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Abstract: The Cretaceous marine sedimentary record is characterized by time intervals rich in organic matter correlating with
positive carbon isotope excursions, often called oceanic anoxic events. TheWeissert Event corresponds to the first such event in
the Cretaceous during the Valanginian stage. The associated palaeoenvironmental perturbations, which include increasing
marine surface water primary productivity, are hypothesized to have been triggered by volcanic activity from large igneous
provinces, and the source of nutrients is not well constrained (continental runoff v. oceanic upwelling). We present isotope
ratios of Pb, Sr and Nd, together with concentrations of major and trace elements, for sediments from the central Moroccan
margin to test these hypotheses.We demonstrate that the nutrient input was dominated by continental weathering. The source of
sedimentary material remained stable during the Valanginian interval and originated from an old source, probably the African
Sahara region. The radiogenic isotope signatures do not show a significant contribution of volcanic products from any known
Valanginian large igneous province to the geochemical budget of sediments deposited on the central Moroccan margin.
Although this does not preclude an impact of volcanic activity on the composition of seawater, it demonstrates that the erupted
volumes were not sufficient to affect the deposited sediments.

Supplementary material: The Supplementary Table contains three sheets: (1) Central Moroccan Margin, the analytical data
generated and analysed during this study; (2) Fig. 8 data, large igneous provinces, the data of known Valanginian large igneous
provinces used for comparison; and (3) Fig. 9 and S5 data, source areas, the data of potential surrounding source areas used for
comparison, available at https://doi.org/10.6084/m9.figshare.c.6333040.
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The Cretaceous marine sedimentary record is characterized by
several positive carbon isotope excursions (CIEs) corresponding to
perturbations in the global carbon cycle (Scholle and Arthur 1980;
Weissert et al. 1998). These are mainly explained by enhanced
marine and terrestrial primary productivity and/or the enhanced
preservation of organic matter (Scholle and Arthur 1980; Weissert
1989; Kump and Arthur 1999). Positive CIEs are often associated
with records of widespread organic-rich oceanic sediments referred
to as oceanic anoxic events (OAEs; Schlanger and Jenkyns 1976;
Scholle and Arthur 1980). The Valanginian stage (137.7–132.6 Ma;
Gale et al. 2020) records the first positive CIE of the Cretaceous and
is named the Weissert OAE (Lini et al. 1992; Weissert et al. 1998;
Erba et al. 2004). However, its expression as an OAE is doubted due
to the absence of significant and widespread organic-rich layers
(Westermann et al. 2010; Kujau et al. 2012). The most significant
organic-rich layers in the Tethys Realm are the centimetre-scale
Barrande layers (1.9–3.7% total organic carbon) observed prior to
the Valanginian positive CIE in the Vocontian basin (SE France)
(Reboulet et al. 2003).

The positive CIE corresponding to theWeissert Event is observed
in a wide range of geographical locations, such as the Tethys,
Atlantic, Pacific and Boreal realms and the southern hemisphere
(Hennig et al. 1999; Bartolini 2003; Price and Mutterlose 2004;

Sprovieri et al. 2006; McArthur et al. 2007; Aguirre-Urreta et al.
2008; Bornemann and Mutterlose 2008; Charbonnier et al. 2013;
Price et al. 2018). Following Martinez et al. (2015), the onset of the
Valanginian CIE is recorded at 135.22 ± 1.0 Ma and is characterized
by three phases: (1) a rapid increase in δ13Ccarb lasting 0.60 myr; (2)
stable δ13Ccarb values with a duration of 1.48 myr; and (3) a smooth
decrease in δ13Ccarb lasting 3.77 myr. This CIE is recorded in
marine carbonates and organic matter (Lini et al. 1992; Channell
et al. 1993; Gréselle et al. 2011; Aguado et al. 2018) and in
terrestrial fossil plants (Gröcke et al. 2005), implying a perturbation
in both the oceanic and atmospheric carbon reservoirs.

The Weissert Event is associated with a warm and humid climate
(Lini et al. 1992; Charbonnier et al. 2020), enhanced marine
primary productivity (Bersezio et al. 2002; Bartolini 2003; Erba and
Tremolada 2004; Duchamp-Alphonse et al. 2007; Bornemann and
Mutterlose 2008;Mattioli et al. 2014) and a biocalcification crisis in
platform and pelagic settings (Channell et al. 1993; Weissert et al.
1998; Wortmann and Weissert 2000; Erba and Tremolada 2004;
Föllmi et al. 2006). Two main hypotheses explain the eutrophica-
tion (i.e. nutrient input) of the marine environment in proximal and
distal marine settings. Intensification of the hydrological cycle is
suggested to cause higher detrital and nutrient input in proximal
settings close to fluvial influxes (Lini et al. 1992; Jenkyns 2003;
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Erba et al. 2004). By contrast, nutrient input in pelagic settings is
often explained by the introduction of nutrients from oceanic
upwelling (Arthur et al. 1990; Weissert et al. 1998; Jenkyns 2010;
Föllmi 2012). Such proposed hypotheses for the fertilization of the
ocean need to be examined for the Weissert Event.

The triggering conditions causing the environmental perturba-
tions of the Weissert Event are tentatively linked with extensive
volcanism from the Paraná–Etendeka large igneous province (LIP;
Weissert et al. 1998; Erba et al. 2004; Charbonnier et al. 2017) or
the Comei–Bunbury LIP (Zhu et al. 2009). The radiometric ages of
basalts from these LIPs cluster around 135.5–126 Ma (Liu et al.
2015; Almeida et al. 2018; Baksi 2018; Rocha et al. 2020; Bacha
et al. 2022), probably post-dating the onset of the Valanginian
positive CIE (135.22 ± 1.0 Ma; Martinez et al. 2015). Previous
studies used Pb isotopes from the Ocean Drilling Program Leg 185
Hole 1149B (western Pacific) to demonstrate a link between the
Weissert Event and the Paraná–Etendeka LIP (Chavagnac et al.
2008; Peate 2009). However, constraints provided by Sr and Nd
isotopes are not necessarily consistent with such an interpretation
and the number of Valanginian samples showing a Pb isotopic shift
is very low.

We report here the major and trace element concentrations and
radiogenic isotope ratios of Pb, Sr and Nd in Valanginian carbonate
sediments from two stratigraphic successions on the central
Moroccan margin. Comparing data obtained for sediments from
an onshore section (Zalidou; the Essaouira–Agadir Basin) and an
offshore Deep Sea Drilling Project succession (DSDP Leg 50 Hole
416A, east Atlantic) allowed an investigation of the geochemical
similarities and differences between a proximal and a distal site on
the same margin. At both sites, the temporal geochemical variations
are constrained by an accurate chronostratigraphic framework,
allowing us to establish whether changes occurred before, during or
after the Weissert Event. Ultimately, the aim of this study was (1) to
determine whether the source of nutrients (i.e. eutrophication) was

continental runoff, oceanic upwelling, or both, and (2) to search for
a volcanic contribution in the sediments, a feature that would
support a volcanic origin for the Weissert Event.

Geological setting

The Essaouira–Agadir Basin faces the eastern Atlantic margin and
is located in the western High Atlas of Morocco (30° 30′–31° 05′
N, 9° 55′–9° 20′W) (Fig. 1). The Essaouira–Agadir Basin extends
offshore until the western limit of the continental margin and
constitutes part of the present day Atlantic passive margin (Frizon
de Lamotte et al. 2008). Consequently, the geological evolution of
the passive margin controlled that of the basin itself (Ellouz et al.
2003). Post-rift sedimentation, along with thermal subsidence,
started in the mid-Jurassic and a eustatic transgression gave way to
extended marine sedimentation during the Early Cretaceous
(Berriasian–early Hauterivian; Piqué et al. 1998; Hafid et al.
2008; Frizon de Lamotte et al. 2009). During the Early
Cretaceous, the basin corresponded to a temperate platform on
the south Tethyan margin between palaeolatitudes c. 15° N and c.
22° N (Fig. 2).

Sedimentary rocks of Valanginian age (137.7–132.6 Ma) were
sampled from two different geological successions on the central
Moroccan margin, one onshore and proximal (the Zalidou section)
and the other offshore and distal (DSDP Hole 416A) (Fig. S1). Both
geological successions have a well-constrained biostratigraphy
(ammonites for the onshore succession, and calcareous nannofossils
for both successions) and chemostratigraphy (carbon isotopes),
allowing the identification of the Weissert Event (Reboulet et al.
2022; Shmeit et al. 2022). The combination of these two
successions allowed an investigation of how the geochemical
signature in a proximal setting close to fluvial discharge compares
with that in a distal setting close to possible oceanic upwelling
(Price et al. 1995; Poulsen et al. 1998).

Fig. 1. Location of the study area in SW Morocco. (a) Location of the central Moroccan margin, including the Essaouira–Agadir Basin and DSDP Hole
416A (black star, not to scale). (b) Geological sketch map, including the location of the Zalidou section (black star). Source: modified from Ouajhain et al.
(2009).
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Zalidou section

This section is located onshore c. 100 km north of Agadir city
(30° 54′ 23″ N; 9° 39′ 48″ W) (Fig. 1b). The rocks of
Valanginian age are particularly well exposed and the lithostrati-
graphy and biostratigraphy (ammonites and calcareous nanno-
fossils) have been presented by Reboulet et al. (2022) (Fig. S2).
Briefly, the section is dated from the late Berriasian (older than
137.7 Ma, Gale et al. 2020) to earliest Hauterivian (younger than
132.6 Ma, Gale et al. 2020) and consists of an alternation of
limestone and marlstone during the Valanginian stage (Fig. S2).
The lower Valanginian is dominated by marlstone and thin
limestone beds, whereas sandy deposits (sandy marlstone, sandy
limestone and calcareous sandstone) become more common in
the upper Valanginian. Traces of pyrite are observed, suggesting
that reducing conditions occurred during the lower Valanginian;
however, no organic-rich facies was detected. The Weissert Event
interval is identified from the lower part of the Karakaschiceras
inostranzewi to the upper part of the Neocomites peregrinus
ammonite standard zones (upper NK3A to upper NK3B and
upper CC3b to upper CC4a calcareous nannofossil subzones)
(Fig. S2) (Reboulet et al. 2022; Shmeit et al. 2022).

DSDP Leg 50 Hole 416A drill core

The offshore succession was drilled c. 238 km NW of Zalidou
(32° 50′ 10.7″ N; 10° 48′ 03.6″ W) at a water depth of 4201 m in
the east Atlantic Ocean (Lancelot et al. 1980) (Fig. S1). The
Valanginian interval is identified using calcareous nannofossils
between 1542 and 1119 m b.s.f. (metres below seafloor; cores
49–9) (Čepek et al. 1980; Shmeit et al. 2022), but the uppermost
Valanginian is missing (Shmeit et al. 2022). The lithology is
described in Lancelot et al. (1980). Briefly, lithological unit VII
(1624–1430 m b.s.f.; Fig. S2) is characterized by alternations of
terrigenous and carbonate-rich turbidite cycles. The terrigenous
cycles consist of fine-grained sandstone, siltstone and mudstone,
whereas the carbonate-rich cycles consist of quartz-rich
calcarenite, micritic limestone, siltstone and marlstone. The
overlying lithological unit VI (1430–880 m b.s.f.) is characterized
by distal terrigenous turbidites and differs from unit VII by the
absence of micritic limestone. The cycles in lithological unit VI
consist of fine sandstone, siltstone and silty mudstone, along with
calcareous mudstone and marlstone. The Weissert Event interval
is identified from the upper NK3A to NK3B and the CC3b to
CC4a calcareous nannofossil subzones (from 1303 to
1122 m b.s.f.; Fig. S2), but part of the event is probably
missing (Shmeit et al. 2022).

Materials and methods

We selected 20 samples from the Valanginian in the Zalidou section
and 48 from DSDP Hole 416A (Fig. S2). The Zalidou samples
correspond to marlstone and argillaceous limestone. For Hole
416A, the samples were collected in the most fine-grained parts of
the turbiditic cycles, corresponding to marlstone and mudstone.
Such fine-grained lithologies were selected to minimize the
geochemical changes due to different rock types that would
potentially overprint those due to changes in source/sedimentation.
The Zalidou samples have a CaCO3 content of c. 40% and Hole
416A samples have a CaCO3 content between 8 and 50% (Shmeit
et al. 2022; Supplementary Table). As a result of the scarcity of
samples available in the upper Valanginian of Hole 416A, we chose
samples with the highest possible CaCO3 content, although this was
low (<10%). All samples were finely crushed in an agate mortar for
subsequent elemental and isotopic analyses.

Major and trace elements

Major elements and the loss on ignition were measured by the
CNRS Service d’Analyse des Roches et des Minéraux in Nancy,
France. The rock samples were digested using alkali fusion and
major element analyses were carried out by flow-injection
inductively coupled plasma mass spectrometry (ICP-MS) following
the methods of Carignan et al. (2001). Accuracy was assessed based
on international reference materials (BR, AN-G, UB-N, DR-N and
GH; Carignan et al. 2001). Complete duplicate analysis of one of
our samples showed a reproducibility better than 5%
(Supplementary Table). The chemical index of alteration (CIA)
was calculated using the molecular proportions of Al, Ca, Na and K
oxides while also correcting the molar proportion of CaO for
phosphate and carbonate. This correction is needed for carbonate
sediments to restrict the molar proportion of CaO to that derived
from silicate minerals (see Bomou et al. 2013 and references cited
therein).

Trace element concentrations were measured at the Institut de
Physique du Globe de Paris (IPGP) in Paris, France. The methods
used were similar to those described in Chauvel et al. (2011), but
with slight modifications. About 100 mg of each sample was
dissolved in concentrated HNO3 : HF using Parr bombs maintained
at 150°C for more than two weeks. The only exceptions were the
three basalt reference materials (BHVO-2, BR-24 and BE-N),
which were digested in Savillex Teflon beakers because these
reference materials do not contain refractory minerals. After
dissolution, the samples were diluted using 0.5 M HNO3 plus
trace amounts of HF to reach a dilution factor of 10 000. A 5 ppb

Fig. 2. Palaeogeographical map of the
Valanginian (c. 135 Ma) showing the
approximate location of the central
Moroccan margin (red star). The red areas
correspond to the approximate locations of
the Valanginian large igneous provinces
(LIPs). Source: palaeomap construction
from Scotese (2016).
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indium standard was added to all samples prior to measurement on
an Agilent 8900 inductively coupled plasma mass spectrometer.
Apart from the lowmass of 7Li, 9Be and 11B, all other elements were
measured in collision mode with a 5 mL min−1 He flux in the
collision reaction cell to remove polyatomic interferences. The
international reference material BE-N was used to calibrate the
signal (external calibration) and was run every five to six samples
during the entire sequence. The procedural blanks were negligible.
The accuracy of our data as evaluated from analyses of reference
rock materials (BHVO-2 and BR-24) was generally better than 5%
(Supplementary Table). The precision was assessed from complete
duplicate analyses of three samples that reproduced within 5% for
most elements (Supplementary Table).

Radiogenic isotopes (Pb, Sr and Nd)

Chemical separations and isotopic measurements were carried out at
the IPGP. The methods generally followed those described in
Chauvel et al. (2011) after the dissolution of c. 50 mg of rock
powder in Savillex Teflon beakers at 125°C for ten days. Procedural
blanks (n = 12) were low (Pb < 54 pg, Sr < 100 pg and Nd < 86 pg),
but there were two exceptions: one Sr blank at 770 pg and one Nd
blank at 1800 pg. These two values remain negligible relative to the
quantity of element in the samples and correspond to 0.016 and
1.05% of the mass isolated from the least concentrated samples of Sr
and Nd, respectively. The Pb, Sr and Nd isotopic ratios were
measured on a Thermo Scientific Neptune Plus multi-collector
inductively coupled plasma mass spectrometer equipped with an
Apex IR introductory system. The cones used for Pb and Sr were a
jet sampler with an H skimmer and for Nd a jet sampler with an X
skimmer. The sample flow-rate was 50 µL min−1; the sample
measurement time, including the wash and uptake times, was
10 min per sample. For Nd, N2 gas was introduced into the Apex IR
system at 4 bar pressure to reduce the oxides of Nd, which can form
in the plasma and interfere with the signal.

The measured Sr and Nd isotope ratios were normalized to
88Sr/86Sr = 0.1194 and 146Nd/144Nd = 0.7219, respectively
(O’Nions et al. 1979). For Pb measurements, the samples were
spiked with Tl (5 ppb) and normalized to 205Tl/203Tl 2.38714
(White et al. 2000). International reference materials (NBS 981 Pb,
NBS 987 Sr and AMES Rennes Nd) were measured every four
samples and the average isotopic ratio of the session was used to
correct for the bias relative to values published by Jochum et al.
(2011) for Pb, by Thirlwall (1991) for Sr and by Chauvel et al.
(2011) for Nd. Isotopic ratios measured on complete duplicate
analyses of five samples and two dissolutions of the AGV-2
reference material showed that both the reproducibility and the
accuracy were excellent (Supplementary Table).

The initial isotope ratios of Pb, Sr and Nd were calculated at
135 Ma to correct for radiogenic decay (equation 1; Supplementary
Table).

D

D0

� �
present�day

¼ D

D0

� �
initial

þ P

D0

� �
initial

(elt � 1) (1)

where D is the radiogenic daughter isotope, D′ is the stable isotope
of the same element, P is the radioactive parent isotope, λ is the
decay constant and t is the time in years.

Results

Major elements

The major element contents of the Zalidou and Hole 416A samples
are reported in the Supplementary Table. The average Al2O3 content
is higher in the Hole 416A samples (15 ± 7 wt%) than in the Zalidou
samples (9 ± 5 wt%) (Fig. 3). The errors correspond to the

variability between samples, calculated as two times the standard
deviation of the mean. By contrast, the average SiO2 content is
slightly higher in the Zalidou samples (47 ± 15 wt%) than in the
Hole 416A samples (43 ± 17 wt%). The CaO content is comparable
between both successions, but shows a larger variation in the Hole
416A samples (average 11 ± 15 wt%) than in the Zalidou samples
(average 17 ± 10 wt%). The studied sediments from Zalidou lie in
the middle of a triangular field defined by three end-members of
oceanic sediment composition (i.e. silica-rich, clay and carbonate),
whereas most of the Hole 416A samples define a trend between clay
and carbonate (Fig. 3).

Stratigraphic variations in the SiO2 and CaO contents (wt%) at
Zalidou show a stable trend during the entire studied interval
(Fig. 4). The Al2O3 content shows possibly higher values (12 ± 6 wt
%) in the upper part of the Weissert Event between 25.05 and
32.8 m compared with the rest of the succession (9 ± 5 wt%)
(Fig. 4). Also, the calculated CIA is slightly higher (74 ± 4) in the
same interval compared with the rest of the succession (68 ± 6). At
Hole 416A, the SiO2 content is steady throughout the studied
interval (Fig. 4). The Al2O3 content increases from 11 ± 2 wt%
before the Weissert Event (NK3A and upper CC3a to lower CC3b
nannofossil subzones) to 16 ± 7 wt% during the Weissert Event
(upper NK3A to NK3B and upper CC3b to CC4a nannofossil
subzones). The CaO content is low (7 ± 8 wt%) within the Weissert
Event between 1280.7 and 1187.9 m b.s.f. (upper NK3A to NK3B
and upper CC3b to CC4a nannofossil subzones) compared with the
rest of the succession (19 ± 15 wt%) (Fig. 4). The CIA does not vary
significantly.

Fig. 3. (a) SiO2 and (b) CaO v. Al2O3 contents (wt%) in the Zalidou and
Hole 416A samples plotted before, during and after the Weissert Event.
Data points are also shown from Plank et al. (2007) for Site 1149, Plank
and Ludden (1992) for Site 765 and Carpentier et al. (2009) for Sites 144
and 543.
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Trace elements

Figure 5 shows the concentrations of Al2O3 v. selected trace
elements, representing different oceanic sediment end-members, in
the Zalidou and Hole 416A samples. Lithium, which is found in
fine-grained clays, is higher in the Hole 416A samples (average 87
± 42 ppm) than in the Zalidou samples (average 46 ± 37 ppm)
(Fig. 5a). Similarly, this applies to other elements contained in clays
(e.g. Cs and Rb; Supplementary Table). The rare earth element
contents, the budget of which is mainly controlled by the abundance
of clays, are slightly higher in the Hole 416A samples than in the
Zalidou samples. For example, the concentration of Nd is higher in
the Hole 416A samples (average 33 ± 17 ppm) than in the Zalidou
samples (average 25 ± 2 ppm) (Fig. 5b). Strontium, which sub-
stitutes for Ca in CaCO3 minerals, is higher and more variable in the

Hole 416A samples (average 407 ± 239 ppm) than in the Zalidou
samples (average 302 ± 215 ppm) (Fig. 5c). The high field strength
elements (HFSE), mainly carried by heavy minerals present in the
coarse-grained detrital sands, are significantly higher in the Zalidou
samples than in the Hole 416A samples (Supplementary Table). For
example, the Zr concentration is on average 302 ± 217 ppm in the
Zalidou samples, but is lower (137 ± 63 ppm) in the Hole 416A
samples (Fig. 5d).

The stratigraphic variations in the trace elements contained in
clays and coarser grained detrital materials (Li and Nd) are stable
throughout the whole studied interval at Zalidou (Fig. 4). Strontium,
possibly representing a carbonate component, is also stable. The Zr
concentration is consistently low (178 ± 87 ppm) in the upper part
of the Weissert Event between 25.05 and 32.8 m compared with the
rest of the succession (346 ± 176 ppm) (Fig. 4). This corresponds to

Fig. 4. Stratigraphic variations of selected major and trace elements in the Zalidou and Hole 416A samples, and of δ13Ccarb values from Shmeit et al.
(2022). The coloured interval (green) corresponds to the Weissert Event following Shmeit et al. (2022). For more information on the litho- and
biostratigraphy, see Fig. S2 caption. CIA, chemical index of alteration, defined as the molar ratio of [Al2O3/(Al2O3 + CaO* + Na2O + K2O)] × 100, with
CaO* representing CaO in silicate minerals only.
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the time interval when Al2O3 contents are higher (Olcostephanus
nicklesi ammonite Subzone, NK3B and CC4a nannofossil
subzones; Fig. 4). At Hole 416A, the concentration of Li increases
from 61 ± 7 ppm before the Weissert Event to 90 ± 40 ppm after the
event (Fig. 4); this corresponds to the time interval in which the
Al2O3 content also increases (upper NK3A to NK3B and upper
CC3b to CC4a nannofossil subzones). The concentration of Nd is
steady during the studied interval, although it is variable during the
Weissert Event (Fig. 4). The concentrations of Sr and Zr are steady
on average during the studied interval.

Radiogenic isotopes

The initial (i) and measured (m) isotopic ratios show similar
stratigraphic trends, with the initial ratios consistently slightly
lower than the measured ratios (Fig. 6). In the Zalidou samples, the
Pb isotopic ratios are stable during the entire Valanginian stage
(206Pb/204Pb(i) average 18.61 ± 0.16 and 208Pb/204Pb(i) 38.68 ±
0.26, 2σ), except for the 207Pb/204Pb(i) ratio, which potentially
increases slightly from 15.678 ± 0.004 (2σ) before the Weissert
Event to 15.683 ± 0.011 (2σ) during the event and to 15.685 ±
0.006 (2σ) after it. The Sr isotope ratios are also stable throughout
the studied interval (average 0.710 ± 0.001, 2σ). However, the
143Nd/144Nd(i) ratios are less variable (0.51190 ± 0.00002, 2σ)
before the Weissert Event and in its lower part than in the rest of the
succession (0.51190 ± 0.00004, 2σ) (Fig. 6). Two outliers have
different Pb initial isotope ratios in the Zalidou section (sample Za
51b at 28.95 m and sample Za 56a at 40.6 m; Fig. 6). Sample Za
51b has a low 206Pb/204Pb(i) ratio and a high

208Pb/204Pb(i) ratio due
to its high U/Pb and low Th/Pb ratios (Supplementary Table).
Sample Za 56a has a low 208Pb/204Pb(i) ratio because of its high Th/
Pb ratio. We suspect that these anomalous ratios are due to recent
events and are unrelated to the original contents, resulting in an
overcorrection with age.

In the Hole 416A samples, the Pb isotopic ratios are steady during
the Valanginian stage (206Pb/204Pb(i) average 18.68 ± 0.15;
207Pb/204Pb(i) 15.69 ± 0.02; 208Pb/204Pb(i) 38.73 ± 0.15, 2σ). The
Sr isotopic ratios are highly variable (average 0.7106 ± 0.0027, 2σ)
and do not show any significant trend. The Nd isotopic ratios are
moderately constant (average 0.51190 ± 0.00007, 2σ). The
143Nd/144Nd(i) ratios show minor variations (0.51187 ± 0.00003,
2σ) during the Weissert Event (between 1263 and 1188 m b.s.f.;
upper NK3A to lower NK3B and upper CC3b nannofossil

subzones) than during the rest of the studied time interval
(0.51191 ± 0.00007, 2σ).

The 206Pb/204Pb(i) and
207Pb/204Pb(i) ratios are similar at the two

sites (Fig. 7a). However, the 208Pb/204Pb(i) ratios are slightly higher
in the Hole 416A samples than in the Zalidou samples, such that the
majority of the Hole 416A samples have 208Pb/204Pb(i) > 38.75,
whereas the Zalidou samples have ratios <38.75 (Fig. 7b). The
87Sr/86Sr(i) isotopic ratios are on average slightly higher and more
variable in the Hole 416A samples than in the Zalidou samples;
some samples from Hole 416A have 87Sr/86Sr(i) > 0.7106 (Fig. 7c).
By contrast, all samples from Zalidou have ratios <0.7106. The
143Nd/144Nd(i) ratios are similar in both successions (Fig. 7d).

Discussion

The positive CIE corresponding to the Weissert Event (Valanginian
stage, 137.7–132.6 Ma) is mainly interpreted as the consequence of
enhanced marine primary productivity (Lini et al. 1992; Bartolini
2003; Erba et al. 2004). Multiple micropalaeontological (e.g.
Bersezio et al. 2002; Duchamp-Alphonse et al. 2007; Bornemann
and Mutterlose 2008; Mattioli et al. 2014) and geochemical (e.g.
Plank et al. 2000; Bartolini 2003; Morales et al. 2015) studies
support increasing marine primary productivity and fertility during
the Valanginian stage.

An increase in marine primary productivity requires enhanced
nutrification and there are two main hypotheses: higher continental
weathering rates and/or intensified oceanic upwelling (Lini et al.
1992; Föllmi et al. 1994; Erba et al. 2004). These two processes
would have different impacts in proximal and distal marine settings.
Comparing the time evolution of the two types of settings could
therefore help us to understand the cause(s) of increasing
productivity. Enhanced continental weathering and hydrolysing
conditions during the Valanginian stage are demonstrated by the
clay mineral assemblages (Westermann et al. 2013; Charbonnier
et al. 2020), spore–pollen ratios (Kujau et al. 2013) and sediment
enrichments in continentally sourced elements (Al, Mn, Fe and P;
Van De Schootbrugge et al. 2003; Kuhn et al. 2005; Duchamp-
Alphonse et al. 2007; Morales et al. 2015).

Continental weathering ultimately increases the nutrient input in
proximal marine settings close to areas of fluvial discharge. A
substantial input of nutrients from the continent would therefore
result in a crustal geochemical signature in the central Moroccan
margin sediments, particularly in the proximal setting (Zalidou),

Fig. 5. Comparison of trace elements
between the Zalidou and Hole 416A
samples. Data points are shown from Plank
et al. (2007) for Site 1149, Plank and
Ludden (1992) for Site 765 and Carpentier
et al. (2009) for Sites 144 and 543.
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which is closer to inputs from rivers. By contrast, the upwelling of
nutrient-rich deep waters should increase nutrient levels in pelagic
settings (Bartolini 2003; Erba et al. 2004; Föllmi 2012). Existing
evidence includes abundance peaks in the radiolarian taxa

Pantanellium in the Tethys and Pacific realms (Jud 1994;
Bartolini 2003). The presence of steryl ethers in the Pacific Ocean
may be a biomarker of cool water, high seasonal productivity and/or
nutrient input by upwelling (Brassell 2009). A significant input of

Fig. 6. Stratigraphic variations in measured and initial isotope ratios of Pb, Sr and Nd in Zalidou and Hole 416A samples (see Supplementary Table). Error
bars on measured isotopic ratios are assessed from analytical measurements of the international reference materials. The coloured interval (green)
corresponds to the Weissert Event following Shmeit et al. (2022); see also caption of Fig. S2. Initial isotope ratios are calculated at 135 Ma using the decay
constants and the half-life of parent/daughter decay systems from Villa et al. (2015) for Rb–Sr, Jaffey et al. (1971) and Le Roux and Glendenin (1963) for
U–Th–Pb and Villa et al. (2020) for Sm–Nd.
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nutrients from upwelling on the central Moroccan margin should
enhance an oceanic crust signature in the sediments and should be
more pronounced in the distal setting (Hole 416A), which is closer
to possible oceanic upwelling.

Was there any geochemical change on the central
Moroccan margin during the Weissert Event?

In the proximal Zalidou section, the steady stratigraphic trends in
the selected major element contents (Al2O3, SiO2 and CaO)
support the view that continental weathering and the input of
detrital material, from both coarse- and fine-grained minerals, was
stable throughout the Valanginian stage (Fig. 4). The trace elements
associated with detrital and continental sources (e.g. Li and Nd)
also display a steady trend (Fig. 4), supporting an almost
continuous weathering and hydrolysis regime. However, the
consistently low concentrations of HFSE (i.e. Zr and Hf) in the
upper part of the Weissert Event (between 25.05 and 32.8 m, O.
nicklesi ammonite Subzone, NK3B and CC4a nannofossil
subzones; see Fig. 4 and Supplementary Table) suggest the low
deposition of coarse-grained clastics (i.e. quartz). This may be
related to the sandy marlstones (fine-grained lithology) of this
interval, which were deposited under conditions of sea-level rise
(maximal flooding; Reboulet et al. 2022). The calculated CIA is
generally steady, further supporting a constant rate of hydrolysis on
the continent. The slightly higher values at the same level at which
HFSE have low concentrations might reflect higher contents of
fine-grained material, such as aluminosilicates, related to the
deeper depositional setting. The unchanged Pb, Sr and Nd isotopic
ratios do not support any geochemical change during the
Valanginian stage (Fig. 6).

In the distal Hole 416A, the stable SiO2 content and CIA suggest,
respectively, a steady input of coarse-grained clastic material and a
constant rate of hydrolysis for the studied Valanginian interval
(Fig. 4). However, the increasing Al2O3 content suggests a higher
input of fine-grained detrital material within the Weissert Event
(from 1280.71 to 1187.94 m b.s.f., upper NK3A to NK3B and
upper CC3b to CC4a nannofossil subzones). A concomitant
reduction in carbonate deposition is also suggested by the
decreasing CaO content. Such changes are evident at the beginning

of theWeissert Event within lithological unit VI. In the lower part of
that unit, two calcareous and quartz-rich turbidite cycles are
recognized, whereas the cycles in its upper part are uniform and
grade from sandstone to marlstone and claystone (Lancelot et al.
1980). The level of this lithological change is not certain, occurs
gradually and was first recorded at c. 1299 m b.s.f. (core 22). In
addition, the increase in the Li concentration during the Weissert
Event (upper NK3A to NK3B and upper CC3b to CC4a nannofossil
subzones) complements the observation from the major elements
(Fig. 4) because the proportion of clays controls the Li content. The
input of continental and coarse-grained clastics was probably
steady, as observed from the uniform HFSE and rare earth element
contents (Fig. 4; Supplementary Table). The Pb, Sr and Nd isotopic
ratios do not show any significant change throughout the studied
Valanginian interval (Fig. 6); even if inter-sample variations in Sr
and Nd are observed, they are most probably related to the increase
in clay mineral deposition during the Weissert Event.

In summary, there is no significant change in the sediment
major and trace element concentrations on the central Moroccan
margin during the Valanginian stage. The few stratigraphic
variations in major and trace element concentrations are most
probably caused by variations in sediment lithology, with a higher
clay input and lower detrital quartz input during the upper part of
the Weissert Event in Zalidou and within the identified Weissert
Event interval in Hole 416A. Similarly, the radiogenic isotopes Pb,
Sr and Nd do not show any significant trend during the
Valanginian stage, suggesting no major change in the source
material during the event.

How do the sediments from proximal and distal sites
compare?

The distal Hole 416A shows a simple binary mixture of clay and
carbonate sediments. By contrast, the proximal Zalidou section
shows a more complex mixture of detrital deposits with a
continental origin (silica-rich and clay) and carbonates. This
complexity is illustrated by the distribution of the major elements
(Fig. 3). The Hole 416A sediments are relatively rich in Al-rich
components, such as fine-grained clays (i.e. aluminosilicates). The
Zalidou sediments are relatively rich in coarse-grained Si-rich

Fig. 7. Comparison of the initial (i)
isotope ratios at 135 Ma of Pb, Sr and Nd
between the Zalidou and Hole 416A
samples.
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components (i.e. quartz), as shown by the slightly higher SiO2

content. It is noteworthy that the analysed samples correspond to
fine-grained lithologies as we avoided sampling coarse-grained
sediments. The observed difference between sites (proximal v.
distal) is caused by the different depositional settings. Clays are
lightweight minerals and can travel further and accumulate in deeper
settings (e.g. Hole 416A). By contrast, coarse-grained clastic
minerals are heavy and accumulate in proximal settings close to the
output of rivers (e.g. Zalidou).

Differences in the concentrations of trace elements between the
Zalidou and Hole 416A samples also highlight their different
depositional settings. The higher concentrations of Li in the Hole
416A samples reflect the more significant proportion of clays
compared with the Zalidou samples (Fig. 5a) because Li is
concentrated in fine-grained minerals rather than coarse-grained
minerals (Sauzéat et al. 2015 and references cited therein). Lithium
could also reflect a higher proportion of authigenic clay minerals in
the Hole 416A samples rather than detrital clays (see Andrews et al.
2020 and references cited therein). The concentration of Nd is
marginally higher in the Hole 416A samples than in the Zalidou
samples, indicating that both successions record input from
continental detrital material. The high Zr concentrations in the
Zalidou samples compared with the Hole 416A samples (Fig. 5d)
are explained by its proximal depositional setting close to the fluvial
input of coarse clastic minerals. Zirconium, like other HFSE,
resides in heavy minerals such as zircon, minerals that are not
transported far in a basin and are deposited close to the continental
margin (Patchett et al. 1984). By contrast, fine-grained (lightweight)
clays deposited further away from the continent show deficiencies in
Zr and Hf.

The initial isotope ratios of Pb, Sr and Nd are comparable
between both studied successions, but with a few differences. The
slightly more radiogenic 208Pb/204Pb(i) and 87Sr/86Sr(i) ratios in
the Hole 416A samples than in the Zalidou samples can be
explained by a contribution from a source of more radiogenic
sediments (Fig. 7b, c). In summary, the geochemical differences
observed between the two studied successions relate mainly to their
depositional setting (proximal v. distal) and to the associated
chemical fractionation occurring during the transport of sediments.

Is there a volcanic input during the Weissert Event?

The environmental perturbations discussed in previous sections are
tentatively linked to extensive volcanism from the Paraná–Etendeka
LIP of South America–SWAfrica (Weissert et al. 1998; Erba et al.
2004) or the Comei–Bunbury LIP of SE Tibet–SWAustralia (Zhu
et al. 2009). Uncertainties related to age models (e.g. the scarcity of
data, uncertainty in age models and in the absolute age calibration)
hinder direct temporal correlation between these LIPs and the
Weissert Event (Charbonnier et al. 2017). The radiometric ages of
basalts from the Paraná–Etendeka LIP (135.5–126 Ma; e.g.
Thompson et al. 2001; Trumbull et al. 2004; Almeida et al. 2018;
Baksi 2018; Rocha et al. 2020; Bacha et al. 2022) and the Comei–
Bunbury LIP (134–123 Ma; e.g. Zhu et al. 2008, 2009; Liu et al.
2015) probably post-date the onset of the Valanginian positive CIE
(135.22 ± 1.0 Ma; Martinez et al. 2015). Moreover, Charbonnier
et al. (2017) observed Hg enrichments interpreted as volcanic in
origin in sediments at or near the onset of the Weissert Event from
the Central Tethys. Fesneau et al. (2009) observed an ochre-
coloured layer of lower Valanginian age in the Vocontian Basin
(France) enriched in trace elements with a specific magmatic
affinity (Zr, Ba, Th, Y, Hf, U, Pb, Nb and Ta). The layer was
interpreted as ‘bentonite’ of volcanic origin.

These studies cannot designate unambiguously if one or both of
the LIPs was involved in theWeissert Event. Chavagnac et al. (2008)
and Peate (2009) observed overlapping Pb isotopic compositions
from Hole 1149B and magmas from the Paraná–Etendeka LIP. The
majority of samples that show a Pb isotopic shift in the Hole 1149B
samples (upper lithological unit IV; cores 20R–16R) belong to
the Hauterivian stage (Lozar and Tremolada 2003) and the Nd/Sr
isotope ratios were not compared with the LIPs. Using a combination
of Pb, Sr and Nd isotopes should constrain the relationship between
either of these two LIPs and the Weissert Event. For example, a
volcanic contribution to the sediments is expected to cause a more
radiogenic Nd isotopic composition (i.e. radiogenic mantle source)
and less radiogenic Sr and Pb isotope ratios.

The Nd isotopic composition in both studied successions on the
centralMoroccanmargin does not increase to more radiogenic ratios
(Fig. 6). Figure 8 compares the initial isotope ratios (135 Ma) of Pb,

Fig. 8. Comparison of the initial isotope
ratios at 135 Ma in the central Moroccan
margin sediments with Early Cretaceous
large igneous provinces. References for
the isotope ratios of the large igneous
provinces (see also Supplementary Table):
Paraná basalts (Hawkesworth et al. 1986;
Peate and Hawkesworth 1996; Marques
et al. 1999, 2018; Peate et al. 1999;
Turner et al. 1999; Rocha-Júnior et al.
2013; Barreto et al. 2016; Rämö et al.
2016); Etendeka basalts (Ewart et al.
1998a, 2004a; Le Roex and Lanyon 1998;
Mingram et al. 2000; Thompson et al.
2001); Etendeka silicic sequences (Ewart
et al. 1998b, 2004b; Trumbull et al.
2004); Comei basalts (Zhu et al. 2008;
Liu et al. 2015); and Bunbury basalt and
silicic sequences (Ewart et al. 1992; Frey
et al. 1996; Allen et al. 1997; Direen
et al. 2017). LIP, large igneous province.
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Sr and Nd obtained on the central Moroccan margin sediments with
those published for the suggested Valanginian LIPs. The Pb and Sr
isotopic ratios of the sediments overlap with the higher ratios
reported for the Paraná–Etendeka LIP at 206Pb/204Pb(i) > 18.5,
207Pb/204Pb(i) > 15.66, 208Pb/204Pb(i) > 38.5 and 87Sr/86Sr(i) > 0.708.
However, the Nd isotopic ratios are lower in the central Moroccan
margin sediments (143Nd/144Nd(i) < 0.5120) than in any of the LIPs
(143Nd/144Nd(i) > 0.5120) shown in Figure 8d. This difference is a
strong argument against a significant input of volcanic material from
the LIPs to sediments on the central Moroccan margin during the
Valanginian stage.

Continental runoff v. upwelling causing eutrophication

Figure S3 shows the trace element patterns of the Zalidou and Hole
416A samples normalized to the upper continental crust (UCC)
values of Rudnick and Gao (2013). The studied successions show
trace element patterns similar to the UCC for the majority of
elements. This similarity suggests that the sediment trace element
budget is controlled by material with a continental origin. The few
element enrichments/depletions relative to the UCC are caused by
the chemical fractionation of elements during sediment transport
(see Fig. S3 caption). As a consequence, the trace element patterns
of the Hole 416A bulk sediment samples exclude the possibility of a
significant role for the input of nutrients from oceanic upwelling in
the composition of the deposits. The Hole 416A sediments have a
chemical signature primarily controlled by terrigenous input.
Indeed, the sedimentation rate in Hole 416A is high (65 m myr−1)
and the sediments are dominated by detrital material (Lancelot et al.
1980). Carpentier et al. (2013) showed that offshore settings close to
continental shelves have a chemical composition (signature) similar
to the nearby continental source areas. Alternatively, the oceanic
and atmospheric conditions during the Valanginian did not induce
significant upwelling on this part of the Moroccan margin.

Our new isotope results also support the view that upwelling did
not contribute significantly to the Hole 416A sediments. In
principle, strong upwelling should induce a juvenile oceanic crust
isotopic signature in the sediments. However, this is not the case at
Hole 416A. First, the Pb and Sr isotopic ratios of Hole 416A
sediments are very similar to those of the Zalidou proximal
sediments, supporting the interpretation that they were fed by the
same continental source (Fig. 7). Second, the average ɛNd values in
the two studied successions are identical (c. −12 ± 1;
Supplementary Table) and of continental origin, even lower than
the average UCC value (−10.3 ± 1.2, 1σ) reported by Chauvel et al.
(2014). These similar values further support a common continental
source for the Zalidou and Hole 416A sediments and undermine a
significant contribution to the sediments from upwelling.

What is the source of the central Moroccan margin
sediments?

The Pb, Sr and Nd isotopic compositions of the central Moroccan
margin sediments are dominated by continental material. It is
therefore worth comparing the isotopic composition of sediments to
what is known for the surrounding crustal areas exposed during the
Valanginian to establish the source area(s). Lead and Nd isotopes
are particularly useful in this respect because model ages can be
calculated for both isotopic systems. Such model ages do not
provide a precise measure of the age of the eroded material.
However, they estimate the average age of formation of the material
eroded from the continental crust. The slope defined by the central
Moroccan margin sediments in a 206Pb/204Pb(m) v.

207Pb/204Pb(m)

isotopic space (Fig. S4 and its caption) provides an average model
age of c. 1.1 Ga for the source of the sediments. By contrast, the Nd
isotopes provide a model age of c. 1.9 Ga when using the

parameters from Chauvel et al. (2008, 2014). Both isotopic
systems therefore suggest that the central Moroccan margin was
fed by sediments from an old and continental cratonic source. The
source of sediments did not change during the Valanginian stage, as
observed from the unchanged isotopic ratios of Pb, Sr and Nd
(Fig. 6).

The best approach to trace the origin of sediments deposited in the
basin is to compare the isotopic compositions of sediments and
potential sources in the area. We measured the Pb, Sr and Nd
isotopes in the sediments, but studies of potential sources reporting
data for the combined three isotopic systems are limited. We
therefore considered only the Nd and Sr isotopes in Figure 9
because they are the only two isotopic systems for which there is an
extensive database. Because most published data on the potential
sources do not report the parent–daughter isotope ratios, we
calculated their initial isotope ratios at 135 Ma (Supplementary
Table) using the recommended Sm/Nd and Rb/Sr ratios for the UCC
(Rudnick and Gao 2013). Given that these terranes are old crustal
materials, this should not be a problem.

In the Sr–Nd space of Figure 9, the central Moroccan margin
sediments overlap with the African dust sources (Sahara region;
Fig. S5), both having 143Nd/144Nd(i) ratios clustering between
0.5118 and 0.5120. The Sr isotopic composition of the African dust
sources is highly variable and generally more radiogenic than that of
the central Moroccan margin sediments (Fig. 9), but this is probably
because the fine size of the dust particles means that they are
naturally more concentrated in Rb-rich clays, which consequently
have more radiogenic Sr isotope ratios. The studied sediments lie in
between two additional end-members: (1) the West African Craton
(2.1 Ga) (Fig. S5); and (2) the surrounding Moroccan massifs, such
as the NE Meseta (344 Ma), Anti-Atlas (560–543 Ma) and the
central Jebilet (240 Ma) massifs (Fig. 9 and Fig. S5). The
contribution of sediments via fluvial input from both of these
‘cratonic’ end-members is highly plausible considering their
geographical proximity to the studied successions. It is noteworthy
that the Jebilet massif and the Anti-Atlas are closer to the Zalidou
section (see Fig. 1a and Fig. S5), whereas the Moroccan Meseta is
closer to Hole 416A (Fig. S5).

The slightly more radiogenic Pb and Sr ratios observed in the
Hole 416A samples than in the Zalidou samples (Fig. 7b, c) might
have their origin in a relatively less important contribution from a
fluvial input in the offshore succession, resulting in a more
significant signature of the dust component. Figure S6 compares the
initial Pb and Sr isotope ratios of the Zalidou and Hole 416A
sediments with surrounding areas for which data exist for these
isotopic systems and suggests that the distant African Sahara regions
(the Saharanmetacraton and Sahel Desert; Fig. S5) could cause such
a shift to more radiogenic Pb and Sr isotopic ratios. Nonetheless,
surface winds blew SW over north Africa during the Cretaceous
(Poulsen et al. 1998), so the relatively northward Hole 416A should
hypothetically receive less dust input (see Fig. 1a and Fig. S5).
Accordingly, fluvial input from other massifs more proximal to
Hole 416A (e.g. the middle Atlas) could have caused this difference,
but we cannot test for their contribution due to the lack of
isotope studies.

In summary, the isotopic signature of the central Moroccan
margin sediments is dominated by old continental sources. The
African Sahara regions could have significantly contributed to the
central Moroccan margin sediments through wind transport. Today,
the Sahara and north African terranes are known as the most
important sources of dust to the Atlantic Ocean (e.g. Grousset and
Biscaye 2005; Abouchami et al. 2013). During the Valanginian
stage (137.7–132.6 Ma), dust input from old African terranes
located to the east could be similarly expected. Indeed, the wind
circulation models of Price et al. (1995) show west and SW wind
vectors over north Africa in the Jurassic and Cretaceous. The
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surrounding Moroccan massifs could also have contributed to the
sediments via direct fluvial transport.

Conclusions

Valanginian carbonate deposits from two geological successions on
the central Moroccan margin show geochemical signatures
characteristic of their respective depositional settings (proximal
v. distal). The onshore Zalidou section consists of a mixture of
detrital (silica-rich and clay) and carbonate materials, whereas the
offshore DSDP Hole 416A section shows a binary mixture of clay
and carbonate. The major and trace elements show a higher coarse-
grained detrital input (silica-rich) in the Zalidou section and a higher
authigenic clay input (aluminosilicates) in Hole 416A. This is a
result of mineral sorting processes occurring during the transport of
sediments, leading to the chemical fractionation of some elements.
Nonetheless, the similar radiogenic isotope signature between both
sites suggests a common ‘old’ and continental source for all the
sediments. No trace of a significant input from oceanic upwelling
can be detected in the distal site sediments. This suggests that the
central Moroccan margin was primarily fed by nutrients from
continental runoff and weathering before, during and after the
Weissert Event. The source of sediments also did not change
throughout the studied Valanginian interval and was most probably
the African Sahara regions.

No volcanic contribution from the Paraná–Etendeka or the Comei–
Bunbury LIPs was detected in the sediments during the entire
Valanginian stage. If any such material reached the central Moroccan
margin, the quantities must have been small enough to not modify the
dominantly continental signature of the sediments. It cannot be
excluded that volcanic material might have affected the seawater
without changing the composition of the deposited sediments during
the Weissert Event. It is therefore difficult to imagine that the LIPs
triggered the Weissert Event recorded in the studied area. Our study
shows the potential of combining several radiogenic isotopes to test

for a volcanic contribution in sediments during the Weissert Event
and to identify the specific LIP that was involved.
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Fig. 9. Comparison of the initial isotope ratios of the central Moroccan margin sediments with surrounding possible source areas with data for only Sr and
Nd isotopes. Green symbols, Moroccan massifs; yellow symbols, African and Saharan dust sources; and purple symbols, West African Craton. Data
references (see also Supplementary Table): Central Jebilet 240–330 Ma (Essaifi et al. 2014; Bouloton et al. 2019), Anti-Atlas 543–560 Ma (Toummite et al.
2013; Belkacim et al. 2017), Central High Atlas 165–125 Ma (Essaifi and Zayane 2018), Western High Atlas 290 Ma (Gasquet et al. 1992), NE Meseta
344 Ma (Ajaji et al. 1998) and east Morocco complex including the El Jadida complex (Chalot-Prat 1995; Gasquet et al. 2005; EL Haibi et al. 2020);
Holocene Peri-Saharan dust (Grousset et al. 1992), modern African and Saharan dust (Grousset and Biscaye 2005; Skonieczny et al. 2013; Gross et al.
2016), modern Sahel desert dusts (Kumar et al. 2014), modern and Holocene subtropical Saharan/Atlantic sediments (Grousset et al. 1998; Meyer et al.
2011) and the central Sahara Bodélé Depression (Abouchami et al. 2013); and West African Craton 2.1 Ga (Boher et al. 1992; Pawlig et al. 2006; Tapsoba
et al. 2013), 2.9 Ga West African Craton and Reguibat Rise (Blanc et al. 1992; Peucat et al. 1996, 2005; Bea et al. 2013; Montero et al. 2014) and 900 Ma
Saharan metacraton (Küster et al. 2008).
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