

+00 N—-1
1(Z)= J Y(EF(Z)F*(Z) {N +2Re» (N —n)exp—2miZé, }df

—o0 n=1
+00 N-1 +o0
_F2)F*(2) {NJ W()de+2ReS (N n)J ‘I’(én)exp(ZniZné)df}
-0 n=1 —o0
N-1
=F(Z2)F"(Z) {N +2Re» (N —n)exp(—2miZnéy)exp —2n(nZA )2}
n=1

(2.3.75)

In contrast to Eq. (2.3.74), the exponential factor exp— 2n(7rZA)2 is
included in the summation of Eq. (2.3.75), and depends on n. In a mixed-layer
structure, elementary layers may exhibit different fluctuations of their layer
thickness, and Eq. (2.3.12), which describes the intensity of waves diffracted
by a mixed-layer crystal as the sum of contributions from single layers, layer
pairs, layer triplets and so on, thus becomes

~+00
Zw,-F,F?J Y (&)déE= Zw[FiF;‘ for single layers,
+00
ZZW,—p,-jF,-F}‘J V(&) exp— (2miZE)dE
i J 0

= Z Z wip;F'iF } exp — (2miZ¢;) exp — 2(nZA;)? for layer pairs,
i
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+00 +oo
SN Zwipiipiko;FZJ V(&) exp — (2niZ.{f)dafJ ¥, (&)exp — (2miZE)dé
ik —o0 —o0
=33 wgpirFiFexp— [2miZ (& + )]
ik

exp — 212 Z? (A? + AIZ) for layer triplets, so on.

In turn, each Qj. .. element of the [Q] matrix in Eq. (2.3.61) will incorpo-
rate an exponential term exp — (a;+ib;) where a;=2(nZ4 j)z and b;=2nZ¢;, A;
being the variance of the normal layer thickness distribution for j-type layers.
As a consequence, defects of the second type also increasingly reduce reflec-
tion intensity with increasing values of Z, but, in addition, their impact
depends on n (the effect of both types of defects on the diffracted intensity
distribution is described in Appendix A3).

2.3.6 INFLUENCE OF THE OUTER SURFACE LAYERS
OF CRYSTALS

The occurrence on the outer basal surfaces of crystals of layers with a struc-
ture or composition different from that of the ‘core’ layers is another possible
disruption of crystal periodicity. Until recently, the influence of such defects
on calculated XRD patterns was assumed to be minor, and no specific effort
was made to integrate their description in programs allowing the calculation
of diffraction effects from mixed-layer structures. As a result, outer crystal
surfaces were not described specifically in these programs. In Newmod, the
outer surface layers were ‘naked’ 2:1 layers (Reynolds, 1985), whereas early
versions of the programs developed by the groups in Orléans (France) and
Moscow (Russia) were meant for asymmetrical crystals with all interlayer
species on one side of the crystal, or more generally for outer surface layers
(OSL) similar to the ‘core’ layers (Plancon, 1981; Sakharov et al., 1982a,b,
1983). However, high-resolution transmission electron microscopy (HRTEM)
revealed that OSL may differ in nature from the ‘core’ layers. Illite crystals
may terminate with a kaolinite layer (Tsipursky et al., 1992), whereas kaolin-
ite crystals may have pyrophyllite or smectite layers as surface terminations
(Ma and Eggleton, 1999). Kogure et al. (2001) also reported cronstedtite crys-
tals exhibiting chlorite OSL. As clay minerals often exhibit very minute crys-
tal sizes, the possible impact of these specific OSL on the diffracted intensity
thus becomes a relevant question, a formalism allowing these effects to be
taken into account (Sakharov et al., 2004b) is therefore described.

Let us first consider a periodic structure with a ‘core’ of N identical layers
and two OSL, whose structure factors are F, F,, and F, respectively
(Fig. 2.3.6). OSL at the bottom and top of the crystal, labelled b and ¢, respec-
tively, can be considered as two layers in addition to the N ‘core’ layers of
the crystal. From Eq. (2.3.12), the intensity of X-rays diffracted by a crystal
corresponds to (i) the contribution from all individual layers and (ii) the



X-ray ldentification of Mixed-Layer Structures

t (OSL)
N B
N-1
> Crystal
core
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b (OSL)p

Origin of the crystaIT

FIGURE 2.3.6 Schematic representation of a crystal with an N-layer core and (OSL), and
(OSL), layers at the bottom and top, respectively, of the crystal.

contribution to intensity from the two external layers in all possible sub-
sequences consisting of two, three, ..., (N—1), N layers, taking into account
the phase shift between these external layers. Thus

I=A*"A=F;F,+ {Fi{F\+F}Fy+ - +FyFy} +FF,
+[FFrexpip, +{FiFyexp iy, +F5F3expip, + -
+Fy_Fyexpioy_ }+FxnFexpipy] + conjugate
+ [FyFaexpi(p, + o) +{F1Fsexpi(p) +p,) + F3Faexpi(p, +p3) + -
+Fy o Fnexpi(ey o+ oy_1)} +Fy_Frexpi(py_y +¢y)] +conjugate

+[FpFn-1expi(py+ @1+ +oy)
+H{FiFnexpi(p+@y+-+oy1)}
+FLFexpi(p, + @3+ -+ py)] +conjugate
FyFnexpi(p,+ @1+ +oy1)
+F Fexpi(p, 4@, +--+oy)
+ [FyF exp (i, + @ + oy + -+ )| + conjugate (2.3.76)

+ conjugate

p, being the phase shift induced by the thickness of the lower OSL.

The sum of the terms between curly brackets corresponds to the contribu-
tion of the crystal N-layer core to the intensity, while the other terms corre-
spond to the contribution of the two additional OSL. As all core layers are
identical, F1=F,=---=Fy=F and p;=@p,=---=py=. If the different
terms of Eq. (2.3.76) are grouped as a function of the number of layers
between outer layers (F;*F;) in layer sequences (i, j=b, 1, 2, ..., N, 1), then
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I = (NF*F+F}F,+FF,)

N—1
+2Re{z [((N—n)F*F +F}Fexpip,+FFiexp ip|exp ing

n=1
+F,Fexpip,+F'F.exp ip+F,F,exp ip,exp iNap} (2.3.77)

A similar approach may be used for mixed-layer structures with the fol-
lowing matrix formalism:

I=Spur[NIV]+ [Vi] + [V]]] W]

+2ReSpw{2[<N —n)VIW]+ V] WQs] + VWi o)
HVIWIQ] + VAW + VW) [QJN} 2378)

Matrices [V], [W], and [Q] are identical to those in Eq. (2.3.61), whereas
matrices [V'], [V,], [V.], [V4], and [V]] correspond to products of structure
amplitudes for core, bottom, and top layers; [Q,] contains the products of
junction probability parameters and the phase term induced by the thickness
of the OSL at the bottom of the crystal; and [Q,] contains the products of junc-
tion probability parameters and the phase term induced by the thickness of the
N core layers (Fig. 2.3.6). Compared to Eq. (2.3.61), Eq. (2.3.78) contains all
the terms describing diffraction effects from the core layers and additional
terms describing the contribution of the two OSL and of their interactions
with each core layer. When using the matrix formalism, a mixed-layer struc-
ture with T layer types may admit T types of OSL as crystal bottoms and tops
owing to intrinsic limitations, and Eq. (2.3.78) may be used to describe
mixed-layer structures differing from the occurrence probabilities of their
OSL, as described in the next section.

2.3.6.1 Model I: Occurrence and Junction Probabilities of OSL
are ldentical to Those of the Core Layers

One may consider at first a two-component mixed-layer structure in which A
and B layers are interstratified with § =1, with two layer types possibly occur-
ring on the crystal’s outer basal surfaces. Although the OSL may differ from
the core layers, it is convenient to label them Ab and Bb for the bottom layers
and Ar and Bt for the top ones, and it is possible to write the following
relations:

Wap +wpp =1, papa +Pavs =1, pppa +pprs =1,
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and

War+wps =1, paas +pap: = 1, ppar +ppp: = 1.

Model I considers that these occurrence and junction probability para-
meters are identical to those of core A and B layers:

WaAb = WAt = WA, WBb = WBt = WB, DAbA = PAAr = PAA> PAbB = PABt
=Ppag,--*» and pppp = ppp: = PBB-

In this case, the expression of matrices [V], [W], and [Q] is given by
Eq. (2.3.62), and that of the additional matrices present in Eq. (2.3.78) are

[V’] _ FypFab [V’} _ FyFa
b FapFap| FyFp |
FiyFa Fy,F FiFs F3F
V.= i‘h A fb A (V] = ,;; At I'gl'Ar ,
Vsl F' Fg Fj,Fp Vi F'Fg, FjFp

FipFar FypFa

V/ — " * ’
V=P FiuFa
(0y] = | PA#a XP [Pap PABBEXP iQap | _ | PAACKP ia), PABEXP Iy
PBbACXP 9y DpoB€XP i, | | PBACXP i), PBBEXP i)’
and
0]= PAACXP iy PaBEXPIPs|  |PAA€XP Py PaBEXPipy
] — . . - . .
PBA:€XP 1¥p PBBEXPlPp PBACXP IPp PBBEXPlPp

where F,, Fa, Fgp, and Fg, are the structure amplitudes of Ab, At, Bb, and Bt
OSL, with ¢,4;, and g, being the phase shifts corresponding to the thickness
of Ab and Bb OSL, respectively.

For a mixed-layer structure with S=2, the expressions of matrices [V],
[W], and [Q] are given by Eq. (2.3.65), whereas those of the additional matri-
ces present in Eq. (2.3.78) are

FipFab FuiFa
Fi F Fi F
[VI/;] = Ab"Ab * > [V” = A Al % b
FB},FBb FBtFBt
FZ);,FBI) FEIFB’
F:;,FA FZhFA FZbFA FZ})FA FiFar FyFar FpFar FpFa
Wil szFA szFA FBbFA F;;;,FA v F;;FAt FZFAZ FEFAI FZFAZ
bl = = ,

s Vit —
Fj\},FB Fj\bFB FEhFB FE],FB FXFBt FZFBZ FZ’FBt F:}FBI

Fi,Fp F'\,Fp Fy,Fp FyFp FiFp, FiFp, FyFp, FjFp
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FZ;,FA{ FZ;,FAI FE},FAI FZ;,FAI
FayFar FapFar FpFar FppFar
FiFpe FiyFpe FyoFae FiyFai|
Fu,FBe Fu,Fee FpFpe FpFp
PAAACXP i04p PAABEXPi0pp
DABA€XP 19ap PABBEXP 1PAp

PBAACXD i, PBABCXP iy
PBBACXP i, DPBBBCXP ippy,

(0] =

and

PAAACXD 04 PAABCXP ipy
0] = .  PaBACXPI®, PABBEXPipy
PBAACXD IPp PBABCXP 1¥p

PBBACXPIQp DpBBCXP iPp

The same logic can be used to determine the expression of the new matri-
ces for mixed-layer structures with 7>2 and/or with §>2.

2.3.6.2 Model IlI: Occurrence Probabilities of OSL Depend
on the Nature of the Previous Layer

According to this model, the nature of the OSL is controlled by that of the
adjacent layer, and for a mixed-layer structure with 7=2 and S=1

Paba = Pave = 1(0 papp =pppa = 1), and  paa = ppa: = 1(0r pap: = ppar = 1).
In this case, the expression of matrices [Q,] and [Q,] from Eq. (2.3.78) is

eXp iy exXpipy

(0] = eXp iy, eXP gy,
exp ipp €xpipg|

eXp i), €XP ippy,

,[Qt] =

2.3.6.3 Model llI: Systematic Occurrence of a Given OSL Type
at a Given End of the Crystals

According to this model, the same type of OSL is systematically present at a
given end of the crystals, and only two types (b and ) of OSL may occur. For
a mixed-layer structure with T=2 and S=1, the expressions of the additional
matrices present in Eq. (2.3.78) are

FiF,

FiFa FiF
,[Vt’]:’ F'F, "y FoFy

Vsl = FiFg FiFg

s

‘ FiF),

=]

FiF,

FiF, FyF,

V=1 Fyr

s
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FiF, FiF,
FiF, FiF,

expip, expip,

expiyp expipg

expiy, expip
V= dosl=| " T and 0] =
eXpip, CXply,

2.3.7 INFLUENCE OF INTER-CRYSTALLINE DEFECTS:
MEGACRYSTALS

For lamellar compounds, coherent scattering domains can be seen as a crystal
volume exhibiting layer parallelism and 2D periodicity within the layer plane.
Following this definition, interstratification of different layer types, even of
incommensurate layers, thus has no influence on the size of the CSD perpen-
dicular to the layer plane. On the other hand, the crystal size may differ from
the size of the CSD, as crystals are commonly composed mosaic blocks that
are slightly misoriented with respect to each other (Guinier, 1964) and thus
act as CSD, scattering X-rays independently. Accordingly, the sizes of CSD
determined from the analysis of diffraction line profiles (e.g. Drits et al.,
1997c) are often smaller than the particle sizes determined by other techni-
ques such as small-angle X-ray scattering (SAXS), transmission electron
microscopy (TEM), or HRTEM. For example, the XRD analysis of the
Rupsroth beidellite revealed an average CSD size of ~15 layers (Besson,
1980), whereas a simultaneous SAXS study indicated crystals with up to
400 layers (Pons, 1980). Comparison of XRD patterns calculated with the
common hypothesis of a set of CSD all having small sizes (Fig. 2.3.7A;
Section 2.3.4) with those collected on natural and synthetic clay mineral sam-
ples revealed a similar tendency, with frequent discrepancies over the low-
angle region (20 <4-6° Cu Ka). The intensity calculated at low angle is
commonly higher than the experimental one (Fig. 2.3.8), indicating the need
for larger CSD sizes, despite high-quality fits over the high-angle region
(McCarty et al., 2009). Two models are described hereafter that allow con-
cealing this apparent discrepancy.

2.3.7.1 Model I (Plancon, 2002)

Plancon (2002) proposed a model in which a sample is composed of ‘quasi-
crystals’ or megacrystals whose average size is larger than that of the CSD
in the usual model (Fig. 2.3.7B). These megacrystals contain layer types iden-
tical to those in the usual XRD model. Their relative proportion and their
stacking sequences are also identical to those in the usual models. However,
adjacent parallel layers may be shifted with respect to each other along the
c*-axis, thus creating ‘pores’, according to an adjustable probability, and
the £-spacing between i-type and j-type layers can take n;; values, instead of
one in the usual model. The presence of ‘pore’ defects affects the phase terms
that depend on the distance between layers, but does not modify the structure
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FIGURE 2.3.7 Schematic representation of a sample consisting either (A) of a set of coherent scat-
tering domains (CSD), or (B and C) of a set of megacrystals. Additional distances may occur between
parallel layers to create pores (Plancon, 2002; B), or between aggregated CSD (Sakharov, 2005; C).

amplitude of individual layers. In Eq. (2.3.61) of the diffracted intensity,
only elements of the [Q] matrix should thus be modified as follows:
0ii(Z)= Z;’:l Pijq€Xp(2miZE;,), with p;, being the occurrence probability of
the gth spacing, ¢;;,, among the n; possible values (Z;’Zl Dijg = p,-j).

If the smallest of the n;; possible spacings is labelled ¢;, that is, if ¢; is the
smallest possible thickness of an i-type layer, any &;;, spacing can be written
as £, =&+ ALy, with 4&;;, > 0. If the occurrence probability of an additional
distance 4¢;;, between i- and j-type layers is denoted p(4¢;;,), then p;,=p;;
p(4é;,), with Zgilp(zl &ijg) =1, and the Q;(Z) terms can be written as

njj
0yj(Z) =pyexp(2miZ&) > _p(4&;,) exp(2miZAL;,).

q=1
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FIGURE 2.3.8 Simulation of the XRD pattern for Gulf Coast sample #496-002. Black crosses
are experimental data collected on an oriented preparation of the Ca-saturated and ethylene glycol
solvated <2-pum size fraction, the solid overplot being the calculated profile. The calculated pro-
file includes the contributions of an illite-expandable, discrete smectite, illite, and kaolinite
(68:28:2:2). The mixed-layer structure is composed of illite (9.98 10\), Exp; (16.95 A), and Exp,
(12.90 A) layers (65:32:3), randomly interstratified (S=0). Adapted from McCarty et al. (2008).

In the new model, Q;(Z) terms differ from those in the usual model by the
factor ZZ”:I p(4&;,)exp(2niZAE;,) that characterizes the deviation from the
‘normal’ layer spacings. Additional distances A&, disrupt the coherence of
waves scattered by different layers, the loss of coherence depending on the
diffraction angle (Plangon, 2002), the coherence of diffracted waves, or the
apparent size of CSD, and increasing with decreasing 20 angles. Additional
distances are systematically positive and much lower than the normal ¢&;
spacing (0<4&;;,,<&;). The structure is thus equivalent to a mixed-layer
structure in which layers with similar structure amplitude and &;;, > &; spacing
occur together with the ‘normal’ layers, and a significant positional shift,
towards lower angles, is thus expected for high-angle reflections compared
to the usual model (Plangon, 2002). This positional shift is expected to occur
even for periodic structures, in contradiction with experimental data, and this
alternative model is likely inappropriate for the description of natural samples.

2.3.7.2 Model Il (Sakharov, 2005)

As an alternative to model 1, it is possible to consider that CSD, or mosaic blocks,
with a size distribution identical to that of the usual model are aggregated to form
megacrystals (Fig. 2.3.7C). If these CSD are arranged in such a way that their
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layers are strictly parallel from one domain to the other and there is no distortion
(additional, positive or negative, distances) between these domains, the resulting
XRD pattern corresponds to a large monocrystal equivalent in size to the mega-
crystal. If the coherence of waves diffracted by the different CSD is lost because
of their arrangement in the megacrystal, then the resulting XRD pattern corre-
sponds to the usual model. The coherence of waves diffracted of the different
CSD can vary steadily between these two extreme cases.

A comprehensive description of this alternative model requires the definition
of inter-crystalline defects, of their occurrence frequency in a megacrystal, and of
the associated phase shifts for the calculation of their impact on the diffracted
intensity. For this purpose, it is convenient to consider first a large megacrystal
consisting of defect-free parallel CSD. In this case, defects are located only in
between OSL of different CSD and can be defined as the additional distances
between adjacent CSD, independent of the other inter-crystalline distances. The
additional distances between adjacent CSD can be positive or negative but
are much smaller than the CSD sizes. The latter condition implies that the distance
fluctuation is of the second type described in Section 2.3.5. If M is the total num-
ber of layers in a megacrystal, and N and N the maximum and average numbers of
layers, respectively, in a CSD, then (M — 1) is the maximum number of defects,
M/N the number of CSD, ((M/N)—1) the mean number of defects, and
[((M/N)—1]/(M —1) the occurrence probability of defects in this megacrystal.
In a sequence of (n+ 1) layers, n is both the number of layers adjacent to a layer
arbitrarily chosen as the origin and the maximum number of defects in this
sequence. Defects being randomly distributed, it is possible to deduce that
n[(M/N)—1]/(M—1) is the number of defects in this (n-+ 1) layer sequence,
and (M — n)n][M /N —1] /(M — 1) the total number of defects in all (n+ 1) layer
sequences, (M — n) being the number of (7 + 1) layer sequences in a megacrystal
with M layers. If ¢, is the number of defect-free (n+ 1) layer sequences (see later),
that is, of sequences of (n+ 1) layers from the same CSD, the number of defective
(n+1) layer sequences is [(M —n) —c, ], and the average number of defects in
each of these sequences is k, = [(M —n)n (M —=N)|/[(M —1)N(M —n—c,)].

If Ny, Ny, ..., Ny are the numbers of CSD with 1, 2, ..., and N layers,
respectively, in a megacrystal with M layers, then Ny X 1+Npx2+4---+
Ny x N=M. Similarly, if the occurrence probabilities of these CSD are F(1)
[F(1)=Ny/SN_iN,l, F(2), ..., and F(N), respectively, then S>__ nF(n)=N,
with nyle(n) =1, and Ny=rF(1), N;=1F(2), ..., and Ny=rF(N), r being
the number of CSD (M/N). As a consequence ¢, can be defined as

u &
)= Z (m—n)F(m), ifn<N
Cn= Nm:n+1 ’

0, if n>N

The definition of phase shifts corresponding to different distributions of
arbitrary distances between CSD is described in the following sections.
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2.3.7.2.1 Exponential Distribution of Defects Between CSD

It is convenient to hypothesize at first that all layers in the CSD of a mega-

crystal are identical with a common layer-to-layer distance equal to &, and

that A¢ distances between adjacent and parallel CSD follow the exponential
_ [ hexp(—AE), AE>0

law W(AE) = { 0. AZ <0

where A =1 /4, with 4 the decay rate of the distribution and

| wiagaae -1,
0

The average phase term for two layers separated by such a defect depends
on the (&y+ A¢&) distance between these layers, and can be expressed as

jW(Aé) exp[—2miz(&g + AE)|d(AE) = /lexp(onizfo)ro exp(—2mizA&)exp(—1AE)d(AE)
0
0
_ xexp(—zmzco)Jo expl(~2riz — 1)AZA(AS) = expl(~2rizto) 75—

1 —2mizAE
= Liexp(—mu’zfo) = [A+iB]exp(—2miz&p)
14+4n222A¢E
1 —2mzAE
where A = , and B= mAL

1+ 471222A22 1+ 471222A22

The presence of one defect in a layer sequence thus induces the multipli-
cation of the phase term by the additional (A +iB) factor, this factor becoming
(A+iB)" in the presence of k, defects.

2.3.7.2.2 Normal (Gaussian) Distribution of Defects
Between CSD

A normal distribution of A¢ distances between adjacent and parallel CSD can

2
be expressed as W(A&) = exp [—géz} , where AE=¢E— &g, & being the
o

2no

layer-to-layer distance within CSD, ¢ the distance between adjacent CSD,

and ¢ the standard deviation of A¢. In this specific case, no assumption is
made as to the nature of OSL, and negative A¢ values are thus allowed.

The average value of the phase term for such a distribution can be expressed as

J W (&) exp(—2miZ&)dé = exp(—2miZ&y) exp(—2n*Za?).
—00

In contrast to the exponential distribution, this expression for a normal dis-
tribution of distances between CSD contains only the real part of the addi-
tional factor, that is, A = exp(—anzzaz)k” when &, defects are present.
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2.3.7.2.3 Semi-Normal Distribution of Defects Between CSD

If only half of the previous normal distribution is considered, either negative

or positive additional distances (A& =¢ — &g) between adjacent CSD are taken
into account, and the distribution takes the following forms:

For {>¢y:
V2 A
2= = >
W(AE) = o exp 752 forAs > 0.
0 forAE <0

The average value of the phase term for such a distance distribution becomes

|, wiadessl-anizieo + Ad)aa)
21 (*® AZ
= \I;EJO exp {—2—52] exp(—2miZ&y) exp(—2miZAE)d(AE)

/2
= exp(—2miZ¢&)) { exp(fZRZO'ZZz) +1i [%exp(—2n20222)J0 exp (tz) dt} }

with o/2 = v/2nZo. In this case, the A and B factors multiplying the phase term

2 o .
become exp(—2n°6*Z%), and —Texp(—ZnZJZZZ) Jo /2 exp(#?)dt, respectively.
T

For £<¢:
V2 A
il . <
W(AE) = /o exp 202 forAs <0
0 forA¢ >0
The average value of the phase term for such a distance distribution becomes

J:c W(AS) exp|—2miz (&0 + AS)] d(AL)

0 2
= \/%éJOO exp [—%] exp(—2miZ&y) exp(—2miZAE)d(AE)

/2
= exp(—2miZ&y) { exp(—2n20222) +1i [\/iﬁ exp(—2n202Z2)J exp (tz) dt} }

0

with o/2 = v/2nZo. In this case, the A and B factors multiplying the phase term

become exp(—2n°c°Z*), and f% exp(—2m*a?Z?) [y /2 exp(2)dt, respectively.
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2.3.7.2.4 Uniform Distribution of Defects Between CSD

A uniform distribution of additional distances (A =¢ — &) between adjacent
CSD can be expressed as W(AE) = 1/(&Epax — &o), With & . the maximum pos-
sible distance between two adjacent CSD. The average value of the phase
term for such a distance distribution becomes

Emax —Co

W (AZ) expl—2miZ (& + AS)|d(AS)

Emar—So
R ! "y J exp(—2miZ&y) exp(—2miZAE)d(AE)
max 0

Sinznz(émax B 60) . COSZTEZ(fmax - 50) —

I EON S = o s = ——

In this case, the A and B factors multiplying the phase term become
SiI’lQTEZ(fmaX — 60) COSZﬂZ(émax — 60) —
— and
2nz(émax - g()) 2nz(émax - 50)

, respectively.

2.3.7.2.5 Overall Intensity Equation

If different layer types are interstratified in an M-layer megacrystal, the dif-
fracted intensity can be deduced from Eq. (2.3.61) as

= MSpur[V][W]+ 2Rei (M — n)Spur|V][W][Q]" (2.3.79)

n=1

The first term of the equation corresponds to the contribution to intensity
of waves diffracted by individual layers, whereas the second term corresponds
to the contribution of sequences with 2, 3, ..., M layers. If the megacrystal
contains inter-crystalline defects, the second term of Eq. (2.3.79) is split in
two terms corresponding to the intensity contributions from defect-free and
defective layer sequences, respectively, that is,

= MSpur[V +2Rez {cn +(M—n—c,)(A+iB)* } Spur[V][W][Q]"
= MSpur[V +2Rez [Mc + (M —n—Mc; )(A—i—iB)k"} Spur[V][W][Q]"
1 " (2.3.80)

N
Z (m—n)F(m), ifn<N
m=n-+1 '

0, ifn>N

where ¢; =< N
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Megacrystals are most likely also distributed in size. If minimum and max-
imum sizes of the megacrystals are labelled M ,;, and M ., respectively, the
megacrystal size distribution may be described by occurrence probability

coefficients G(Mmm),G(MminJr 1),...G(Mp.y), with ZM _GM)=1, and

M= v MG(M). Equation (2.3.80) then becomes
Moy
I= > GM)y= Z G(M)MSpur[V][W]
M=, Mmm M= min
Mm"m _
+2Re Y G(M) Z {Mcn (M—n—Mc:)(A +iB)k(”’M)] Spur[V][W][o]"
M=M nin n=1
Mqu Mmm l
=MSpur[V][W]+2Re Z GM Z [MLZ +(M—n—Mc:)(A+ iB)k(”vM)] Spur[VI[W][Q]"
M=M pin =1
Mm1x Mm1x —1 !
+2Re > GM) Y. (M—n)(A+B¥M spurviwiio)”
M=M in n=M min
Mm;“ 1 Mmax
=MSpur[VIW]+2Re > |Mch+ > GM)(M—n—Mc})(A+iBYM) | Spur(v]w][Q]"
n=1 M=M win
Mupax—1 Mgy
+2Re ST G0 —n)(A+iB)M) spurv]w] Q)"
n=M ynwinM=n+1
Finally,
I=MSpur[V][W]
Mmax —1 Mmax
+2Re Y |Mch+ 3 G(M) (M —n—Mc5) (A+iB)FM) | Spur[v)[w][0]".
n=1 M —

max(M pip.n+1)

This particular model is equivalent to that proposed by Plancon (2002) if
all CSD contain a single layer, that is if N = 1. The total number of defects
in all (n+1) layer sequences is then equal to (M —n)n, c,=0, and k,=n.
As a consequence, the term (A+iB)" can be included in the [Q]" matrix,
and Egs. (2.3.80) and (2.3.79) are equivalent. All other models can be
described with a single additional parameter (4, o, {ax) describing the distri-
bution W(A¢&), which is the degree of coherence between CSD in megacrys-
tals. It should be noted (i) that the information about CSD size distribution
is kept when using this alternative model, and (ii) that there is no positional
shift of the reflections if a normal distribution is used.

2.3.8 DIFFRACTION BY A POWDER SAMPLE

Clay minerals occur as finely dispersed crystals whose size within the layer
plane is ~1 pm, which restricts the methods allowing their routine structure
determination to powder diffraction. However, the actual experimental setting
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influences the intensity distribution for a given powder sample, and this influ-
ence should be taken into account in the calculation of diffraction effects if they
are to be compared with the data. The general theory of XRD by randomly ori-
ented crystal powders was described by von Laue (1932), Warren (1941), and
Wilson (1949b). XRD is conveniently described using the Ewald sphere. This
geometrical construction allows identifying points in the reciprocal space that
satisfy the Bragg diffraction condition. Intersection of the Ewald sphere (radius
1/4) with hk rods of a crystal rotated around the origin of reciprocal space is con-
sidered usually. The present description of mixed-layer structures is restricted to
the intensity distribution of basal 00! reflections, and only the rod with #=0 and
k=0 is to be considered. Data collection conditions for basal reflections are
schematized in Fig. 2.3.9 for the 6-20 reflection configuration routinely avail-
able on diffractometers with Bragg—Brentano geometry. For a given sample
rotation 0, vector s connects the vector tips of the primary (ko//) and scattered
(k/A) beams that define the diffraction angle 20. For this case, Fig. 2.3.9 shows
the intersection of the Ewald sphere (origin in O, radius 1/4) with the #=0, and
k=0 rod, which is perpendicular to the basal surface n of a diffracting crystal
and passes through the origin O of the reciprocal space. Alternatively, powder
XRD can be described using a fixed crystal and the intersection of Ak rods
with spheres centred at the origin of the reciprocal space and of a variable
radius s (Brindley and Méring, 1951). The intensity distribution igg(s) then cor-
responds to that of waves diffracted at a given angle 26 (s=2sin 6/1) by an
assembly of randomly oriented crystals. For a given value of s, the intensity

{::} X-ray source

x T
1
SO

Detector

v

FIGURE 2.3.9 Schematic representation of the geometric configuration used for data collection in
020 reflection mode. ng is the normal to the sample surface, 7 is the basal surface of a crystal, 1/1is
the radius of the Ewald sphere, 20 is the diffraction angle, and O is the origin in the reciprocal space.
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ipo(s) is proportional to the intersection of the rod 00 with a sphere of radius
s integrated over their common surface A (Fig. 2.3.10). From Egs. (2.3.8) and
(2.3.23), this intensity can be written as

. dA 1 2 N
l()()(S) = JAIO()(S)WZWU:OQ(Z)‘ GO()(Z)J D(X,Y)D (X,Y)dA

A
(2.3.81)

where Iyo(s) is the intensity within the 00 rod at the tip of vector s, dA is the
surface increment of the sphere of radius s, and ¢ and Q2 are the surface areas
of the layer and unit cell, respectively, in the a—b plane.

For large sizes of the layers in the a—b plane, the intersection of the 00 rod
with the sphere of radius s is close to a flat cross-section, except for very
small s values, and the spherical surface A can be approximated by the plane
A’, which is tangent to the sphere at its intersection with the Z-axis
(Fig. 2.3.10). In this case

1 2
D(X,Y)D*(X,Y)dXdY =0, and iy (Z) =-——|F00(Z)|"Goo(Z
| DerID ) atar o, and in(2) = 4 F(2) Gl
(2.3.82)
4z
A/
\
\s
: S
qDl'l'IaX
¢
s p
-~ l1’\\\ )(
N o
Y

FIGURE 2.3.10 Schematic representation of the intersection of the 00 reciprocal rod by the Ewald
sphere (A) of radius s. The plane A’ is tangent to the sphere at its intersection with the 00 rod.
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The intensity of X-rays diffracted at a given Z=2sin 0/4 value by a pow-
der of randomly oriented crystals is thus proportional to the product of the
unit-cell structure factor [IFoo(Z)I*] and the interference function [Goo(Z)]; it
is also inversely proportional to the squared distance of the Z point from the
origin (1/Z%). The latter term is the Lorentz factor and will be discussed
hereafter.

Approximating the integration over the spherical surface by that over the
tangent plane (Eq. 2.3.82) is valid in most practical cases. The surface area
of the 00 rod intersection with the sphere of radius s and the tangent plane

can be expressed as Sy - [1 —|—71 —'cosgomax
R2 Sln@mdx
where R is the radius of disc-shaped layers (Fig. 2.3.10). This radius is equal
to several hundreds of angstroms for most clay minerals, and the difference
between the two expressions can be calculated for the 001 reflection of mica:
1 COSPmx 0,005 (o —arcsin@R)=2.9° for dopy=10 A, and
SIngOm%X

R=200 A). The planar approximation thus reduces the integration area by
~2.5%, this reduction decreasing for higher order reflections owing to the
decreasing values of ¢.,,x. The underestimation of the integration area reaches
~7.5% for the super-reflection of a mixed-layer structure with d=30 A and
R=200 A (¢max =8.6°).

} and SA«:I%, respectively,

2.3.8.1 Effect of the Crystal Partial Orientation

Structural investigation of clay minerals is commonly restricted to the analysis
of diagnostic basal reflections, and oriented preparations are thus preferred to
enhance their intensity while diminishing that of &kl reflections (Moore and
Reynolds, 1997). Crystal orientation is naturally favoured by the strong anisot-
ropy of clay particles, whose extension within the layer plane is usually much
larger than perpendicular to it. In addition, oriented preparations possess an
axial symmetry of crystal orientation normal to the sample surface. The influ-
ence of partial crystal orientation on the intensity distribution was described
in the literature for different experimental settings and particle shapes (Taylor
and Norrish, 1966; Ruland and Tompa, 1968, 1972; Reynolds, 1976, 1986;
Plancon and Tchoubar, 1977; de Courville et al., 1979; Plancon, 1980), and will
be hereafter described only for basal reflections.

For this purpose, a flat sample containing Np crystals with different orien-
tations is considered, the normal to the sample surface being n,, whereas the
cylindrically symmetrical function Np(o) describes the relative proportion of
crystals whose normal to their basal surface (n) deviates from ng by the angle
o (Fig. 2.3.11). If dNp is the number of crystals whose normal to their basal
surfaces lie in a zone of sphere d(2, then dNp =Np-Np(a)dQ. As dep:Np
and dQ=2= sin ado, [Np(x)dQ=27 [ Np(a)sin oda=1.
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FIGURE 2.3.11 Schematic representation of diffraction by a partially oriented sample. ng is the
normal to sample surface, and n is the normal to ‘misoriented’ crystal basal surface, o being the
‘misorientation’ angle.

For a randomly oriented powder, Np(x) is independent of o, and 2nNp
(oc)fgsin ada=1, or Np(z)=1/4n (or Np/4m when using absolute units). If
the powder is perfectly oriented, then Np(«) is a Dirac function and Np(0)=1
(or Np when using absolute units).

For the geometry schematized in Fig. 2.3.9, directions of vectors s, ng, and
n are identical for crystals contributing to diffracted intensity at a given
26 angle and for an ideally narrow and perfectly parallel beam. In this ideal
case, a restricted set of crystals, corresponding to Np(0), contributes to the dif-
fracted intensity, whatever the 20 angle. The basal surfaces of these crystals
are strictly parallel to the sample surface and only their azimuthal orientation
in the a—b plane may differ. As a consequence, the relative intensities of basal
reflections do not depend on the orientation function Np(x), although the
absolute intensity will depend on Np x Np(0), the number of diffracting crys-
tals. However, the divergence of both incident and diffracted beams, coupled
to partial crystal orientation, noticeably modifies the experimental intensity
and profile of basal reflections (Reynolds, 1976, 1986; Drits et al., 1993).
Correction factors are described for partial orientation and for the main
experiment- and sample-induced modifications of the intensity distribution
with the usual Bragg—Brentano geometry. To allow a quantitative comparison
with the data, XRD patterns calculated for mixed-layer structures, or periodic
structures, should include these corrections or the data should be corrected, if
possible.

2.3.8.2 Sample Absorption

When collecting data in reflection mode with the Bragg—Brentano geometry,
incident and diffracted X-ray beams form a unique angle 6 with the flat sam-
ple surface. Penetration of the incident beam into the sample induces an inten-
sity decrease because of absorption, and the same effect is observed for the
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diffracted beam. For a thin element of thickness dx located at a distance x
from the sample surface (Fig. 2.3.12), the intensity decrease at a diffraction
angle 20 can be written as
IpSopdx 2u*
al = 0'0 exp — /l PX’
sinf sinf

where [ is the incident beam intensity per volume unit, S, is the cross-section

of the incident beam at the centre of the goniometer, y* is the average mass

absorption coefficient of the sample and p is the average sample density.
The intensity diffracted by the whole volume of irradiated sample is then

x=d x=d * %

I 2 I 2

I:J dl:(,)—SOJ exp — ,u pxd.x: 050 1—exp| — ,u pd (2.3.83)
=0 sinf ) .—¢ sin0 2u*p sin0

From this equation, the exponential term is infinitely small for thick (large
d value) samples, and the absorption of the X-rays is proportional to 1/2u*p,
and constant for all basal reflections. For thinner samples, the exponential
term in Eq. (2.3.83) cannot be neglected, and the relative intensities of basal
reflections vary with the diffraction angle 26. However, reliable values are
difficult to obtain experimentally for both d and p, and it is convenient to
define V as the volume of sample irradiated and to write

Sod

L=I V=I——.
S

It is then possible to deduce

I§sin0 21 pd I;sin0 2u*
]:Osm 1—exp _,u'p — o 1—exp —'flg ,
2u*pd sinf 2utg sinf
where I is the intensity of the primary beam on the sample, and g is the experi-

mentally available surface density of the sample, with g =pd=md/V=m/S;
m, V, and § are the mass, volume, and surface area, respectively, of the sample

with thickness d.
//
N y

So
0
/\ A 4 d

I—I—+dx

FIGURE 2.3.12 Schematic representation of X-ray absorption by a thin sample element dx
when collecting XRD data in reflection mode.

A 4
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2.3.8.3 Beam Overflow

Clay minerals have large (7-20 A) unit-cell parameters perpendicular to the
layer plane, and their first basal reflections thus occur at a low angle
(20 < 15° for Cu or Co radiation). However, sample availability, or experi-
mental setting, may require the preparation of samples with a limited length
L, which would induce beam overflow for low diffraction angles
(Fig. 2.3.13; 20,), while the whole cross-section Sy of the primary beam is
used for sample illumination when increasing the diffraction angle
(Fig. 2.3.13; 26,). As a consequence, the relative intensity of low-angle reflec-
tions is reduced compared to high-angle ones:

IoLsin6 2u*pd
1= l—exp| ——
2u*p sin0
I,,Lsin0 2u* . . .
—m=ST exp| — ,u & if Sy > Lsin6(low — angle reflections)
2u* sinf
1 2u*
1= 050 1—exp _,u‘pd
2up sinf
1,S 2u* . . . .
=0y exp| — ,u & if Sy < Lsin0(high —angle reflections)
2u* sinf

where I,,=1y/p is the intensity per mass unit.

FIGURE 2.3.13  Schematic representation of sample illumination for different 20 diffraction angles.
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2.3.8.4 Polarization of the Diffracted X-ray Beam

When emitted by the tube, the X-ray beam is not polarized: that is, its intensity is
independent of the angle of view, all other parameters being constant. In con-
trast, the intensity of the X-ray beam depends on the 26 angle after being scat-
tered by electrons in a crystal; the beam intensity is maximum in the direction
of the primary beam and in the inverse direction, whereas it is minimum in
directions perpendicular to the primary beam. The angular dependence, with
respect to the primary beam, of the intensity diffracted by a crystal is called
the polarization factor (Klug and Alexander, 1974) and can be expressed as

1+ cos226
2

When a monochromator, flat or bent, is added in the optical pathway, this
factor becomes

P(20) = (2.3.84)

1+ cos?26cos?26,,

P(20)= 1+ cos?20,,

with 0,, being the reflection angle of the monochromator.

2.3.8.5 Lorentz Factor

The integration of the 00 rod (Eq. 2.3.81) induces further dependence of the
intensity on the 6 angle, the above-mentioned Lorentz factor. This factor
describes the evolution of the sample volume actually diffracting as a function
of the diffraction angle 26, and its expression depends both on the sample state
(monocrystal, powder) and on the experimental geometry. The usual expres-
sions of the Lorentz factor are L= 1/sin 20 cos 0 and L= 1/sin 0 cos 0, for ran-
domly and perfectly oriented powders, respectively (Klug and Alexander,
1974). These expressions are valid for integrated intensities but should be mod-
ified if intensities are calculated for all 260 angles to model XRD patterns. The
modified expressions are L = 1/sin 0 and L = 1/sin 0 for randomly and perfectly
oriented powders, respectively. Partial crystal orientation leads to values inter-
mediate between those corresponding to the two above cases. Reynolds (1976,
1986) derived the analytical expression of a correction factor Y (powder ring
distribution factor) that accounts for both partial crystal orientation, assuming
a normal distribution, and beam collimation by Soller slits:

¢=§Z;2)2 \/Zzﬁo'*erf(Q)_Z(o*)s Sm()(l—exp( o).

where s, and s, are the Soller slit divergence (in degrees) for the primary and
the diffracted beams, respectively, 5= \/s? +s3, ¢* is the standard deviation
of the Gaussian orientation function (in degrees), Q= 2\/56* sinf, and

erf(x \/Mj[ o exp(—7*)dt is the tabulated integral.
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Owing to their common dependence on the 6 diffraction angle, Lorentz
and polarization factors are usually combined to define the Lorentz polariza-
tion (LP) factor. For maximum intensities, this factor can be expressed as
1+ cos?20

sinf '

The powder ring distribution factor y is proportional to 1/sin 0 for ran-
domly oriented powders and constant for single crystals (Reynolds, 1986).
In these two extreme cases, the complete correction factor is equivalent to
the LP factor for randomly oriented powders and monocrystals, respectively.
Taking into account both LP and powder ring distribution factors, and
neglecting constant factors, Eq. (2.3.82) becomes

i(Z) ~ éLPnMF(Z) *G(2). (2.3.85)

2.3.8.6 Intensity Scaling

Analysis of XRD intensities is usually performed on a relative basis. For nor-
malization purposes, it is, however, convenient to calculate intensities on a
given basis, for example, one unit cell, a volume unit, and so on. Several pos-
sible normalizations are thus described hereafter for calculated intensities. In
Eq. (2.3.85), the intensity /.., is calculated for a column of unit cells in a crys-
tal, and the intensity diffracted by the whole crystal is thus proportional to

O'N g 2
[cryS:IcolﬁNELPWVT(Z” G(Z)’

with ¢ the surface area of the layers in the a —b plane.

On the other hand, the intensity calculated for one unit cell (I,.) is propor-
tional to

1
I. =10 /N xmLPzMF(Z) ?G(Z), with N the number of layers in a crystal.

The intensity calculated for one volume unit (/,) is proportional to

I,=1./V, QNLW LPY|F(Z)|*G(Z), with V.. the volume of the unit cell and &

C

the layer thickness.

Similarly, the intensity per mass unit (/,,) can be expressed as [,,=1,/p, p
being the crystal density. For thick enough crystals, the beam is totally
absorbed, and absorption is proportional to 1/2u*p (Eq. 2.3.83), thus leading
to the following expression for 7,

¢

2
Wi LPUFZIPG()

m~

which is equivalent to the equation of Reynolds (1983-Eq. 8).
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To use the above equations for mixed-layer structures, fixed parameters
can be replaced by their average values subject to minor approximations.
For example

= (N1
Iy~ %LP!// {SpurVW + 2Re:2 Z (m—n)F(m)SpurVw Q" }
v ,u*p Nn:lm:n+l

C

(2.3.86)

where N, V., i*, p,and E are the average values of the number of layers, vol-
ume of unit cells, mass absorption coefficient, density, and thickness of layers
in the crystals. The above normalizations are especially useful for quantitative
analysis of clay minerals including mixed-layer structures. The relative mass
contribution of smectite-containing compounds obviously varies with their
interlayer contents, and contrasting contributions are thus expected from
XRD patterns recorded under different experimental conditions, as required
for the multi-specimen technique (e.g. Drits et al., 1997b; Sakharov et al.,
1999a,b). The contrast is, however, minor owing to the relative ‘weights’ of
the 2:1 layer and of the interlayer space.

2.3.9 CONCLUSION

Drits (1997, 2003) stressed the remarkable ability of diffraction techniques to
extract average structural information from the profiles and intensities of dif-
fraction maxima arising from mixed-layer structures, and more generally from
crystals deprived of 3D periodicity. He also pointed out that a reliable deter-
mination of structural and chemical heterogeneity of layered structures
depends essentially on a reliable interpretation of diffraction data. Such an
interpretation relies necessarily on the previously described calculation of dif-
fraction effects from mixed-layer structures.

Because of the intrinsic complexity of the calculations, simplified methods
have been proposed in the literature that take advantage of the shift of reflec-
tion position as a function of the actual composition of the mixed-layer struc-
tures predicted by the pioneering work of Méring (1949). According to this
author, basal reflections corresponding to a randomly interstratified mixed-
layer structure (two components) are located between neighbouring 00/ reflec-
tions corresponding to periodic structures whose layers are interstratified. The
actual position of these reflections depends on the relative proportions of the
interstratified layer types and on the intensity of the neighbouring 00/ reflec-
tions. In addition, the breadth of the mixed-layer reflections increases with the
‘distance’ between the 00/ reflections corresponding to periodic structures
whose layers are interstratified (‘Q-rule’ of Moore and Reynolds, 1997). More
generally, the positions of basal reflections corresponding to an ordered
mixed-layer structure containing A and B layers (w4 >wp) with S=1 or
S=2 are located between neighbouring 00/ reflections corresponding to
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periodic stacking sequences consisting of A and AB (§=1), or AAB (§=2),
fragments (Reynolds, 1988; Drits et al., 1994).

In natural environments, interstratification is especially widespread among
clay minerals which differ in the type of interstratified layers and in their
stacking sequences. Because of the reactivity of the frequently interstratified
expandable layers and of their resulting ability to evolve as a function of
physicochemical conditions, these mixed-layer structures have drawn special
attention for decades, and simplified peak-migration methods have been pro-
posed over the years for the identification of illite—smectite (Srodon, 1980,
1981, 1984; Watanabe, 1981, 1988; Velde et al., 1986; Tomita et al., 1988;
Inoue et al., 1989; Drits and Plancon, 1994; Drits et al., 1994; Plancon and
Drits, 1994, 2000; Dudek and Srodon, 1996) and other mixed-layer structures
(Drits and Sakharov, 1976; Tomita and Takashi, 1985; Drits et al., 1994;
Lanson and Bouchet, 1995; Moore and Reynolds, 1997). These methods rely
essentially on peak-migration curves linking the position of a given set of
reflections (or of a given reflection) to the composition (relative proportion
of the different layer types) and the layer stacking mode of the mixed-layer
structures. The curves were derived essentially from the calculation of XRD
patterns using either Newmod (Reynolds, 1985) or the program based on
the matrix formalism developed by Watanabe (1981, 1988). The intensity
ratio between some of these reflections, or between reflections and ‘back-
ground’, was used occasionally as an additional criterion to estimate the rela-
tive contents of the different layer types in the mixed-layer structures.

Despite their widespread use, these simplified identification methods have
major limitations (Lanson, 2011):

— The first of these limitations is the lack of direct comparison between
experimental and calculated patterns, which is intrinsic to the approach.
As a result, there is no way to assess the validity of the identification by
using a parameter measuring the ‘goodness of fit’ as is usual in structural
studies. However, direct comparison of experimental XRD patterns with
those calculated on the basis of the identification performed allowed refut-
ing peak position as a valid criterion for mixed-layer structure characteri-
zation (Claret et al., 2004; McCarty et al., 2008), and thus these simplified
identification methods.

— Another limitation of these methods comes from the use of a unique XRD
pattern for identification purposes, which does not allow the validation of
the proposed identification by independent XRD measurements on the
same sample submitted to different treatments. In addition, the profiles
of the diffraction lines, which are strongly affected by interstratification
effects, are not taken into account by these peak-position methods. As dis-
cussed by Lanson (2011), these additional constraints are especially useful
owing to the low sensitivity of diffraction to the actual nature of structural
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disorder as illustrated by the common possibility of fitting the data equally
well with different structure models (Drits, 1985; McCarty et al., 2008).
Other limitations are linked to those of the programs used to calculate dif-
fraction effects arising from mixed-layer structures, and the limited range
used for variable parameters in order to (over)simplify the identification
process. Intrinsic limitations of the programs include, for example, their
inability to calculate diffraction effects from multi-component mixed-
layer structures, when heterogeneity, rather than homogeneity, is the rule
for smectite hydration even for homoionic specimens under controlled rel-
ative humidity conditions (Ferrage et al., 2005a,b, 2007, 2010; Karmous
et al., 2009). Consistently, all structural characterizations of natural sam-
ples performed with calculation algorithms allowing the calculation of
their XRD patterns have led to the identification of mixed-layer structures
that include more than two components owing to the systematic heteroge-
neity of the swelling/hydration behaviour of expandable layers (Drits
et al., 1997b, 2002a,b, 2004, 2007; Sakharov et al., 1999a,b, 2004a;
Lindgreen et al., 2000, 2002, 2008; Claret et al., 2004; McCarty et al.,
2004, 2008; Inoue et al., 2005; Aplin et al., 2006; Hubert et al., 2009;
Lanson et al., 2009). It should be noted that heterogeneity is present what-
ever the chemistry (both Fe- and Al-rich) of expandable layers (McCarty
et al., 2004). In addition, the hydration behaviour exhibited by expandable
layers in smectite is not restricted to the usual OW (dyp; =9.6-10.0 A), 1Y
(doo1 =12.0-12.8 A), and 2W (dgy; = 14.8-15.6 A) states, and ‘unusual’
basal spacings were reported for hydrated expandable layers (e.g.
Lindgreen et al., 2002; Lanson et al., 2009) as suggested by Bailey et al.
(1982). Heterogeneity is not restricted to expandable layers, and the co-
existence of different mica-like layers in a given mixed-layer structure
was also reported, thus substantiating the inability of these methods to pro-
vide a satisfactory identification of mixed-layer structures. In particular,
the co-existence of K- and NHj-mica layers was repeatedly demon-
strated in the context of burial diagenesis in the vicinity of source rocks
(Drits et al., 1997a, 2001, 2002a, 2005, 2007; Sakharov et al., 1999a;
Lindgreen et al., 2000).

In addition, most methods include calculations only for randomly inter-
stratified mixed-layer structures (S=0, p;;=w;) and for the sole MPDO
case for higher values of the Reichweite parameter S despite the key role
of junction probabilities in the profiles of XRD patterns calculated for
mixed-layer structures (see Appendix Al). The high frequency of natural
and synthetic mixed-layer structures exhibiting junction probabilities dif-
ferent from the usual =0 and MPDO cases (i.e. partial segregation or
partial ordering; Drits et al., 1997b, 2002b, 2004; Sakharov et al., 1999a,
b; Claret et al., 2004; Inoue et al., 2005; McCarty et al., 2008, 2009;
Hubert et al., 2009, 2012; Lanson et al., 2009; Ferrage et al., 2011b)
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clearly demonstrates that XRD profile modelling is the unique tool that
can provide an accurate structure characterization of mixed-layer struc-
tures, as peak migration curves are not available for junction probabilities
different from the ‘ideal’ cases.

— Finally, essential adjustable parameters that are insufficiently varied
include the size and distribution of the CSD, as the calculations are most
often restricted to a single mean value, and the crystal chemistry (layer
thickness, coordinates and occupancies of the different sites, chemistry,
etc.) of elementary layers.

Although the systematic calculation of XRD patterns for a variety of mixed-
layer models allows an improved prediction of these complex diffraction
effects, such a description is not included in this chapter. The effect on calcu-
lated XRD patterns of junction probability parameters and of various defects
described in the previous sections to emphasize their potential importance for
the XRD identification of mixed-layer structures is rather illustrated in the
Appendix. As discussed by Lanson (2011), the modelling approach represents,
indeed, the optimum, and at present the sole, quantitative method allowing a
thorough structure determination of mixed-layer structures, even on polypha-
sic and/or natural samples. This approach allowed revealing the intrinsic
complexity of defective lamellar structures and improving their structural
characterization.

Available calculation routines thoroughly renewed the description of
mixed-layer structures, and a key point when using these tools is thus
IMAGINATION: the search for possible structure models should not be
restricted to what has been reported previously in the literature but should
include all models with realistic crystal chemistry.

This approach requires a quantitative comparison of XRD data with cal-
culated patterns and benefits from additional constraints to assess the valid-
ity of structure models in an effort to overcome the major intrinsic
limitation of the XRD identification of clay minerals resulting from the
tendency of XRD to average parameters describing crystal structure. The
resulting low sensitivity of XRD to variation in local disorder can allow
for the existence of several structure models giving rise to similar diffrac-
tion effects for a given set of experimental conditions. To determine the
actual structure model, additional constraints obtained from the analysis
of different XRD patterns collected from the same sample after different
treatments are thus essential (multi-specimen approach; Drits et al.,
1997b; Sakharov et al., 1999a,b; McCarty et al., 2004). Complementary
computational or experimental (microscopies, spectroscopies, chemical
and thermal analyses, etc.) approaches may also be used to obtain unambig-
uous and comprehensive structure models (Drits, 1983, 2003; Ferrage et al.,
2011a,b; Lanson, 2011).
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APPENDIX INFLUENCE OF VARIOUS ADJUSTABLE
PARAMETERS ON XRD PATTERNS CALCULATED FOR MIXED-
LAYER STRUCTURES

A1 XRD Patterns Calculated for two-Component Mixed-Layer
Structures with Contrasting Junction Probabilities

XRD patterns shown in Fig. 2.3.14 were all calculated for a 0.7:0.3 ratio
between illite and smectite with two planes of ethylene glycol (EG) molecules
and S = 1, but with different junction probability parameters (pss). Basal reflec-
tions systematically exhibit non-rational series of d values. Depending on the
junction probability parameters, XRD patterns calculated for a unique compo-
sition (w;:ws=0.7:0.3) differ considerably by the number, positions, profiles,
and relative intensities of the basal reflections. The positions of these reflec-
tions are reminiscent of a rectorite-like structure (a regular illite—smectite with
a 50:50 illite:smectite ratio) when the degree of ordering is maximum (S=1
with MPDO, pss=0; Fig. 2.3.14A), or of a physical mixture of finely dispersed
smectite and mica for the highly segregated model (pgs=0.6; Fig. 2.3.14E),
despite their identical w;:wg ratios. The pattern corresponding to random inter-
stratification (S =0, pss=0.3; Fig. 2.3.14C) is only weakly modulated in the
low-angle region (20 < 10° Cu Ka).

XRD patterns shown in Fig. 2.3.15 were calculated for the same w;:wg ratio
(0.7:0.3) and different junction probability parameters at S=2, and MPDO at
S=1 (pss=psss=piss=pPssi=0). XRD patterns differ only by their value of
the pg;s coefficient that may take any value from O to 1, but systematically exhibit
non-rational series of d values for basal reflections. Similar to Fig. 2.3.14, the first
two patterns exhibit a tendency to ordering at S=2 (pg;5=0.0 and 0.2 for
Fig. 2.3.15A and B, respectively), and reflection positions are close to that of
the periodic IISIIS. . . stacking when the degree of ordering is maximum (S =2
with MPDO, pgs=psss=psis=0; Fig. 2.3.15A). Random layer stacking at
S =2 is obtained for pg;g=p;s=0.429, and corresponds to the S =1 with MPDO
case (Figs. 2.3.14A and 2.3.15C). Segregation of [ layers and of IS pairs is illu-
strated in Fig. 2.3.15D and E (pg;s=0.5 and 0.7, respectively), the latter pattern
being similar to that of a mixture of mica- and rectorite-like structures.

Similar calculations can be performed as a function of pg;g for mixed-layer
structures with S =2 and the same w;:wg ratio (0.7:0.3) but with junction prob-
ability parameters differing from the MPDO case at S=1 (i.e. with pgg>0).
XRD patterns displayed in Fig. 2.3.16 were calculated for pgg=pgss=0.15;
their resolution within the low-angle region (20<10° Cu Ka) is strongly
degraded compared to the case with MPDO at S=1 (Fig. 2.3.15), especially
when the tendency to ordering of / layers and of IS pairs is high. This effect
is significantly enhanced when the occurrence probability of smectite layer
pairs and triplets is increased (Figs. 2.3.17 and 2.3.18 were calculated for
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FIGURE 2.3.14 XRD patterns calculated for two-component illite—smectite having a unique
composition (w;:wg=0.7:0.3) and contrasting degrees of ordering at S=1. (A) Maximum possible
degree of ordering, pss=0; (B) partial ordering, pss=0.15; (C) random interstratification,
Ppss=ws=0.3 (§=0); (D) partial segregation, pss=0.45; (E) partial segregation, pss=0.60. Layer
thicknesses of illite and smectite (with two sheets of interlayer ethylene glycol molecules) layers
are 9.98 and 16.9 A, respectively. Peak positions are given in angstroms A).
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FIGURE 2.3.15 XRD patterns calculated for two-component illite—smectite with identical com-
position (w:wg=0.7:0.3) and junction probability at S=1 (MPDO; pgs=0) but contrasting
degrees of ordering at S =2. In all cases, p;ss=pss=0. (A) Maximum possible degree of ordering,
psis =0; (B) partial ordering, pgs;s=0.20; (C) random interstratification, pg;s=0.429 (equivalent to
the S=1 with MPDO case; Fig. 2.3.14A); (D) partial segregation, ps;s=0.50; (E) partial segrega-
tion, ps;s=0.70. Other parameters as in Fig. 2.3.14.
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FIGURE 2.3.16 XRD patterns calculated for two-component illite—smectite having identical
composition (w;:wg=0.7:0.3) and junction probability at S=1 (pgs=0.15) but contrasting degrees
of ordering at S=2. In all cases, p;ss=pss=0.15. (A) Maximum possible degree of ordering,
psis=0; (B) partial ordering, ps;s=0.15; (C) random interstratification, pg;s=0.364 (equivalent
to the S=1 case; Fig. 2.3.14B); (D) partial segregation, pg;s=0.45; (E) partial segregation,
Psis=0.60. Other parameters are as in Fig. 2.3.14.
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FIGURE 2.3.17 XRD npatterns calculated for two-component illite—smectite having identical
composition (w;wg=0.7:0.3) and junction probability at S=1 (pss=0.30) but contrasting degrees
of ordering at S=2. In all cases, p;ss=pss=0.30. (A) Maximum possible degree of ordering,
psis=0; (B) partial ordering, ps;s=0.15; (C) random interstratification, pg;s=0.364 (equivalent
to the S=0 case; Fig. 2.3.14C); (D) partial segregation, pg;s=0.45; (E) partial segregation,
Psis=0.60. Other parameters are as in Fig. 2.3.14.
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FIGURE 2.3.18 XRD patterns calculated for two-component illite—smectite having identical
composition (w;:wg=0.7:0.3) and junction probability at S =1 (pss=0.45) but contrasting degrees
of ordering at S=2. In all cases, p;ss=pss=0.45. (A) Maximum possible degree of ordering,
psis=0; (B) partial ordering, ps;s=0.15; (C) random interstratification, pg;s=0.236 (equivalent
to the S=1 case; Fig. 2.3.14D); (D) partial segregation, pgs=0.35; (E) partial segregation,
Psis=0.45. Other parameters are as in Fig. 2.3.14.
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mixed-layer structures with S§=2, the same wp;wg ratio (0.7:0.3), and
Pss=pPsss=0.30 and 0.45, respectively). Additional XRD patterns can be cal-
culated for mixed-layer structures with S=2 and the same wpwg ratio
(0.7:0.3) by varying the junction probability parameter pggg for a given set
of pgs and pg;s parameters. One such series of calculated patterns is shown
in Fig. 2.3.19 for pss=0.30 and pg;s=0.15, with a significant impact on peak
position, profile, and relative intensity, except for the low-angle reflections. In
all XRD patterns calculated for a mixed-layer structures with the same w;wg
ratio (0.7:0.3), neither the position nor the profile of the reflection with
d=3.346-3.347 A seems to be affected by modification of junction probabil-
ity parameters, owing to the close basal spacings of reflections corresponding
to illite [d,(003)=3.327 A] and smectite [dg(005)=23.380 A] in this region.

A2 XRD Patterns Calculated for Multi-Component Mixed-Layer
Structures

The co-existence of K- and NH, T-mica layers in mica—smectite was repeat-
edly evidenced in the context of burial diagenesis in the vicinity of source rocks.
In addition to tobelite (NH, "-mica), paragonite, margarite, or aluminocelado-
nite may also occur in mica-containing mixed-layer structures. The contrasting
layer-to-layer distance of these mica varieties (~10.33, ~9.65, ~9.56, and
~9.86 A, respectively) compared to illite (9.98 A) induces a subtle but signifi-
cant peak shift. The co-existence of different types of mica layers in mica—
smectite (e.g. illite—tobelite—smectite) is best evidenced after saturation of the
sample with K ions and subsequent heating at ~300 °C (Drits et al., 1997a,
2005). Such treatment decreases the layer-to-layer distance of smectite layers
to that of illite layers (9.98 A), and the relative abundance of tobelite (e.g.)
layers can be estimated from the accurate modelling of reflection positions. This
ability is illustrated in Fig. 2.3.20, which compares the XRD patterns calculated
for illite—smectite and illite—tobelite—smectite having the same mica:smectite
ratio and differing by the composition and thickness of mica layers. Experimen-
tally, the addition of Si powder (NIST SRM 640c) as an internal standard is
helpful for the accurate determination of experimental d values.

When adapted calculation routines were used, mixed-layer structures con-
taining expandable layers were described systematically as multi- (three- or
four-) component mixed-layer structures owing to the intrinsic hydration/
swelling heterogeneity of expandable layers. Saturation with polar organic
compounds such as EG likely reduces this heterogeneity but the actual beha-
viour of expandable interlayer spaces in mixed-layer structures remains poorly
constrained (Bailey et al., 1982). The impact of swelling heterogeneity on
XRD patterns is illustrated in Fig. 2.3.21, which compares the XRD patterns
calculated for illite—expandable with a 0.7:0.3 wywg,, ratio. Compared to
the calculations performed with no swelling heterogeneity (Fig. 2.3.14), the
presence of 8% smectite layers swelling to 12.9 A (one plane of interlayer EG
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FIGURE 2.3.19 XRD patterns calculated for two-component illite—smectite having identical
composition (w;:wg=0.7:0.3) and junction probability at S =1 (pss=0.30) but contrasting degrees
of ordering at S=2. In all cases, pg;s=0.15. (A) psss=0; (B) psss=0.15; (C) psss=0.30;
(D) psss=0.45; (E) psss=0.60. Other parameters are as in Fig. 2.3.14.
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FIGURE 2.3.20 XRD patterns calculated for mica—smectite having identical composition (w,:
ws=0.95:0.05) but different interlayer composition for the mica interlayers. The black and grey
lines are calculated for 85:10 and 95:0 ratios between K-(illite) and NH,-(tobelite) micas, respec-
tively. Layer thicknesses of tobelite (NH4-mica), illite, and smectite (following K-saturation and
heating to 300 °C) layers are 10.35, 9.98, and 9.98 A, respectively. In all cases, interstratification
is random (§=0). Other parameters are as in Fig. 2.3.14.

molecules) together with 22% smectite layers hosting two planes of interlayer
EG (d value: 16.9 A) induces major modifications of the calculated profiles,
especially in the low-angle region (20 < 10° Cu Ka).

A3 XRD Patterns Calculated for Mixed-Layer Structures with
Different Types of Defects

Figure 2.3.22 compares XRD patterns calculated for illite—smectite in which
all ‘core’ expandable layers host two planes of interlayer EG. The occurrence
of different types of layers (either ‘naked’ 2:1 layers as in Newmod, or 2:1
layers with one interlayer plane of EG) on the external edges of the crystals
(OSL) significantly modifies the diffraction pattern over the low-angle region
(20 <10° Cu Ka).

The influence of layer thickness fluctuations is illustrated in Fig. 2.3.23
and is visible essentially over the high-angle region (20 >20° Cu Ka). From
the diffraction point of view, defects of the first type are similar to atomic
thermal motion. For a similar A value, the intensity reduction, compared to
a defect-free model, within the high-angle region appears stronger for defects
of the second type compared to defects of the first type (see Section 2.3.5 for
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FIGURE 2.3.21 XRD patterns calculated for illite-expandable having identical composition
(WriWepr:£p2=0.70:0.22:0.08) but contrasting junction probabilities at S=1. The grey
patterns are systematically calculated with homogeneous smectite interlayers (Wpwgy;:
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FIGURE 2.3.22  XRD patterns calculated for two-component illite—smectite with identical com-
position (w;:ws=0.7:0.3) and junction probability at S=1 (MPDO; pgs=0) but different outer
surface layers. The grey pattern is systematically calculated with an asymmetrical model with a
naked 2:1 layer on the crystal bottoms, and two sheets of ethylene glycol molecules or K-mica
interlayers on crystal tops. (A) The black line is calculated with naked 2:1 layers on both crystal
bottoms and tops. (B) The black line is calculated with one sheet of ethylene glycol molecules on
both crystal bottoms and tops.

a description; Fig. 2.3.23A and B). In addition, defects of the second type
induce peak broadening that increases with increasing 0 values, compared to
a defect-free model. For a similar A value, peak broadening is lower for
defects of the first type. Finally, if the distribution of layer thicknesses is
not symmetrical with respect to the average value, for example, if layer thick-
ness can only take values larger than the ‘usual’ d-spacings, reflections are

Exp2=0.70:0.30:0.00) and correspond to the patterns shown in Fig. 2.3.14. (A) Maximum
POSSible degree of Ordering (MPDO), PExp1Expl =PExp2Expl = PExplExp2 = PExp2Exp2 = 0;
(B) PExp1Expl =PExp2Exp1 =0.11, PExp1Exp2 = PExp2Exp2 = 0.04; (C) PExp1Expl =PExp2Expl = 0.22,
PExp1Exp2 =PExp2Exp2=0.08; (D) Pexprexps =Pesp26xp1 =033, Pexpiixp2 =PEgp2ep2=0.12;
(B) pespiixpt =PExp2exp1 =0.44, Peapipg2 =DPexp2Exp2 =0.16. Peak positions are indicated for
mixed-layer structures with heterogeneous smectite behaviour (W;:Wg,; £xp2 =0.70:0.22:0.08).
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FIGURE 2.3.23 XRD patterns calculated for two-component illite—smectite with identical com-
position (w;:wg=0.7:0.3) and junction probability at S=1 (MPDO; pss=0) but contrasting fluc-
tuations of layer thickness (see Section 2.3.5 for details). The grey pattern is systematically
calculated with no fluctuation of layer-to-layer distances. (A) The black line is calculated with
a Gaussian distribution of defects of the second type for S layers (A(&)=0.3). (B) The black line
is calculated with a Gaussian distribution of defects of the first type for S layers (A(£)=0.3). (C)
The black line is calculated with a semi-normal distribution of defects of the second type for S
layers (A(&)=+0.3).

shifted (in this case towards larger d values and lower diffraction angles) com-
pared to the position calculated for defect-free layers (Fig. 2.3.23C).

Figure 2.3.24 shows that XRD patterns calculated for the same average
CSD size but different distributions are essentially similar. However, a minor
effect may be observed on the relative intensity of the different reflections. In
particular, reflection intensity decreases faster with increasing diffraction
angle when a lognormal distribution is used compared to Ergun’s model
(see Section 2.3.4 for details regarding the different distributions).
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FIGURE 2.3.24 XRD patterns calculated for discrete illite with different distributions of coher-
ent scattering domain sizes (see Section 2.3.4 for details). The grey pattern is systematically cal-
culated for lognormal distribution of CSD sizes (N = 12 layers). (A) The black line is calculated
for a uniform distribution of CSD sizes (N = 12 layers). (B) The black line is calculated for a
Ergun distribution of CSD sizes (6 =15 layers).
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