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Envelope broadening and coda excitation
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Figure 1 : Left: Normalized by the max. amplitude. Right: Same gain.

Results of scattering by distributed random heterogeneities.
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Spatial distribution of energy density of an earthquake

Flat distribution of coda energy near the source.
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Figure 2 : Energy density (3-compo. 2.6 g cm−3) of N. Hiroshima, Japan earthquake
(2011/11/21, M5.4, D=12 km, Hi-net)
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Power-law decay of the power spectrum of acoustic well-log data

P1D(m) ∝ m−2κ−1, where κ = 0 ∼ 0.45.

Japan (Shiomi et al. 1997) KTB, Germany (Wu et al. 1994)
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Power spectra of the velocity in the lithosphere and mantle

P3D(m) ∝ m−2κ−3, where κ : 0 ∼ 0.5. P1D(m) ∝ m−2κ−1, where κ ∼ 0.
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Observed facts:
Seismograms . . . Coda excitation and envelope broadening

Earth medium . . . Random heterogeneity having a power-law spectrum
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Objective

Stochastic synthesis of the intensity of a scalar wavelet propagating through von
Kármán-type random media.

Comparison with the ensemble averaged intensity
⟨
|u(r , t)|2

⟩
with FD simulations.
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Outline

Scalar wave eq. for V0(1 + ξ(x)):

∆u − 1

V 2
0

∂2
t u +

2

V 2
0

ξ∂2
t u = δ(x)s(t).

Ensemble of von Kármán-type random media {ξ(x)} characterized by ε, a, and κ.

Intensity
⟨
|u|2

⟩
for a spherical radiation of a Ricker wavelet with the center freq. fc .

Born ap. for ε2a2k2
c≪1, where kc = 2πfc/V0.

Spectrum division method for akc > 1 and (ε2a2k2
c��≪1).

Divide the random medium spectrum into two.
Apply the Born and Markov ap. to the short and long-scale compo., respectively.
Convolve those in the time domain.

Comparison with FD simulations

Summary
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Scattering by a localized velocity anomaly

Incidence of a monochromatic plane wave to an obstacle:

u = e ikc z +
f (ψ, ϕ)

r
e ikc r , where kc = 2πfc/V0.

Scattering cross-section (Scattering power of the obstacle):

dσ

dΩ
≡ |f (ψ, ϕ)|2, σ0 =

∮ dσ

dΩ
dΩ

O

φ

ψ

r

x3

x1

x2
2a            

e1

e2

e3Incident Wave

Scattered Wave

kc

Born ap. when |ξ| ≪ 1:
dσ

dΩ
= | k

2
c

2π
ξ̃(q)|2,

where the tilde means the Fourier T., q = kcer − kcez and |q| = 2kc sin
ψ
2
.
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Applicable region of the Born ap.

Scattering by a high velocity sphere of radius a=5km:
V (r) = V0(1 + ε) for r < a (V0=4km/s, ε=0.05)

Phase change increases as akc increases.
Born ap. is applicable when ε2a2k2

c ≪ 1.

Distorted wave Born ap. (Eikonal ap.) is necessary for akc > 1 and ε2a2k2
c��≪1

σ0 ≈ 2πa2 as kc → ∞ (Shadow scattering)
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Figure 3 : Total scattering cross-section σ0 vs. frequency fc
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Von Kármán-type random media

Uniform and isotropic 3-D random media characterized by ε, a, and κ

P (m) =
8π

3
2 Γ(κ+ 3

2
)ε2 a3

Γ(κ) (1 + a2m2)κ+
3
2

, R(r) = ε2
21−κ

Γ(κ)

( r
a

)κ
Kκ
( r
a

)
.
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Comparison of Intensity traces by the RTE with the Born ap. and FD

Born ap. is applicable when ε2a2k2
c ≪ 1.

Scat. coef. (scat. power per unit volume of random media): gB(kc , ψ) =
k4c
π
P(2kc sin

ψ
2
)

0.01 0.10 1 10 100
10-10

10-7

10-4

10-1

m [km^-1]

P
(m

)
[k
m
^
3
]

ϵ=0.05, κ=0.5, a=1km, fc=1.5Hz

fc=1.5Hz

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.001

0.005

0.010

0.050

0.100

0.500

1

ψ [rad]

g
(ψ

)
[k
m
^
-
1
]

ϵ=0.05, κ=0.5, a=1km, fc=1.5Hz

g0=0.0265621 km^-1

307 km

30
7 k

m

30
7 

km Source
25 km
50 km
75 km
100 km

RTE with the Born ap. IwR (red) and FD simulation (gray) in a large 3-D model space.

10−11

10−10

10−9

10−8

10−7

10−6

10−5

0.0000

0.0005

0.0010

0.0015

50 030201040302010

25km
50km

100km
75km

25km

50km

100km
75km

Lapse Time (s) Lapse Time (s)

In
te
ns
ity

a=1km, ε=0.05, κ=0.5, ε2a2kc2=0.014, 1.5Hz Ricker wavelet

FD

Good fit from the onset until late coda

11 / 1
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Spectrum division method (four steps)

When akc > 1 and ε2a2k2
c��≪1, Born is inapplicable to P.

(1) Taking ζkc as a reference, we decompose P into two components: P = PS + PL.
We first define the PSDF of the short-scale compo. (tuning parameter ζ : 1

akc
∼ 1):

PS (kc , ζ,m) ≡
8π

3
2 Γ(κ+ 3

2
)ε2S aS

3

Γ(κ) (1 + aS 2m2)κ+
3
2

, where a−1
S = ζkc , and εS =

ε

(ζakc)κ
.

If ε2Sa
2
Sk

2
c ≪ 1, Born ap. is applicable to PS : g

B
S (kc , ζ, ψ) =

k4c
π
PS(kc , ζ, 2kc sin

ψ
2
).
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Scattering contribution of the short-scale compo.

(2) Radiative transfer equation (RTE) using gB
S for the directional distribution of

intensity FS (kc , ζ, x , t; n):

∂tFS (kc , ζ, x , t; n) + V0n∇FS (kc , ζ, x , t; n) = −gB
S0(kc , ζ)V0FS (x , t; n)

+
V0

4π

∮
gB
S

(
kc , ζ, n, n′)FS

(
kc , ζ, x , t; n′) dΩn′ +

1

4π
δ (x) δ (t) ,

where gB
S0 =

1
4π

∮
gB
S dΩ.

Intensity Green function: GRS (kc , ζ, x , t) =
∮
FS (kc , ζ, x , t; n) dΩn

Advection =scattering loss +scattering gain +isotropic source radiation

Dynamic ray-bending process using a constant velocity

We practically solve this equation by using the Monte Carlo simulation.
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Intensity time traces by the RTE for the short-scale compo.

Intensity: IRS (kc , ζ, x , t) = GRS (kc , ζ, x , t)⊗ S (kc , t)

Monte Carlo (N = 107) for a 3Hz Ricker wavelet source, where ε=0.05, a=5km.
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Scattering contribution of the long-scale compo.

Spherical wavelet at a long distance r near around the z-axis:

u(r , x⊥, t) =
1

2πr

∫ ∞

−∞
U (k0, r , x⊥)e ik0r−iωtdω where k0 = ω/V0.

Parabolic ap. for the long scale compo. ξL(x) since smooth variation of U:

2ik0∂rU +∆⊥U − 2k2
0 ξLU = 0.

(3) Markov approximation

For a quasi-monochromatic wavelet, we define the two-freq. mutual coherence func. (TFMCF):

Γ2 (kc , kd , r , x⊥c , x⊥d ) ≡
⟨
U
(
r , x ′

⊥, ω
′)U (r , x ′′

⊥, ω
′′)∗⟩.

Intensity Green func.:

GL (kc , ζ, r , t) =
1

r2
1

2π

∫ ∞

−∞
dωd e−iωd (t−r/V0)Γ2 (kc , kd , r , ψ⊥d = 0).

Master equation for the TFMCF:

∂rΓ2 + i
kd

2k2
c

∆⊥dΓ2 + k2
c (AL (0)− AL (r⊥d )) Γ2 +

k2
d

2
AL (0) Γ2 = 0,

where the transverse distance r⊥d = rψd , and ∆⊥d ≈ 1
r2

(
∂ψd

2 + 1
ψd
∂ψd

)
for ψd ≪ 1.

Initial condition: Γ2 (kc , kd , r = 0, ψ⊥d = 0) = 1
4πV0

.
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Scattering contribution of the long-scale compo.
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Taylor expansion of AL near r⊥ = 0

∂rΓ2 + i
kd

2k2
c

∆⊥dΓ2 + k2
c (AL (0)− AL (r⊥d )) Γ2 +

k2
d

2
AL (0) Γ2 = 0,

AL (r⊥) ≡
∫ ∞

−∞
RL (x⊥, z) dz.

Strong scattering near around the forward direction ⇒ Contribution from small r⊥.

AL(kc , ζ, r⊥) ≈
ε2a 2π1/2Γ

(
κ+ 1

2

)
Γ(κ)

[(
1−

1

(ζakc )2κ+1

)
−
(
1−

1

(ζakc )2κ−1

)
1

2(2κ− 1)

( r⊥
a

)2
+ · · ·

]
for κ ̸=

1

2

AL(kc , ζ, r⊥) ≈ 2ε2a

(
1−

1

(ζakc)2

)
− ε2a(ln ζakc )

( r⊥
a

)2
+ · · · for κ =

1

2

Quadratic function of r⊥ ⇒ Analytic solution of Γ2 → GL.
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Wandering and broadening terms

Intensity Green function for the long-scale compo. as a convolution in time:

GL (kc , ζ, r , t) = wL(kc , ζ, r , t)⊗ bL(kc , ζ, r , t)⊗ Gg (r , t)

wL(r , t) =
1

√
πtwL

e
− t2

twL
2
, bL(r , t) =

π2

16 tML
ϑ′′4

(
0, e

− π2

4
t

tML

)
,Gg (r , t) =

1

4πr2V0
δ

(
t −

r

V0

)
.
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Wandering and broadening terms

twL(kc , ζ, r) =
2

V0

√
ε2a

π1/2Γ
(
κ+ 1

2

)
Γ(κ)

(
1− (ζakc )

−2κ−1
)√

r .

tML(kc , ζ, r) =
ε2r2

2V0a
×

π1/2Γ(κ+ 1
2 )

(2κ−1)Γ(κ)

(
1− (ζakc )1−2κ

)
for κ ̸= 1

2
,

ln ζakc for κ = 1
2
.
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Synthesis of the intensity time trace IL,S

GL (kc , ζ, r , t) = wL(kc , ζ, r , t)⊗ bL(kc , ζ, r , t)⊗ Gg (r , t)

Let us propose the following as an approximation:
(4) Synthesis of the intensity Green function using the convolution in time (Gg → GRS)

GLS (kc , ζ, r , t) = wL(kc , ζ, r , t)⊗ bL(kc , ζ, r , t)⊗ GRS(kc , ζ, r , t)

ILS = GLS ⊗ S = wL ⊗ bL ⊗ IRS
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3Hz Ricker wavelet source. ε=0.05, a=5km.

Traces are almost the same around the peak but different in coda for different ζ .
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Synthesis of the intensity time trace IL,S

GL (kc , ζ, r , t) = wL(kc , ζ, r , t)⊗ bL(kc , ζ, r , t)⊗ Gg (r , t)

Let us propose the following as an approximation:
(4) Synthesis of the intensity Green function using the convolution in time (Gg → GRS)

GLS (kc , ζ, r , t) = wL(kc , ζ, r , t)⊗ bL(kc , ζ, r , t)⊗ GRS(kc , ζ, r , t)

ILS = GLS ⊗ S = wL ⊗ bL ⊗ IRS
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Comparison with FD: ILS time traces

FD simulation of intensity traces for a 3Hz Ricker wavelet source (r=25 km ∼ 150 km):

FD intensity traces are calculated by using the Hilbert T. at each distance.

Mean FD intensity trace (magenta) is the average over 6 realizations of random media × 9
receivers at each distance.

ILS for ζ = 0.125 (black, top) . . . Good fit from the onset through the peak until coda
ILS for ζ = 1.0 (black, bottom) . . . Good fit around the peak, but poor fit for coda
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Comparison with FD: ILS time traces

Best fit curves . . .Maximum use of the Born ap. to PS (ε2Sa
2
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Comparison with FD: Max. intensity vs. travel distance

Maximum peak is mostly composed of forward scattering waves:
GL (kc , ζ, r , t) = wL(kc , ζ, r , t)⊗ bL(kc , ζ, r , t)⊗ Gg (r , t)

Component wL bL Gg

Constraint
∫∞
−∞ wLdt = 1

∫∞
−∞ bLdt = 1 4πr2V0

∫∞
−∞ Ggdt = 1

Width in time twL ∝ r0.5 tML ∝ r2 δ(t) ∼ 0

Max. Intensity ∝ r−0.5 ∝ r−2 ∝ r−2

(+ some scattering loss due to the short scale compo.)

Imax at fc=3Hz (ε=0.05 and a=5km)
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For the magnitude determination of small earthquakes:
Max vel. amp. ∝ r−1.73 → Max. vel. intensity ∝ r−3.5
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Summary

⊗⊗

RTE with Born Scat. Co.Wandering

Markov Ap. Broadening 
for Long-Scale Comp.

Wandering due to 
Long-Scale Comp.

Source Intensity

⊗⊗

RTE with Born Scat. Co.
for Short-Scale Comp.

⊗

                               

ILS(r,t)  =   wL(r,t) 

w(r,t)

bL(r,t)

GR(r,t) S(t)

S(t)GRS(r,t)

GLS(r,t)

GwR(r,t)

(ε a kc )2 << 1

(ε a kc )2 < 1

IwR(r,t)   =

ζ<<1

Intensity Time Trace by Convolution in Time

Weak velocity fluctuation: ε≪ 1.

Choose ζ satisfying ε2Sa
2
Sk

2
c ≈ 0.1 when ε2a2k2

c��≪1 (Max. use of the Born ap. for PS ).

Small broadening compared with the travel time: tML(r) ≪ r
2V0
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Time traces and space distributions of intensity Green functions at 3Hz

ε=0.05, κ=0.5, fc=3Hz, Monte Carlo N = 105.5

0 10 20 30 40 50 60

10-10

10-8

10-6

10-4

time [s]

G
[k

m
^-

3]

a0.2e0.05k0.5fc3.np5.7
GwR, akc=0.942478, (eps a kc)^2=0.00222066, ζ=0

0 10 20 30 40 50 60

10-10

10-8

10-6

10-4

time [s]

G
[k

m
^-

3]

a1.e0.05k0.5fc3.np5.7
GwR, akc=4.71239, (eps a kc)^2=0.0555165, ζ=0

0 10 20 30 40 50 60

10-10

10-8

10-6

10-4

time [s]

G
[k

m
^-

3]

a5.e0.05k0.5fc3.np5.7
GLS, akc=23.5619, (eps a kc)^2=1.38791, ζ=0.101994

0 50 100 150 200 250

10-10

10-8

10-6

10-4

Dist. [km]

G
[k

m
^-

3]

a0.2e0.05k0.5fc3.np5.7
GwR, akc=0.942478, (eps a kc)^2=0.00222066, ζ=0

0 50 100 150 200 250

10-10

10-8

10-6

10-4

Dist. [km]

G
[k

m
^-

3]

a1.e0.05k0.5fc3.np5.7
GwR, akc=4.71239, (eps a kc)^2=0.0555165, ζ=0

0 50 100 150 200 250

10-10

10-8

10-6

10-4

Dist. [km]

G
[k

m
^-

3]

a5.e0.05k0.5fc3.np5.7
GLS, akc=23.5619, (eps a kc)^2=1.38791, ζ=0.101994

a=0.2 km 1 km 5 km
RTE+Born GwR RTE+Born GwR Spectrum division method GLS

24 / 1



















































































Time traces and space distributions of intensity Green functions at 12Hz

ε=0.05, κ=0.5, fc=12Hz, Monte Carlo N = 105.5
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Conclusion

Stochastic synthesis of a scalar wavelet intensity in von Kármán-type random media

Spectrum division method leads to the broadening of a wavelet and the uniform
distribution of coda intensity when akc > 1 and ε2a2k2

c��≪1.

Validity of this approximation is confirmed by comparisons with FD simulations.

This approximation predicts the power-law decay of the max. amp. with distance.

Future problems and possible development:
* Comparison with FD at a large akc (more CPU power)
* Develop mathematical methods to solve the RTE (using discrete Hankel T.)
* RTE with gB

S using GL as a propagator (convolution in space and time)
* Statistical formulation of the distorted Born ap.
* Energy conservation (parabolic ?)
* Extension to the elastic waves
* Realistic variation of the background velocity
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Records of a blast at a volcano

Collapse of direct P and S phases Diffusion-like peak near the source
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Figure 4 : Energy density of a downhall explosion (vertical compo. 8-16Hz) at Asama volcano,
Japan. (Yamamoto and Sato 2010)
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Monte Carlo simulation of the RTE

3Hz Ricker wavelet source.

For given kc and ζ, we calculate gB
S (kc , ζ, ψ) by the Born ap.

Solving RTE using Monte Carlo simulations, we calculate GRS .

Each particle carries unit intensity.

Particles are randomly shot into various directions from the origin.

Particle trajectories are recorded until 70 s with ∆t=0.01 s (gB
S0V0∆t ≪ 1).

The total number of particles is 107.

CPU time: 10 ∼ 15min. by Java on a PC having 6 cores.
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FD simulations of a wavelet in random media

FD scheme: 4th and 2nd order in space and time, respectively.

3Hz Ricker wavelet source

Grid space is 0.04 km (33 grids /λ) and time interval is 3ms. Recorded up to 50 s.

Model space size is 202× 133× 133km3 with absorbing boundaries.

Random medium is composed of 96 small random media of 10243 grids.

Each small random medium is synthesized for a given set of ε, κ and a.

Receiver arrays are distributed from 25 to 150 km from the source with a 25 km separation.
Each array is composed of 9 receivers with different offsets.

Intensity time trace is calculated by using the Hilbert tr.

Average of intensity over 54 traces at each travel distance (9 receivers and 6 realizations of
random media).

CPU time: 70min. for each calculation by Fortran on Earth Simulator (super computer) of
JAMSTEC, Japan having 140 nodes.
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Frequency dependence of characteristic times and total scat. coef.

For the same κ and fc , twL(ζ = 1) ≈ twL(ζ = 0.125),
tML(ζ = 1) > tML(ζ = 0.125) and gB

S0(ζ = 1) < gB
S0(ζ = 0.125)
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Comparison with FD for fc=3Hz: ILa and ILS time traces

Introducing scattering attenuation as the lowest correction (Sato, 2016, GJI):

ILa = e−gS0V0tGL ⊗ S

ILS = GLS ⊗ S = wL ⊗ bL ⊗ IRS
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Comparison of Markov ap. and FD in 2-D

Parabolic ap. is applicable when akc > 1 and ε2a2k2
c��ZZ≪1

2-D random media, von Karman ACF, κ=0.5, ε=0.05, a=5km, V0=4km/s

fc=2Hz→ kc = 3.14, akc = 15.7, ε2a2k2
c=0.62

RMS Amplitude ≡
√
ILa =

√
e−gS0V0tGL ⊗ S (red)
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Mean FD intensity trace (gray) is averaged over 50 realizations (Sato and Fehler, 2016)

Good fit from the onset through the peak until very early coda, but poor fit at late coda.
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