Scattering

(Michel Campillo)

Seismograms and regime of propagation/scaling From field to intensity and energy RTE Diffusion Consequences of scattering: equipartition and isotropization Scattering in the mantle

Example of a record of a local earthquake in the band .5-20Hz

Frequency-wavenumber analysis

(Pinon Flat Seismometer Array)

100 meters

$u(x,y) \rightarrow u(k_x,k_y)$

Energy decay in the coda (Aki and Chouet, 1975)

The decay is constant in a region, independently of source and receiver: Qcoda

Coda Q in US (Singh and Herrmann, 1983)

Fig. 15. Contour map of coda Q_0 for the entire continental United States.

Appalachian (Hercynian) belt : $Qc \sim 600$

Fig. 15. Contour map of coda Q_0 for the entire continental United States.

Central shield : $Qc \sim 1000$

Fig. 15. Contour map of $coda Q_0$ for the entire continental United States.

Tectonically active western US: Qc=100-300

Transient signals in a complex medium......

Propagation regimes

Wave Propagation through Random Media

Length Scales: $\lambda,$ Correlation Length, Propagation Distance

Question: Ensemble Average Response?

Precise Definition of Coherent and Incoherent Waves

The Concept of Mean Free Path

First Moment of the Green Function:

• Dyson Equation Ensemble average $\langle G \rangle$: Coherent Field $\langle G \rangle = G_0 + G_0 M \langle G \rangle$

M, Mass Operator Describes all Possible Scattering Situations

• Approximate Solution

$$\langle G(\vec{r}; \vec{r_0}) \rangle = -\frac{1}{4\pi |\vec{r} - \vec{r_0}|} e^{ik|\vec{r} - \vec{r_0}|}$$

 $k = k_0 + \frac{i}{2l}$

New Length Scale: Mean Free Path of Waves $l = f(\epsilon, a, \lambda)$

Exponential form of decay: exp-r/2l to be compared with attenuation

- Rayleigh ($ka \ll 1$): $l \sim \omega^{-4}$
- High-Frequency (ka > 1): $l \sim \omega^{-2}$

Differential cross sections of scattering and conversion for a sphere of radius a

 $P \rightarrow P$

(b)

 $P \rightarrow P$

0

(c)

 $P \rightarrow P$

-2

(d)

10

 $ka \rightarrow 0$: Rayleigh approximation

(averaged in φ for S polarisation)

The specific intensity

Definition

 $\mathcal{I}(\omega, t, \mathbf{r}, \mathbf{\hat{k}}) \times dS \times \cos(\theta) \times dt \times d\omega = \text{Amount of energy within}$ the frequency band $[\omega, \omega + d\omega]$ flowing through dS around direction $\mathbf{\hat{k}}$ during time dt

Angularly-resolved energy flux through a surface

Radiative transfer equation

Energy balance of a beam of energy propagating a distance dr in the scattering medium

Variation of Intensity

Loss due to scattering into all space directions

+

Gain due to scattering from direction $\vec{\Omega}'$ to direction $\vec{\Omega}$

The Equation of Radiative Transfer

Scalar Case

$$\begin{pmatrix} \frac{1}{c} \frac{\partial}{\partial t} + \hat{\mathbf{k}} \cdot \nabla_{\mathbf{x}} \end{pmatrix} \mathcal{I}(t, \mathbf{x}, \hat{\mathbf{k}}) = \\ - \left(\frac{1}{l^{s}} + \frac{1}{l^{a}} \right) \mathcal{I}(t, \mathbf{x}, \hat{\mathbf{k}}) + \frac{1}{l^{s}} \oint p(\hat{\mathbf{k}}, \hat{\mathbf{k}'}) \mathcal{I}(t, \mathbf{x}, \hat{\mathbf{k}'}) d^{2} \hat{k}'$$

I^s: scattering mean free path*I^a*: absorption length

c: wave speed $p(\hat{\mathbf{k}}, \hat{\mathbf{k}'})$: scattering anisotropy

Propagation regimes and description of energy

Differential cross sections of scattering and conversion for a sphere of radius a

 $ka \rightarrow 0$: Rayleigh approximation

(averaged in φ for S polarisation)

Propagation regimes and description of energy

The Equation of Radiative Transfer

Second moment of the Green's function is governed by the Bethe-Salpeter equation:

$$\langle GG^{\star} \rangle = \langle G \rangle \langle G^{\star} \rangle + \langle G \rangle \langle G^{\star} \rangle K \langle GG^{\star} \rangle$$

K, Intensity Operator describes all scattering situations.

Neglecting recurrent scattering leads to:

$$\partial_t I(t,\vec{\Omega},\vec{r}) + \vec{\Omega} \cdot \vec{\nabla_r} I(t,\vec{r},\vec{\Omega}) = -\frac{1}{l} + \frac{1}{4\pi l} \int d\vec{\Omega}' I(t,\vec{\Omega}',\vec{r}) P(\vec{\Omega},\vec{\Omega}')$$

Describes the transport of the incoherent part of the intensity. I, Specific Intensity function of space direction, time and position

 $P(\vec{\Omega},\vec{\Omega}'),$ phase function (matrix) related to the power spectrum of the inhomogeneities

The radiative transfer equation

parameters: $l_{\rm P}$, $l_{\rm S}$..., differential cross-sections

Single Scattering Approximation

The waves interact only once with the medium inhomogeneities

First term of an expansion of the intensity in a multiple scattering series:

$$I = I^0 + I^1 + \dots + I^n + \dots$$

 I^0 : Coherent Intensity

 I^n : Mean intensity of waves that have been scattered n times

$$I^1 \sim rac{l}{t^2} e^{-vt/l}$$

When $vt \ll l$ reduces to the Born Approximation

The Diffusion Approximation

General Idea:

- Each scattering distributes energy over all space directions
- After several scatterings the intensity becomes almost isotropic

 $I(t, \vec{r}, \vec{\Omega}) =$ Angularly Averaged Intensity + constant $\times \vec{J}(t, \vec{r}) \cdot \vec{\Omega}$

The current density $\vec{J}(\vec{r},t)$, points in the direction of maximum energy flow. Integrating the RT Eq over all space directions leads to:

$$\partial_t \rho(t, \vec{r}) - D\nabla^2 \rho(t, \vec{r}) = \boldsymbol{\delta}(t, \vec{r})$$

where rho is the local energy density.

$$\boldsymbol{\mathcal{P}}(\boldsymbol{r}, \boldsymbol{r}', t) = rac{1}{(4\pi Dt)^{d/2}} e^{-|\boldsymbol{r}-\boldsymbol{r}'|^2/4Dt}$$

 $\rho(t, \vec{r}) \sim \frac{1}{(Dt)^{3/2}}$ for large t.

D = vl/3 is the diffusion constant of the waves.

Regional seismograms

Observations at distances between 150 and 800 km!!

Searching for a marker of the regime of scattering...

Equipartion principle for a completely randomized (diffuse) wave-field: in average, all the modes of propagation are excited to equal energy.

Implication for elastic waves (Weaver, 1982, Ryzhik et al., 1996): P to S energy ratio stabilizes at a value independent of the details of scattering!

Cross sections

Numerical solutions of the RTE

Margerin et al., 2000

Cross sections

RTE solutions (Monte Carlo)

total energy

VS

diffusion app.

Energy ratio

Cross sections

Energy in an Elastic Solid

E = K + P + S + I

$$E = \frac{1}{2}\rho(\partial_t \mathbf{u})^2 + (\frac{\lambda}{2} + \mu)(\operatorname{divu})^2 + \frac{\mu}{2}(\operatorname{curl} \mathbf{u})^2 + I$$

I contains mixed partial derivatives $K = H^2 + V^2$

Focus on the ratios: P/S, K/(P+S), I/(S+P), H^2/V^2

Equipartition predicts: Any Ratio of Energies Becomes Independent of Time

Measurement of the deformation energy requires evaluation of partial derivatives of the wavefield S to P Energy ratio as a marker of the regime of scattering...

$$G_{i,j}(\vec{R},\vec{S},t) = \sum_{n} \varepsilon_n \Phi^n(\vec{R}) \exp(-i\Omega_n t)$$

where ε_n are random independent variables (finite body)

(ldos)

Consequence for an infinite inhomogeneous solid:

$$rac{E_s}{E_p} = 2\left(rac{v_p}{v_s}
ight)^3$$

Independent of the Details of the Scattering ! Independent of the position in a full space with homogeneous reference

Partition of energy (Full dastic space) Multiphen scattering, large t -> "equipartition" Euference medium + disorder] Phase space of the full space elastic problem -> all propagating place waves existed at same level of energy Energy in a band w + &w -> Volume for Pwares The Sk = Sw

Direct waves

ENERGY RATIO	DATA	THEORY FULL SPACE	THEORY HALF SPACE BULK WAVES	THEORY HALF SPACE with RAYLEIGH WAVES
S/P	7.3	10.39	9.76	7.19
K/(S+P)	0.65	1	1.19	0.534
I∕(S+P)	-0.62	0	-0.336	-0.617

For asymptotically long lapse time (diffusion), the disorder produces a completely randomized wave-field. such that , all the modes of propagation are excited in average to equal energy (the equipartition principle).

Numerical example: 2D scalar waves

➔intensity isotropy

Propagation regimes and description of energy

The Diffusion Approximation

General Idea:

- Each scattering distributes energy over all space directions
- After several scatterings the intensity becomes almost isotropic

 $I(t, \vec{r}, \vec{\Omega}) = \text{Angularly Averaged Intensity} +$ constant $\times \vec{J}(t, \vec{r}) \cdot \vec{\Omega}$

The current density $\vec{J}(\vec{r},t)$, points in the direction of maximum energy flow. Integrating the RT Eq over all space directions leads to:

$$\partial_t \rho(t, \vec{r}) - D\nabla^2 \rho(t, \vec{r}) = S(t, \vec{r})$$

where rho is the local energy density.

$$\rho(t, \vec{r}) \sim \frac{1}{(Dt)^{3/2}}$$
 for large t .

D = vl/3 is the diffusion constant of the waves.

Observations at distances between 150 and 800 km!!

requires radiative transfer equation

Influence of the value of mantle mean free path

Leakage of energy in the mantle

Energy decay in the coda (Aki and Chouet, 1975)

Hétérogénéité à grande profondeur

PKIKP

0

5

N. J. Mancinelli and P. M. Shearer

Fit of the observations with RTE and heterogeneity in the whole mantle described by a Henyey and Greenstein (H-G) correlation function.

Perturbations are of the order of 0.1%, correlation length is model dependent but the heterogeneity is rich in small scales (0.1-10km).

mft of the order of 10³s

Transfert radiatif et hétérogénéité du manteau inférieur

Margerin & Nolet, 2003

- - - - - : Moy. des données ------ : Transfert radiatif

- Première application du Transfert Radiatif à l'échelle du globe
- Distribution d'hétérogénéité dans tout le manteau Inf
- Faibles fluctuations (0.1%) riches en petites échelles : 0.1km–10km, spectre k^{-3}