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Envelope broadening and coda excitation

Short Period Seismograms of Local Earthquakes in Japan

Envelope Broadening and Peak Delay Coda Excitation
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Figure 1 : Left: Normalized by the max. amplitude. Right: Same gain.

Results of scattering by distributed random heterogeneities.
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Spatial distribution of energy density of an earthquake

Flat distribution of coda energy near the source.
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Figure 2 : Energy density (3-compo. 2.6 gcm~3) of N. Hiroshima, Japan earthquake
(2011/11/21, M5.4, D=12 km, Hi-net)



Power-law decay of the power spectrum of acoustic well-log data
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Power spectra of the velocity in the lithosphere and mantle
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Observed facts:
Seismograms ... Coda excitation and envelope broadening
Earth medium ... Random heterogeneity having a power-law spectrum
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Objective

@ Stochastic synthesis of the intensity of a scalar wavelet propagating through von
Kédrman-type random media.

o Comparison with the ensemble averaged intensity (|u(r, t)|*) with FD simulations.

I(r,t) = £ 55N Jug(r, t))?
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Outline

@ Scalar wave eq. for Vo(1 4 &(x)):

1

ALI_VD2

O+ 2 £0%u = 5(x)s(t).
VD

o Ensemble of von Kdrmdn-type random media {£(x)} characterized by ¢, a, and «.

o Intensity <|u|2> for a spherical radiation of a Ricker wavelet with the center freq. f..

~
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Outline

@ Scalar wave eq. for Vo(1 4 &(x)):

1

ALI_VD2

2
Ru+ 5€07u = 5(x)s(t).
V6
Ensemble of von Karman-type random media {{(x)} characterized by ¢, a, and .
Intensity <|u|2> for a spherical radiation of a Ricker wavelet with the center freq. f..
Born ap. for sza2k52<<1, where k. = 27fe [ Vo.
Spectrum division method for ak. > 1 and (e2a*k21).
Divide the random medium spectrum into two.

Apply the Born and Markov ap. to the short and long-scale compo., respectively.
Convolve those in the time domain.

e © o ¢

[

Comparison with FD simulations

(]

Summary
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Scattering by a localized velocity anomaly

Incidence of a monochromatic plane wave to an obstacle:
) f )
= ek 4 Me”‘c’, where k. = 2xf./ V.
r

Scattering cross-section (Scattering power of the obstacle):

do do
— = |f 2 =¢ —df
dQ | (¢7¢)| ; go f de
X
[
R —
) e sca“eﬂa\“ r
Incident \;’avc € *
d k2 -
Born ap. when |¢| < 1: d—g = gg(q) 2

where the tilde means the Fourier T., ¢ = kce, — kce, and |q| = 2k sin %
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Applicable region of the Born ap.

Scattering by a high velocity sphere of radius a=5 km:
V(r) = W(1l+¢) for r < a(Vo=4km/s, €=0.05)

Phase change increases as ak. increases.
Born ap. is applicable when £2a°k? < 1.

Distorted wave Born

ap. (Eikonal ap.) is necessary for ak. > 1 and e?a® k21

00 = 2mwa® as k. — oo (Shadow scattering)
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Figure 3 : Total scattering cross-section g vs. frequency fc



Von Kdrman-type random media

Uniform and isotropic 3-D random media characterized by ¢, a, and &

P(m)=

87r%r(n+%)52a3 2l—r (;‘)HKK (5)

F) = &2
M(k) (14 a2m2)~t2 RO="F0

von Karman-type random media (€=0.05, a=5km, Vy=4km/s)
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Comparison of Intensity traces by the RTE with the Born ap. and FD

Born ap. is applicable when 2a?k? < 1.
Scat. coef. (scat. power per unit volume of random media): g(k., ) = (2k sin £)



|
Comparison of Intensity traces by the RTE with the Born ap. and FD

Born ap. is applicable when £2a?k? < 1.
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Comparison of Intensity traces by the RTE with the Born ap. and FD

Born ap. is applicable when 2a?k? < 1.

Scat. coef. (scat. power per unit volume of random media): g(k., ) = (2k sin £)
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RTE with the Born ap. /,g (red) and FD simulation (gray) in a large 3-D model space.

a=1km, £=0.05, K=0.5, €2a%k2=0.014, 1.5Hz Ricker wavelet
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Spectrum division method (four steps)

When ak. > 1 and £?a’k2<1, Born is inapplicable to P.

(1) Taking Ckc as a reference, we decompose P into two components: P = Ps + P;.

We first define the PSDF of the short-scale compo. (tuning parameter ¢ : i ~1):

Ps (ke, ¢, m)

8m2 (K + 3)es as®

(k) (1 + as2m?)"*2

g

-1
, where ag” = Ckc, and s = ———

(Cake)=

If e2a%k? < 1, Born ap. is applicable to Ps: g€(kc, ¢, 1) = %Ps(kc,g,zkc sin £).

Spectrum Division
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€2a°k? =~ 1.4 at f =3Hz. £=0.05, a=5km, k=0.5
e2a2k? ~0.054 ((=0.125), 10~* (¢=1.0)



Scattering contribution of the short-scale compo.

(2) Radiative transfer equation (RTE) using g€ for the directional distribution of
intensity Fs (ke, ¢, x, t; n):

atFS (kCa C7Xa t; n) + VonVFS (kC’ Caxv t; n) = _gSBO(kC7 <)V0F5 (X7 t; n)
Vo

’ 1
+ E gSB (kC7<7n7n ) F5 (k67C7X7 t; n,) din + E(S(X)(S(t)7

where g& = = § g&dQ.
Intensity Green function: Ggs (kc,(, X, t) = § Fs (ke, ¢, X, t;n) 2,

Advection =scattering loss +scattering gain +isotropic source radiation

Dynamic ray-bending process using a constant velocity

We practically solve this equation by using the Monte Carlo simulation.



Intensity time traces by the RTE for the short-scale compo.

Intensity: Irs (ke, C, x,t) = Ggrs (ke, C, %, t) ® S (ke, t)

Monte Carlo (N = 107) for a 3 Hz Ricker wavelet source, where £=0.05, a=5km.

Intensity
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Scattering contribution of the long-scale compo.

Spherical wavelet at a long distance r near around the z-axis:

u(r7XL) t) 27_‘_r

Parabolic ap. for the long scale compo. &, (x) since smooth variation of U:

2ikodr U + AL U — 2K3¢,U = 0.

/ U (ko, r, xL)e'kO' iwtdw where kg = w/Vp.



Scattering contribution of the long-scale compo.

Spherical wavelet at a long distance r near around the z-axis:

u(r,xg,t) = / U (ko, r, xL)e'kO' iwtdw where kg = w/Vp.

27r
Parabolic ap. for the long scale compo. &, (x) since smooth variation of U:
2ikodr U + AL U —2k3E, U = 0.

(3) Markov approximation

For a quasi-monochromatic wavelet, we define the two-freq. mutual coherence func. (TFMCF):

F2 (kc7 kd7 r,xLC,de) = <U (f’7 xj_,w') U (r7 xi,w")*>.
Intensity Green func.:
GL (kesCory ) = ——/ dug e~ a1V, (ke, kg, 1,01 g = 0).

Master equation for the TEFMCF:

kq k2
T2+ 12k2 A gl + k2 (AL(0) = AL (rig)) T2 + ?dAL (0)r2=o0,
where the transverse distance r| g = riby, and A 4 =~ %2 (6qu + de) for g < 1.

Initial condition: Iz (ke, kg, r = 0,114 =0) = ﬁ.



Taylor expansion of A; near r| =0

Lk k2
-T2+ lﬁAurz + k2 (AL(0) = AL (riq)) T2+ ;AL 0)r.=o,
C

AL(I‘L)E/OO RL(XL7Z)dZ.

—00

Strong scattering near around the forward direction = Contribution from small r .

e2a27t/21 (H + l) 1
Ap(ke,Cyri) ~ TZ [(1 - W)

1 1 rip\2 1

B (1 B (Cakc)2ni1> 2(2,§ _ 1) (?) + - j| for k ;é E
1

2

02 1 2 riy2 _
AL(ke, ¢ r) = 2e a(l—m>—a a(In Cake) <j> +... for k=

Quadratic function of r; = Analytic solution of [, — G;.

16



Wandering and broadening terms

Intensity Green function for the long-scale compo. as a convolution in time:
GL (kCaC:rv t) = WL(koC,h t) ® bL(kC7<7r7 t) ® Gg(r) t)

t

1 *Lz L —ml e 1 r
wi(r,t) = e W b (r,t)= 17191( 0,e * M |, Gg(r,t) = mé (t ) .

C VAtw 6ty Y

Gaussian Elliptic theta func. (4-th)  Geometrical decay and causality



Wandering and broadening terms

Intensity Green function for the long-scale compo. as a convolution in time:
GL (kCaC:rv t) = WL(koC,h t) ® bL(kC7<7r7 t) ® Gg(r) t)

t

1 *Lz L —ml e 1 r
wi(r,t) = e W b (r,t)= 17191( 0,e * M |, Gg(r,t) = mé (t ) .

VAt 6t Vo
Gaussian Elliptic theta func. (4-th)  Geometrical decay and causality
Wandering s Broadening
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Wandering and broadening terms

2 \/€2a7r1/2r(n+ 1 (1_(@&),2%,1)%.

twL(kt.‘va f) = VO F(n)
2,2 /21 (r+3) 1-2k 1
tue ke, €, r) = <1 x { @ (1 (Cake)t=2%)  for k # 5,
2Voa In Cake for k = %
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Synthesis of the intensity time trace /; s
GL (kC7C7 r, t) = WL(kC7<7 r, t) ® bL(kC7C7 r, t) ® Gg(r7 t)

Let us propose the following as an approximation:
(4) Synthesis of the intensity Green function using the convolution in time (G; — Ggs)

GLS (kCaC7 r, t) = WL(kC7C7 r, t) ® bL(ka<7r7 t) ® GRS(kDCy r, t)

19



Synthesis of the intensity time trace /; s

GL (kC7C7 r, t) = WL(kC7C7 r, t) ® bL(kC’C7 r, t) ® Gg(r7 t)

Let us propose the following as an approximation:
(4) Synthesis of the intensity Green function using the convolution in time (G; — Ggs)

GLS (kc7<7r7 t) = WL(kC7C7 r, t) ® bL(ka<7r7 t) ® GRS(kagy r t)
s =Gis ®S =w. ® b ® Irs

107 -
S & g g K05
-7 = 3 S
10 - s} 3
=0.125
> 10—8 ¢
= =1.0
2 400 ¢
E 10—10
10—11
-12

Lapse Time (s)

3 Hz Ricker wavelet source. £=0.05, a=5km.

Traces are almost the same around the peak but different in coda for different ¢ .
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Comparison with FD: /; s time traces

FD simulation of intensity traces for a 3 Hz Ricker wavelet source (r=25km ~ 150 km):
@ FD intensity traces are calculated by using the Hilbert T. at each distance.

@ Mean FD intensity trace (magenta) is the average over 6 realizations of random media x 9
receivers at each distance.
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I s for ¢ = 0.125 (black, top) ...Good fit from the onset through the peak until coda
I s for ¢ = 1.0 (black, bottom) ... Good fit around the peak, but poor fit for coda



Comparison with FD: /; s time traces

Intensity

Best fit curves ... Maximum use of the Born ap. to Ps (c%a3k? = 0.1)
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Comparison with FD: Max. intensity vs. travel distance

Maximum peak is mostly composed of forward scattering waves:
G (ke, ¢y rit) = wi(ke, ¢, r, t) @ br(ke, ¢, r, t) ® Gg(r, t)

Component wy b, Gg
Constraint [ owdt=1 [ bdt=1 4rr?Vp [*_ Ggdt=1
Width in time tor o< r03 tyr o r2 o(t) ~0
Max. Intensity o r05 o r2 x r—2

(+ some scattering loss due to the short scale compo.)



Comparison with FD: Max. intensity vs. travel distance

Maximum peak is mostly composed of forward scattering waves:
G (ke, ¢y rit) = wi(ke, ¢, r, t) @ br(ke, ¢, r, t) ® Gg(r, t)

Component wy b, Gg
Constraint [ owdt=1 [ bdt=1 4rr?Vp [*_ Ggdt=1
Width in time tor o< r03 tyr o r2 o(t) ~0
Max. Intensity o r05 o r2 x r—2

(+ some scattering loss due to the short scale compo.)

Imax at fe=3Hz (¢=0.05 and a=5km)
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For the magnitude determination of small earthquakes:
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Summary
Intensity Time Trace by Convolution in Time
Wandering RTE with Born Scat. Co.  Source Intensity
(Eake)2<<1 “ A
SR = owlr) ® Grk)  ® S
GWR(r!t)
Wandering due to  Markov Ap. Broadening  RTE with Born Scat. Co.
Long-Scale Comp. for Long-Scale Comp. for Short-Scale Comp.
(Eak)?¥1
<<l ‘ ~ ’ \ A
Clseh = wir) ® bur) © Grsltt)  ® S()
L
Grs(rt)

@ Weak velocity fluctuation: € < 1.
@ Choose ( satisfying e2a2k2 ~ 0.1 when £2a?k2&1 (Max. use of the Born ap. for Ps).

@ Small broadening compared with the travel time: ty(r) < ﬁ



Time traces and space distributions of intensity Green functions at 3 Hz
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Time traces and space distributions of intensity Green functions at 12 Hz
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Conclusion

Stochastic synthesis of a scalar wavelet intensity in von Karman-type random media

@ Spectrum division method leads to the broadening of a wavelet and the uniform
distribution of coda intensity when ak. > 1 and e?a®k21.

@ Validity of this approximation is confirmed by comparisons with FD simulations.

o This approximation predicts the power-law decay of the max. amp. with distance.

26
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Conclusion

Stochastic synthesis of a scalar wavelet intensity in von Karman-type random media

@ Spectrum division method leads to the broadening of a wavelet and the uniform
distribution of coda intensity when ak. > 1 and e?a®k21.

@ Validity of this approximation is confirmed by comparisons with FD simulations.

o This approximation predicts the power-law decay of the max. amp. with distance.

@ Future problems and possible development:
* Comparison with FD at a large akc (more CPU power)
* Develop mathematical methods to solve the RTE (using discrete Hankel T.)
* RTE with g€ using G, as a propagator (convolution in space and time)
* Statistical formulation of the distorted Born ap.
* Energy conservation (parabolic ?)
* Extension to the elastic waves
* Realistic variation of the background velocity

26
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Records of a blast at a volcano

Collapse of direct P and S phases

Diffusion-like peak near the source
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Figure 4 :  Energy density of a downhall explosion (vertical compo. 8-16 Hz) at Asama volcano,

Japan. (Yamamoto and Sato 2010)



|
Monte Carlo simulation of the RTE

o 3 Hz Ricker wavelet source.

o For given k. and ¢, we calculate g&(k, ¢, 1) by the Born ap.
@ Solving RTE using Monte Carlo simulations, we calculate Ggs.
@ Each particle carries unit intensity.

@ Particles are randomly shot into various directions from the origin.

o Particle trajectories are recorded until 70s with At=0.01s (g& VoAt < 1).

@ The total number of particles is 10”.

o CPU time: 10 ~15min. by Java on a PC having 6 cores.



FD

simulations of a wavelet in random media

FD scheme: 4th and 2nd order in space and time, respectively.

3 Hz Ricker wavelet source

Grid space is 0.04 km (33 grids /A) and time interval is 3ms. Recorded up to 50s.
Model space size is 202 x 133 x 133km? with absorbing boundaries.

Random medium is composed of 96 small random media of 10243 grids.

Each small random medium is synthesized for a given set of ¢, k and a.

Receiver arrays are distributed from 25 to 150 km from the source with a 25 km separation.
Each array is composed of 9 receivers with different offsets.

Intensity time trace is calculated by using the Hilbert tr.

Average of intensity over 54 traces at each travel distance (9 receivers and 6 realizations of
random media).

CPU time: 70 min. for each calculation by Fortran on Earth Simulator (super computer) of
JAMSTEC, Japan having 140 nodes.

202 %"
7D 3z Wave a1 Z5km

133 km

« Source
25km « Receiver



Frequency dependence of characteristic times and total scat. coef.

For the same & and 7, tw ({ = 1) & tw (¢ = 0.125),
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Comparison with FD for f.=3Hz: I, and /; s time traces

Introducing scattering attenuation as the lowest correction (Sato, 2016, GJI):

I, = e &% G ® S
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Comparison of Markov ap. and FD in 2-D
Parabolic ap. is applicable when akc > 1 and €2a?k23<1
2-D random media, von Karman ACF, k=0.5, €=0.05, a=5km, V=4 km/s

fe=2Hz— ke = 3.14, akc = 15.7, 2a°k?=0.62

RMS Amplitude = \/I;, = /e 850%tG; ® S (red)

T T T T
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Mean FD intensity trace (gray) is averaged over 50 realizations (Sato and Fehler, 2016)

Good fit from the onset through the peak until very early coda, but poor fit at late coda.
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