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The magnetostrophic regime, in which Lorentz and Coriolis forces are in balance,
has been investigated in a rapidly rotating spherical Couette flow experiment. The
spherical shell is filled with liquid sodium and permeated by a strong imposed dipolar
magnetic field. Azimuthally travelling hydromagnetic waves have been put in evidence
through a detailed analysis of electric potential differences measured on the outer
sphere, and their properties have been determined. Several types of wave have been
identified depending on the relative rotation rates of the inner and outer spheres: they
differ by their dispersion relation and by their selection of azimuthal wavenumbers. In
addition, these waves constitute the largest contribution to the observed fluctuations,
and all of them travel in the retrograde direction in the frame of reference bound to
the fluid. We identify these waves as magneto-inertial waves by virtue of the close
proximity of the magnetic and inertial characteristic time scales of relevance in our
experiment.

1. Introduction
Hydromagnetic waves are oscillations propagating in electrically conducting fluids

in the presence of a magnetic field. They exist as a result of the different forces acting
on a fluid parcel slightly displaced from its equilibrium position. Their characteristics
depend on the force balance, in particular on the nature of the leading forces, as well
as on the geometry of the container (see a review in Acheson & Hide 1973; Finlay
2005). These forces may be of inertial, buoyancy, magnetic or Coriolis type, two or
more of them acting simultaneously. Solving the linearized equations of motion then
leads to a dispersion relation ω(k), the properties of which strongly depend on the
force balance and geometry. The simplest case arises when only magnetic (Lorentz)
and inertia forces are in competition, giving rise to Alfvén waves of characteristic
velocity vA = B/(ρµ)1/2, where B is the amplitude of the magnetic field, ρ the density
of the fluid and µ its magnetic permeability (Alfvén 1942). When the hydromagnetic
system is subjected to a rapid rotation, Coriolis forces may substitute for other ones,
at least partially, producing a variety of waves such as inertial, torsional, magneto-
Coriolis (MC) or inertial-MC waves, according to the relative magnitude of all forces
(Lehnert 1954b; Braginsky 1970). Including buoyancy forces adds a further term in
the dispersion relation of the so-called MAC (Magnetic, Archimedes, Coriolis) waves
(Gubbins & Roberts 1987). Considering particular boundary conditions, e.g. spherical,
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may lead to additional restoring forces through specific geometrical constraints (β
effect, see Hide 1966; Malkus 1967).

From a geophysical point of view, a detailed knowledge of these hydromagnetic
waves is fundamental, because they are thought to be present in the Earth’s outer
core (Braginsky 1980). One crucial question is whether they might be involved in
the secular variation of the Earth’s magnetic field (Hide 1966; Jault, Gire & Le
Mouel 1988; Roberts & Soward 1972; Finlay & Jackson 2003) or in the occurrence
of geomagnetic impulses (Bloxham, Zatman & Dumberry 2002; Dormy & Mandea
2005; Jault & Légaut 2005). Another question is whether such hydromagnetic waves
are intrinsically stable, or whether they may grow in amplitude through dynamical
instabilities (Zhang, Liao & Schubert 2003). Hydromagnetic waves have also been
considered in an astrophysical context, because of their possible implication in the
redistribution of angular momentum in stellar interiors (Spruit 1999; Kitchatinov &
Ruediger 1997; Reese, Rincon & Rieutord 2004). Similarly, the role of hydromagnetic
waves in the destabilization of accretion disks or stellar objects in the presence of
differential rotation and toroidal magnetic fields is strongly debated, as this mechanism
could lead to the redistribution of angular momentum, hence accretion (Acheson 1978;
Rüdiger et al. 2007).

Few experiments have been performed for studying such hydromagnetic waves
in conducting liquids. Pioneering works were carried out from the 1950s, initially
with mercury (Lundquist 1949; Motz 1966). Later, liquid sodium was used, Alfvén
waves being generated by mechanical oscillations and analysed through damping and
phase shift measurements (Lehnert 1954a). In a subsequent piece of work, magnetic
excitation was adopted for generating waves in a torus filled with liquid sodium,
and a strong resonance was observed, emphasizing the presence of standing Alfvén
waves (Jameson 1964). A revival of interest occurred much later with the quest for
experimental dynamos (Stieglitz & Mueller 2001; Gailitis et al. 2001). In the successful
Karlsruhe dynamo, some oscillations have been attributed to resonant Alfvén waves
within the liquid sodium (Mueller, Stieglitz & Horanyi 2004). In other experimental
devices using liquid metal, spontaneous excitation of oscillating magnetic and velocity
fields have been interpreted as the occurrence of magnetorotational instabilities (Sisan
et al. 2004; Stefani et al. 2006), while precessing vortices and inertial waves have been
identified as well (Sisan, Shew & Lathrop 2003; Kelley et al. 2006).

In this paper, experimental results obtained with the ‘Derviche Tourneur Sodium’
(DTS) set-up are reported and analysed. The DTS experiment is a rotating spherical
Couette flow device with a strong imposed dipolar magnetic field, and where liquid
sodium is used as conducting fluid (Cardin et al. 2002; Nataf et al. 2006). Although
it is neither a dynamo experiment nor a reduced model of the Earth’s core, it
has been designed to explore magnetostrophic dynamical regimes similar to those
present within the Earth’s outer core, its sodium flow being strongly affected by the
imposed dipolar magnetic field, although the latter remains far from the complicated
field structure expected within the fluid core (Glatzmaier & Roberts 1996). Mean
axisymmetric properties have been investigated using electric potential and magnetic
field measurements as well as ultrasonic Doppler velocimetry (Nataf et al. 2008).
Several regimes have been identified as a function of the relative rotation rates of the
inner and outer spheres. In particular, a peculiar behaviour has been observed when
the inner sphere is rotating in a direction opposite to the outer one, at such a rate
that the bulk of the fluid has approximately no absolute rotation. In that case, within
a narrow range of differential rotation rates, the induced magnetic field is particularly
strong. This phenomenon occurs while the radial flow evolves from centripetal to
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Figure 1. Sketch of the DTS experiment; the electrodes (E1 to E18) are distributed along 0 ◦

and 120 ◦ meridians as well as along the −45 ◦ parallel between both meridians; magnetic field
lines generated by the magnets located inside the inner sphere are also shown.

centrifugal in the equatorial plane. The constraint of rotation then vanishes and a
strong meridional circulation is allowed, resulting in a strong enhancement of the
induced magnetic field.

In the present work, we focus on the time dependence of the electric potential
differences between electrodes located on the outer sphere and on the time correlations
between those differences. The data have been analysed in the frequency range 1–
50 Hz, i.e. in the same domain as the maximum rotation rate of the spheres (<30 Hz).
Oscillatory patterns have been clearly observed. They are shown to correspond to
magneto-inertial waves propagating in a retrograde direction relative to the core flow.
Details on the experimental set-up are provided in § 2. The analysis of our data
obtained without or with global rotation (i.e. outer sphere at rest or not) is carried
out in § 3. Section 4 is devoted to a discussion of the results in order to identify the
nature of the waves.

2. Experimental
Details of the experimental set-up of DTS have been described previously (see Nataf

et al. 2006) and are summarized below. Forty litres of liquid sodium are contained
between a 7.4 cm radius inner sphere and a 21 cm radius outer sphere (figure 1). The
copper inner sphere is filled with several magnetized bricks producing a nearly dipolar
magnetic field within the sodium, the magnitude of which ranges from 0.345 T to
0.008 T throughout the volume of fluid. This imposed magnetic dipole is aligned with
the rotation axis of the device. The inner and outer spheres can be independently
set in rotation around a common axis, their rotation rates being servo-controlled to
remain constant. The stainless steel outer sphere is 5 mm thick, and drilled in several
places by 1mm diameter, 4 mm deep holes where electric potential electrodes can be
fitted.
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Figure 2. Time series of four successive azimuthal potential differences for a differential
rotation rate �f = 21.8 Hz (f0 = 0); frequencies above 45 Hz and around �f have been
filtered out; the dashed lines emphasize the relative time shift of the signal with longitude; the
data have been arbitrarily shifted in magnitude for the sake of clarity.

We focus here on the results obtained from a set of 18 brass electrodes (labels E1
to E18 on figure 1), screwed into some of these holes distributed along two meridians
and one parallel. Along both meridians (0◦ and 120◦ of longitude), electrodes (E1 to
E10 and E14 to E18) are placed every 10◦ between −45◦ and +45◦ of latitude. The
−45◦ latitude parallel electrodes (E14 to E10) are located at 0◦, 20◦, 40◦, 80◦ and 120◦

of longitude, respectively. The electrodes are close to, but not in direct contact with
the sodium flow. However, as stainless steel is a poor electric conductor compared to
liquid sodium, it should not affect the dynamically generated electric potential too
much. Besides, it is a good enough electric conductor for the impedance of electrode
pairs to be much smaller than that of the acquisition system, so that the potential
measured by these electrodes is expected to provide a good estimate of the outer
boundary potential. Electric signals from the electrodes are passed through slip-rings
in the laboratory frame. Electric potential differences are then sampled at a rate of
1000 Hz with a PXI-6229 National Instruments acquisition card, after going through
a simple anti-aliasing 215 Hz low-pass RC filter. Finally, and to provide additional
information, a few measurements of the magnetic field outside the outer sphere are
presented, as well as some results of radial flow velocity obtained by ultrasonic
Doppler velocimetry.

3. Experimental results
3.1. Measurements without global rotation

In this first part, the outer sphere is kept at rest (f0 = 0). An example of 2 s time series
for four successive azimuthal DPs (difference of potential), namely dp1011 (between
electrodes E10 and E11), dp1112, dp1213 and dp1314 is shown on figure 2 for a
rotation rate of the inner sphere �f = 21.8 Hz. Contrarily to meridional DPs, such
an azimuthal DP is not sensitive to the azimuthal mean sodium flow, but to the
fluctuations of the meridional circulation, the mean value of which being expected to
be very weak (Nataf et al. 2006). Oscillations are clearly visible around a zero averaged
value, exhibiting an apparently chaotic behaviour. Nevertheless, a few characteristic
frequencies emerge, remaining predominant during short periods of time. Note that
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Figure 3. Power spectral density of dp1011 (a) and of the radial induced magnetic field br

(b) for differential rotation rates �f ranging from 12.6 to 23.4 Hz (f0 = 0); triangles indicate
the forcing rates �f .

the amplitude of dp1011 and dp1112 signals is larger than that of the other ones,
in agreement with the larger distance between electrodes. To obtain more details
about these frequencies, the PSD (power spectral density) of the electric potential
measurements has been calculated. It is shown on figure 3 for several differential
rotation rates �f varying from 12.6 to 23.4 Hz. These PSD’s have been built over a
time window of 90 s within each plateau where �f was kept constant, then averaged
over 0.1 Hz. Several narrow peaks are visible, as well as broad structures. The thinnest
lines correspond to the rotation rates themselves �f together with their second and
third harmonics. Besides, the main feature of these spectra is the presence of broad
bumps located at different frequencies, as well as a narrow, distinct peak located at
a frequency just higher than �f . These structures constitute the major part of the
fluctuations. Figure 3 (b) shows temporal magnetic spectra based on the measurement
of the radial component br of the induced magnetic field at latitude 50 ◦ a few
millimetres outside the outer sphere. There is a close similarity between the electric
and magnetic spectra, at least concerning the broad bumps (in particular, we can
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Figure 5. Differential rotation rate �f and variation of the −40◦ meridional difference of
potential �V−40 (f0 = 0); note that �V−40 can be used as a proxy for the actual averaged
rotation rate of the fluid.

observe local maxima around the same frequency values). The observed oscillations
have both electric and magnetic signatures.

Spectral density distributions can be visualized with more details using short-time
Fourier transform (spectrogram Matlab command), in order to observe a possible
time evolution of the characteristic frequencies. The corresponding full sequence
spectrogram for dp1314 is shown in figure 4. Here the constant �f lines and their
second harmonics are clearly visible as horizontal segments, while the frequencies
of both broad and narrow peaks exhibit a positive slope, i.e. evolve with time. This
time dependence can be compared with the variation of meridional DPs for the same
sequence of measurement, e.g. dp0910 (i.e. �V−40, see figure 5). There is indeed a linear
relationship between the meridional electric potential difference at a given latitude,
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Figure 7. Time–frequency spectrogram of dp1014 for differential rotation rates �f ranging
from 12.6 to 23.4 Hz (f0 = 0); note the absence of the S3 and N3 waves.

say −40◦, and the azimuthal velocity measured by ultrasonic Doppler velocimetry at a
certain distance d along the shooting line (see more details in Nataf et al. 2008). This
depth d corresponds to a region where the fluid is entrained at an almost uniform
angular velocity. Therefore, �V−40 can be used as a proxy for the actual angular
flow velocity, the coefficient of proportionality being γ � − 2700 HzV−1. From the
variation of �V−40 over the whole sequence of measurement (figure 5), it can then
be concluded that the rotation rate of the fluid continues to increase on a very
long time scale after a change of �f , although �f is maintained constant. This is
probably due to variations in the electric coupling between liquid sodium and the
copper inner sphere (electrowetting feedback), which gives rise to redistribution of
electric currents within the volume, leading then to a different force balance and
equilibrium angular velocity. We can take advantage of this variation of the fluid
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rotation rate to re-examine the frequencies of the oscillations on figure 4. The obvious
correspondance between both variations emphasizes that the frequency of all these
oscillating structures (broad and narrow) is closely linked to the rotation rate of the
fluid rather than to that of the inner sphere �f .

Deeper knowledge of these oscillations can be gained when the measurements of
the successive azimuthal DPs at −45 ◦ latitude are compared. More precisely, the
correlation between a pair of distinct DPs, e.g. dp1011 and dp1314, can be analysed,
in order to show a possible propagation of the oscillations along this latitude.
However, because of the coexistence of oscillations for several distinct frequencies,
it is necessary to filter both signals before computing their cross-correlation. As an
example, figure 6(a) shows such a correlation diagram obtained over a time interval
of 20 s within the plateau �f = 18.9 Hz. The signals have been filtered using a
sliding window band-pass filter of width 0.2 Hz. For each analysed frequency f , the
amplitude of the cross-correlation as a function of the correlation time is colour-coded.
Again, the main structures described above are clearly visible as vertical sequences of
alternating red and blue speckles separated by regions with a weak signal (in green).
The vertical separation between two successive correlation maxima corresponds to
the period of the structure for the selected frequency.

A fundamental feature is that the maximum correlation is shifted from δt =0 (as for
self-correlation) towards a positive value δt90 of the order of +0.05 s (for f ∼ 10 Hz).
This means that the corresponding oscillating structures are actually moving from
(E13–E14) to (E10–E11) electrodes, i.e. in the same positive direction as �f , δt90
being the time spent by the wave in travelling between the two pairs of electrodes,
distant by about 90◦. It has been checked that the time delay δt increases linearly with
the azimuthal angular distance between the pairs of electrodes considered. Note that
this angular dependence of δt was already perceptible on the raw data (see figure 2),
and that a pure transport at the rate of the inner sphere would give δt90 ∼ 13 ms, far
below 50 ms. This characteristic feature demonstrates that the oscillating structures
observed in the DTS experiment propagate within the fluid in the same direction as
the inner sphere in the reference frame of the outer sphere. This feature is consistent
with the existence of hydromagnetic waves.

The knowledge of the time delay δt90 for a given frequency f allows us to determine
an associated wavenumber. Indeed, from the travel time between the two pairs of
electrodes, the phase frequency f̃ = 1/(4δt90) (corresponding to the phase velocity of
the wave) can be obtained. This frequency has to be compared with the apparent
(measured) frequency f . Considering a wave travelling along a parallel with an
azimuthal number m and a frequency f , i.e. v = v0 exp i(mφ −2πf t), its phase velocity
is given by 2πf/m, so that the ratio f/f̃ provides the azimuthal wavenumber m

of the wave. This change of variable from δt90 to f/f̃ has been repeated for each
frequency window, leading to an azimuthal number–frequency diagram as shown
in figure 6(b). It becomes obvious now that the successive broad structures seen in
the PSD or in the spectrogram shown above (figures 3 and 4) may be associated
with successive azimuthal wavenumbers m =2, 3, 4, . . . . A fine structure is even
perceptible as two or more sub-speckles corresponding to the same wavenumber
m, but to a different frequency. These sub-structures are generally not separable on
the Fourier spectrograms, emphasizing the high resolution of the correlation diagrams.
The narrow peak N3 observed at f = 21.1Hz is related to a m = 3 wave. It is clearly
distinct from the broad peak S3, which has a lower frequency. A detailed analysis of
the diagram reveals another narrow peak N2, related to an m =2 wave and located at
f = 15.2Hz, which is again higher than the frequency of the broad peak S2. Finally,
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Figure 8. Frequency–time diagram of the maximum of the dp1314 short-time
self-correlation function, corresponding to the plateau �f = 18.9Hz (f0 = 0).

m = 1 oscillations (S1) are also found around f ∼ 5Hz, although they appear to be
extremely weak.

Pairs of electrodes with different angular spans can provide a different perspective to
these wave phenomena. For example, the spectrogram corresponding to the difference
of potential dp1014 is shown in figure 7. Here, E14 and E10 electrodes are separated
by 120◦, so that any wave with an azimuthal periodicity of 120◦ cannot be seen by
this DP. Consequently, an extinction phenomenon occurs for the m =3, 6, 9, . . . waves
(compare with the dp1314 spectrogram in figure 4). Conversely, the m =2 wave N2
is now clearly revealed above the broad m =2 band whereas it was less perceptible in
the broad S3 band in figure 4. Studying such extinction phenomena may be useful to
emphasize the azimuthal characteristics of the waves present within the fluid, just by
selecting an appropriate separation between electrodes.

Now the question arises as to whether these waves are permanent, and if not,
what is their lifetime. To answer this question, a short-time (2 s time window) self-
correlation has been performed on dp1314, for a time window sliding along the
whole plateau �f = 18.9 Hz, and after the same sliding window band-pass filtering as
described above has been performed. For each pair (time, frequency), the maximum
value of the self-correlation function has been considered. All these values have been
gathered in a single greyscale-coded diagram (see figure 8). It appears clearly that the
waves are far from being permanent, exhibiting a lifetime of only a few seconds. An
alternative way of estimating the lifetime of the waves is to consider the envelope
of the correlation function calculated over a longer time, the first minimum of the
envelope giving the order of magnitude of the mean lifetime of the oscillations. This
evaluation provides a similar result, i.e. the lifetime of the waves remains within the
range ∼2–4 s (corresponding to 40–80 rotation periods). Moreover, these values do
not change noticeably when the forcing varies between 0 and 25 Hz, meaning that
the attenuation process is magnetic. Finally, note that the different m waves appear
independently from each other, suggesting that they are not harmonic components
of the same underlying structure.

To summarize the behaviour of the waves observed within the fluid without
global rotation (f0 = 0), their frequencies have been extracted from time–frequency
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correlation diagrams obtained for successive 20 s time windows along experimental
sequences covering differential rotation rates ranging from 0 to 25 Hz. All these values
are collected in figure 9. All the values have been plotted as a function of �V−40,
i.e. the meridional −40◦ latitude DP, representative of the actual fluid velocity (see
above). As far as the broad bands are concerned, only their mean value has been
plotted, while the vertical bars give an estimate of their width. Contrarily to these
broad bands which already appear at low forcing, the narrow peaks can be clearly
identified only for a rather high rotation rate of the inner sphere. On each plateau of
constant �f , fluid velocity is not constant (see figure 5). When wave frequencies are
plotted versus the proxy of fluid velocity, each segment corresponds to a short fraction
of the entire curves, following the same trend as the general trend over the whole
range (figure 9). This behaviour confirms the close link between the wave frequency
and the azimuthal fluid velocity. The overall variation appears to be nearly linear, at
least for low m azimuthal wavenumbers, whereas a slight curvature is visible at large
�f rate for the highest m values.

3.2. Measurements with global rotation

In this second part, the outer sphere is kept at a constant positive rotation rate
f0 = 4.5Hz. Starting from the state of solid-body rotation (�f = 0), the inner sphere
can be set to a higher or to a lower rotation rate than f0, resulting in a cyclonic or
anticyclonic differential rotation, respectively. Note that in the latter case, the forcing
can be much more vigorous, since the inner sphere can be ultimately rotated in
an opposite direction down to a maximum negative rotation rate fi ∼ −30 Hz, i.e.
�f ∼ − 35 Hz (the limit is �f ∼ + 25 Hz in the former case).

3.2.1. Inner sphere in cyclonic differential rotation

First, a sequence of DP measurements where �f ranges from 0 to +18.7 Hz
is considered. As for f0 = 0, power spectral density curves and short-time Fourier
spectrograms of azimuthal DPs exhibit oscillatory phenomena, which appear to
be much less developed than without global rotation. First, they start to become
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apparent only above �f ∼ 10 Hz. Secondly, they remain confined to a frequency
range mainly below ∼ �f . Thirdly, as shown in the azimuthal wavenumber–frequency
correlation diagram between dp1011 and dp1314 at �f = + 15.7 Hz, wavenumbers
of hydromagnetic waves are mainly limited to m =2, 3 and 4 (figure 10). Some weak
patterns seem to be present above �f , but they appear to be much less structured
than below �f . Finally, all the apparent frequencies of these waves (within a frame
rotating with the outer sphere) are gathered in figure 11 upper right part, as a function
of the proxy of the fluid velocity relative to the outer sphere, i.e. �V−40.
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3.2.2. Inner sphere in anticyclonic differential rotation

We now focus on the experimental results with f0 = + 4.5 Hz and �f < 0, where a
very interesting situation arises when the antagonistic effects of the rotation of both
spheres balance and bring most of the fluid to rest. Figure 12 shows such a sequence
where �f ranges between 0 and −22.1 Hz by successive plateaux where f0 is kept
constant. This sequence shows a dramatic jump on �V−40 when the forcing �f is
changed from −18.7 to −20.8 Hz. This transition separates two distinct regimes for
the sodium flow, namely a regime dominated by global rotation and a regime where
differential rotation is preponderant (Nataf et al. 2008). The hydromagnetic waves
are strongly affected by this transition, and the difference between both regimes is
emphasized below.

Weak forcing: a regime dominated by global rotation

This regime occurs when the forcing is weak, i.e. |�f | < 19 Hz (t < 860 s in figure 12),
which corresponds to a value of |�V−40| lower than 1.5 mV. As described above, a
detailed analysis of the cross-correlation between dp1011 and dp1314 DPs associated
with two pairs of electrodes distant by 90◦ in longitude allows us to identify
broad structures corresponding to hydromagnetic waves propagating within the fluid
(figure 13). By comparison with the spectra observed for f0 = 0, three important
differences can be underlined: (i) these structures are much less pronounced for
quite similar forcing rates; (ii) only three frequencies emerge, centred around 5.5, 9
and 14.5 Hz (labels W1, W2 and W3), and no structure is apparent above 15–20 Hz;
(iii) these characteristic frequencies remain nearly constant (or decrease slightly), while
the forcing rate as well as the fluid velocity are increased considerably. In addition
to these broad structures, the f0 and �f rotation rates, as well as possible second
and/or third (and higher) harmonics, are also visible as thin horizontal segments.

In the present weak forcing regime, analysing the time shift between both DPs
indicates that the oscillations are moving westward in the frame of the outer sphere,
i.e. in the same negative direction as �f . Converting these negative time shifts
into azimuthal wavenumbers m by following the same procedure as above leads to
the m − f diagram shown in figure 14(a). Here the main speckles (those with the
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highest correlation function) are associated with a negative m value; they actually
correspond to negative wave frequencies and positive m values. Note that if the trace
of the forcing rate �f is well marked on these diagrams, the trace relative to the
outer sphere rotation rate does not appear as clearly, lying very close to the speckle
associated with the m =1 fluid oscillation. Nevertheless, m =1, 2 and 3 waves can
be identified without ambiguity, some speckles being possibly subdivided into several
components. No indication of waves with m > 3 seems to be present, nor could we
detect the presence of the narrow peaks described in § 3.1 for f0 = 0.

Finally, all the frequencies observed in this weak forcing regime have been collected
in figure 11. In contrast to the case with no global rotation (figure 9), the frequencies
appear here to decrease slightly (in magnitude) when the forcing rate is increased.
This is a fundamentally different behaviour, which will be discussed later in this
paper. Note also that, although the m =1 (2, 3) wave frequencies are close to the
−f0 (−2f0, −3f0) values, they do not change at the same rate when the forcing is
changed, so they cannot be considered to be linked together.

Strong forcing: a regime dominated by shear effects

We focus now on the strong forcing regime, which arises after the dramatic jump
observed on the �V−40 variation at t = 870 s (|�V−40| > 1.5 mV, see figure 12). Note
that, although this transition occurs when the forcing rate changes from −18.7 to
−20.8 Hz, a strong hysteresis is present since a large value of �V−40 persists after the
forcing rate has been decreased far below 20 Hz in magnitude. Therefore, although
a large value of �f is required to initiate the transition, a high value of �V−40

(> ∼ 1.5mV) is actually the relevant criterion for characterizing this shear-dominated
regime (see a discussion in Nataf et al. 2008). Note also that, although the frequency
of the outer sphere is expected to remain constant, it actually decreases noticeably
after the jump, as the fluid motion becomes faster in the opposite direction, generating
a strong antagonistic torque. Nevertheless, this shift remains within the servo-control
tolerance for the rotation rate of the spheres.

Analysing the cross-correlation diagram between dp1011 and dp1314 for this regime
of strong forcing reveals a situation fundamentally different from the weak forcing
regime (figure 13): (i) first, a large number of successive bumps is observed in the
frequency range 10–50 Hz, corresponding to waves with azimuthal wavenumbers
as high as m =7; (ii) conversely, the m = 1 signature vanishes almost completely;
more precisely the relative proportion m =1 vs. m =2 is completely reversed;
(iii) the characteristic frequencies of these waves increase again as the forcing becomes
stronger. This latter feature is reminiscent of the situation with no global rotation
(see § 3.1), emphasizing the predominance of differential over global rotation and the
important role played by the strong shear in this regime.

The differences between the rotation-dominated and the shear-dominated regimes
are shown clearly on the m−f diagram of the correlation between dp1011 and dp1314
for the plateau �f = −17.6Hz (figure 14b). This forcing rate is close to the frequency
leading to the spectrogram shown in figure 14a, as indicated by the position of the thin
vertical line associated with �f , but the fluid velocity, represented by its proxy �V−40,
is quite different. While the hydromagnetic waves are confined to m � 3 in the former
case, they extend to much higher m values in the latter case. All these frequencies have
been gathered in figure 11 (left lower part), where both regimes appear to be very
distinct from each other. The plateau �V−40 = 1.58 mV (�f = −9.1 Hz) corresponds
to an intermediate state, which appears to exhibit characteristic features belonging to
both regimes: the frequencies of m � 3 waves are consistent with those of the weak
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forcing regime, whereas the presence of waves with high m is typical of the regime
with strong shear effects. In the latter regime, the variation is similar to the behaviour
observed with no global rotation, yet with a slope noticeably steeper by ∼10–50 %.
This will be discussed in § 4.

Ultrasonic Doppler velocimetry does not match electrical potential measurements
in terms of spectral resolution (Nataf et al. 2006, 2008). Considering one record
nonetheless gives a better understanding of the nature of the waves. Figure 15 shows
the spectrum of radial velocity along a radius as a function of the distance from the
ultrasonic probe (fitted on the outer sphere), for an experiment where f0 = 4.3 Hz
and �f = −13.6 Hz. These conditions are actually close to those for �f = −9 Hz,
around t = 1800 s (figure 12), as far as the fluid velocity is concerned (�V−40 = 1.6 mV
in both cases). The waves are observed within the bulk of the fluid under the form
of vertical stripes extending between 30 and 90 mm, in the frequency range 5–30 Hz,
the most intense ones corresponding to S2 and S3 modes. These waves were first
evidenced using azimuthal potential differences, which are thought to be directly
related to meridional velocities in the vicinity of the outer sphere. They are also
visible on meridional potential measurements (not shown here), which are thought
to be directly related to azimuthal velocities in the same region. Now, Doppler
velocimetry provides evidence of these waves deep into the volume of liquid sodium.
It can be said that these waves are global, not a phenomenon restricted only to a
thin external shell close to the outer sphere. Moreover, the radial dependence of the
Doppler signature suggests that the waves have low radial wavenumbers, since we do
not observe several successive minima as a function of the radius.

4. Discussion
In the present spherical Couette experiment, hydromagnetic waves have been

evidenced and it has been shown that their characteristic properties depend on
whether the flow is dominated by global rotation or by shear effects. In particular,
modes of azimuthal wavenumbers m between 1 and 7 have been observed, but their
relative magnitude depends on the operating conditions: m = 1 waves are strong only
when the inner sphere is set in weak anticyclonic differential rotation, whereas m =2
modes are dominant in the case of strong shear effects (f0 = 0 or f0 > 0 and �f � 0).
These waves exhibit a magnetic signature (except for the N-type waves), they exist at
all latitudes and down to a deep level inside the fluid, so that they can be considered
as global modes.

Besides, for a given m and a given forcing where the fluid velocity is stationary,
the frequency of the waves covers a wide range of values, leading to these broad
structures observed in power spectral density curves and in correlation diagrams and
sometimes exhibiting sub-structures. One exception is made by the N2 and N3 waves
which have been observed only for a high differential rotation rate and no global
rotation (f0 = 0), and which have much better defined frequencies (narrow spectral
peaks).

A crucial point is to identify the actual nature of all these waves and to determine
which mechanisms are responsible for triggering and damping them. It can be noticed
that the apparent (i.e. measured) frequencies of the modes have been reported in the
previous sections as a function of �V−40, used as a proxy for the fluid rotation rate
measured within a frame rotating with the outer sphere. However, a more relevant
point of view is to analyse the frequencies within a frame rotating with the fluid itself;
in this frame, Coriolis forces best represent all inertial effects associated with rotation,
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and most theoretical studies are based on the analysis of the linear Coriolis forces. As
explained in § 3, and even though the fluid does not rotate at a uniform rate in our
experiment, an effective mean rotation rate of the fluid relative to the outer sphere,
f 0

fluid , can be defined as a function of the meridional difference of potential at −40◦

latitude, �V−40:

f 0
fluid = γ�V−40

= ffluid − f0, (4.1)

where ffluid and f0 are the fluid and outer sphere rotation rates, respectively, within
the laboratory frame, and where γ has been estimated to be � −2700 Hz V−1 from
ultrasonic Doppler measurements. If we consider a wave propagating along a parallel
with an azimuthal number m and a frequency f 0

mode in the frame of the outer sphere,
e.g. v = v0 exp i(mφ − 2πf 0

mode t), its frequency is Doppler shifted in the frame of the
rotating fluid, according to:

fmode = f 0
mode − mf 0

fluid

= f 0
mode − mγ�V−40. (4.2)

In figure 16 we have gathered the wave frequencies fmode as a function of the effective
rotation rate of the fluid in the laboratory frame, i.e. ffluid , for γ = −2700 HzV−1, for
the three sets of measurements shown above. Focusing on the case f0 = 4.5 Hz, �f < 0,
the point (ffluid = 0, fmode = 0) emerges as a singular point of convergence for all curves,
even for the W-type waves whose frequency was nearly constant in the frame of the
outer sphere. This peculiar point corresponds to the situation where the fluid is at
rest, on average, in the laboratory frame. It is worth emphasizing that at this point,
the induced magnetic field is strongly enhanced (Nataf et al. 2008) and that the wave
frequencies vanish. The latter property has been directly observed by the magnetic
sensors in the laboratory frame, as oscillations showing very long periods (∼10–20 s)
were recorded. In this representation (figure 16), some dispersion and deviations may
occur, emphasizing the limit of the approximation given in (4.1). Note that with this
value of γ , the fluid may be entrained by the inner sphere at a rate up to half the
differential rotation rate, as a result of the strong magnetic coupling between the
permanent magnets located inside the inner sphere and the conducting fluid.

Considering now all these experimental results fmode (in the frame of the fluid) as
a function of ffluid (in the frame of the laboratory) allows us to identify four distinct
types of waves, all retrograde, and all exhibiting a roughly linear dependence of
frequency on the inertial rotation rate of the fluid.

(a) Waves of type S cover a wide range of fluid rotation rate −8 < ffluid < 14 Hz,
including the region with a weak rotation rate; they are roughly symmetric with
respect to the origin; all the modes 1 � m � 7 have been observed, although the m = 1
modes are much weaker than the other ones; they exist in shear-dominated regimes,
with or without global rotation (|�f | >f0 = 0, or �f/f0 � − 1).

(b) Waves of type N correspond to the narrow structures in the spectrograms; only
m =2 and 3 modes have been observed; they have been seen for f0 = 0 only, although
not systematically; they are slower than the S-waves.

(c) Waves of type H are observed for a high cyclonic forcing, e.g. �f/f0 � 1; their
frequency is similar to that of S-waves although only 2 � m � 4 modes have been
observed; they exist in regimes dominated by both shear and rotation.

(d) Waves of type W are present when the fluid is rotating more slowly than
the outer sphere, in the same direction, i.e. a weak anticyclonic forcing regime, e.g.
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�f < 0 <ffluid <f0; only m � 3 modes have been observed; they are noticeably faster
than the S-waves; they exist in weak-forcing rotation-dominated regimes; note also
that this regime is the only one where the angular velocity of the fluid increases
outwards.

Dispersion relations can be built from the above variations, as a function of the m

wavenumber (figure 17). In order to compare these relations for the different types of
waves, the frequencies have been renormalized by the fluid velocity. Moreover, only
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an averaged value is reported for each m wavenumber, the approximation used in
our analysis limiting the accuracy of the numerical values. The dispersion relations
for the S-type waves appear very similar for both configurations �f >f0 = 0 and
�f/f0 � −1, and close to the variation for the H-type waves. So, both types of waves
could be of the same nature, but the absence of high m values for the H-waves
remains to be explained. The other types of waves (N and W) are clearly different,
with variations outside the range of the previous ones.

Few theoretical studies have been devoted to the existence of hydromagnetic
oscillations in rotating conducting fluids. In spherical geometry, oscillations have
been first investigated in thin and thick spherical shells (Hide 1966), but from a local
point of view where Coriolis forces depend on latitude (β-plane model). Two solutions
emerge from this model, within the assumption of large wavelengths: the first one
is a Rossby-type low-frequency inertial wave, whereas the second one is an MC-
(magneto-Coriolis) wave, resulting from the balance between Lorentz (magnetic) and
latitudinally varying Coriolis forces. However, for both types of waves, characteristic
frequencies are strongly dependent on latitude, a variation not observed in the present
measurements.

Malkus (1967) considered the full spherical geometry, a situation closer to our
experimental configuration. In this model, where a toroidal magnetic field with
a magnitude proportional to the distance to the rotation axis is considered, two
solutions again emerge from the wave equations within the frame of the rotating
fluid. In the case of large wavelengths (small m), solutions reduce to pure inertial-type
waves, and pure Alfvén-type MC-waves, but in the general case, both solutions are
mixed. The present results (figure 16) appear to be more consistent with inertial-type
waves, at least for the S-, N- and possibly H-type waves (linear dependence on ffluid ,
|fmode | values smaller than 2ffluid ). However, their typical frequencies imply a high
polar wavenumber n, which is not seen in our data using Doppler velocimetry. In
contrast, W-type waves cannot be pure inertial-type modes, since their frequencies
exceed this 2ffluid limit. Nevertheless, an Alfvén-type MC-wave solution cannot be
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Symbol Name Definition Value Unit

a Outer radius 0.21 m
b Inner radius 0.074 m
η Magnetic diffusivity 0.087 m2 × s−1

Pm Magnetic Prandtl number ν/η 7.5 × 10−6

B0 Imposed magnetic field 0.008 T
Rm Magnetic Reynolds number 2πab�f/η ∼20.0
Ha Hartman number aB0/

√
ρµνη ∼200.0

Btor induced magnetic field ∼RmB0 ∼0.2 T
vA Alfvén velocity Btor/

√
ρµ ∼5.0 m s−1

S Lundquist number avA/η ∼10.0

Table 1. A few parameters and indicative values of dimensionless numbers relevant for this
work; the differential rotation rate of the inner sphere has been taken as �f =20Hz; B0 is
given at the outer sphere equator; an order of magnitude for the induced toroidal magnetic
field Btor is also given.

excluded, but going further in the analysis would require us to know more precisely
the geometry and magnitude of the induced toroidal magnetic field.

Let us now compare our results with those obtained recently in other liquid
sodium experiments. In both Riga (Gailitis et al. 2003) and VKS (Monchaux et al.
2007) dynamo experiments, the possible role of hydromagnetic waves for dynamo
generation has not been invoked. In the Karlsruhe dynamo experiment, oscillations
have been observed on the power spectral density of the induced magnetic field, in a
way reminiscent of our results, but it was within a kinematic dynamo regime and the
geometry was far from the DTS one (Mueller et al. 2004). Their typical frequencies (in
the range 0.7 − 3 Hz) agree well with the reciprocal transit times of the Alfvén waves
along the characteristic structural length scale of their experimental device, namely
two diameters of a vortex generator. It has been suggested that these oscillations
reflect a resonant interaction of Alfvén waves with these structural length scales, with
the additional hypothesis of the existence of a mechanism able to sustain the waves,
which should otherwise be strongly damped in liquid sodium on length scales of
about 0.1 m. In contrast, in the DTS experiment, the waves cannot be pure Alfvén
waves because of the presence of the strong rotation. Moreover, Alfvén waves should
be expected to be the fastest in the vicinity of the singular point (ffluid ∼ 0) where
the induced meridional magnetic field exhibits a strong peak, whereas our waves
show vanishing frequencies. Concerning the lifetime of the waves (a few seconds), the
Lundquist number S has to be considered, since a condition for Alfvén waves (or any
waves linked to the induced magnetic field) to be detected is S � 1 (Roberts 1967).
This parameter characterizes the ratio between the ohmic damping time scale and
the typical period of the wave. In DTS, S can reach a value as high as ∼10, a value
rather large for an experimental device (see table 1), leading to characteristic time
scales of a few seconds for waves with frequencies of about 10 Hz.

Much closer to our configuration is another spherical Couette flow experiment
where instabilities have been observed from magnetic measurements outside the fluid,
and interpreted as magnetorotational (MRI) instabilities (Sisan et al. 2004). There,
dominant m =1 oscillations have been detected, with characteristic frequencies around
30–50 % of the rotating rate of the fluid (the outer sphere was at rest). Moreover,
they have been identified in a limited domain of the possible values of homogeneous
external magnetic field and differential rotation strengths. In our data, we did not
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observe such a phase diagram as a function of the forcing, although our characteristic
frequencies are similar. A different configuration has been also investigated, with two
co-rotating impellers instead of a rotating inner sphere, but with the same spherical
outer sphere and the same homogeneous magnetic field, parallel to the rotation
axis (Sisan et al. 2003). Instabilities (only m =1 and 2) were also observed for certain
ranges of applied magnetic field. These oscillations have been interpreted as precessing
columnar vortices aligned with the magnetic field. Their frequencies are higher than
the MRI frequencies quoted above, and closer to our typical values. However, the
absence of correlation between different m components in our results is not in favour
of the presence of coherent vortices in DTS.

Kelley et al. (2007) investigated the same spherical Couette flow geometry, with two
rotating concentric spheres larger than in the above experiment, and again a constant
imposed magnetic field parallel to the rotation axis. The obtained spectrograms
exhibit some similarities with our results. In particular, m =1, 2 and 3 oscillating
structures have been identified in their induced magnetic field data. Based on an
array of 21 meridional Hall probes mounted in the non-rotating frame, a full map
of the structure of these patterns could be built. From an analysis of their geometry
and frequency, they have been interpreted as being inertial modes excited by strong
differential rotation at the cylindrical surface tangent to the inner sphere. Broader,
more diffuse structures were also visible on their spectrograms, in a way reminiscent
of our S-type waves. However, the dependence of the observed frequencies on the
differential rotation and on azimuthal wavenumber m generally differs from the
variations shown in the present work (see figure 17). The inertial waves identified by
Kelley et al. (2007) have been associated with high-power bands, i.e. narrow, intense
lines in their spectrograms, similar to our N-type waves. We observed the latter only
for f =0, never for f �= 0, where only broad structures exist. A question is whether
the different geometry of the imposed magnetic field is sufficient to explain these
different results. Note also that the differential rotation does not play an important
role in the Maryland experiment (Kelley et al. 2007), since rotation is almost uniform
outside the tangent cylinder. To summarize, while some qualitative features of both
Couette flow experiments are similar, a quantitative agreement is not achieved.

The present observations might be related to temporal variations in the Earth’s
magnetic field that have been analysed recently. Constructing time–longitude diagrams
of the magnetic field at the core surface – after removing steady and axisymmetric
components – for different latitudes and over the past 400 years, Finlay & Jackson
(2003) pinpoint westward-moving structures with preferred azimuthal wavenumbers,
depending on latitude and ranging from m =8 at 20 ◦N to m =5 at the equator and
to lower wavenumbers at 40 ◦S. On the other hand, our observations have no obvious
counterparts in numerical simulations of the Earth’s dynamo. This can be attributed
to a pervasive influence of viscous forces in presently available numerical solutions. It
has been argued that decreasing the Prandtl number – and thus the magnetic Prandtl
number – makes non-axisymmetric and fluctuating components of the magnetic field
predominant (Simitev & Busse 2005).

In conclusion, several types of magneto-inertial waves have been evidenced in our
rapidly rotating spherical Couette flow experiment DTS, all retrograde relative to the
sodium flow. They constitute the major part of the fluctuations which thus appear to
be ‘quantized’ around preferential frequencies rather than distributed continuously.
Their main characteristics have been determined (dependence on the forcing, selection
rules for their azimuthal number, dispersion relations for each type). Their lifetime
has been found to be consistent with the order of magnitude of the Lundquist
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number in our experiment. Concerning the triggering mechanism, no definite answer
has emerged from our results. A process involving high-shear regions due to strong
differential rotation seems plausible, since the waves are inhibited for a weak forcing.
A clear identification of the nature of waves is not available at the present time.
The experimental characteristics of DTS are far from the conditions required for
producing pure inertial waves: strong shear, large magnetic field, strong magnetic
field gradient leading to strong spatial variations of Lorentz forces. Conversely,
conditions for obtaining pure Alfvén waves are not fulfilled, because of the strong
rotation. In DTS, all the characteristic times (inertial, diffusive, Alfvénic) are of same
order of magnitude, so that the different terms in the wave equations have to be
considered all together. The proximity of all these characteristic times is a strong
argument for magneto-inertial waves where all the physical ingredients (rotation,
shear, magnetic field) are important. Therefore, the nature of the observed waves can
be clarified only with numerical investigations, taking into account realistic physical
parameters, velocity shear and flow-induced magnetic field. In the prospect of future
liquid-metal dynamo experiments, we anticipate that the waves identified in this work
will be prominent features. Larger experiments with possibly larger self-generated
magnetic fields will produce larger Lundquist numbers and the conditions for the
existence of magneto-inertial waves will be met. Similarly, future numerical models
of the geodynamo with lower magnetic diffusivity should contain this type of wave:
they are old theoretical predictions and we now have some experimental evidence of
their existence.
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