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ABSTRACT

The epidemic-type aftershock sequence (ETAS) model has $fsmvn to describe success-
fully the spatiotemporal evolution of the statistical seisity properties, if earthquake trigger-
ing is related to tectonic forcing and earthquake-indudezks changes. However, seismicity
is locally often dominated by stress changes related t@igahaseismic processes. To avoid
erroneous model fitting leading to biased forecasts, it igartant to account for those tran-
sients. We apply a recently developed iterative algoritlasell on the ETAS model to identify
the time-dependent background and ETAS-parameters sinadtisly. We find that this pro-
cedure works well for synthetic data sets if catalog erroesagpropriately considered. Vice
versa, ignoring the time-dependence leads to significdnédged parameter estimations. In
particular, then-value describing the magnitude-dependence of the triiggdsernel can be
strongly underestimated if transients are ignored. lcowalues have been previously found
for swarm activity, for which transient aseismic processesexpected to play a major role.
These observed anomalously levalues might thus indicate the importance of transiert-for
ing, rather than being due to differences in the earthqeaktiquake trigger mechanism. To
explore this, we apply the procedure systematically tohegidke clusters detected in south-

ern California and to earthquake swarm activity in Vogtiddestern Bohemia. While lowu-
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values are mostly shown to be a consequence of catalog amdrtsme-dependent forcing but
not related to different earthquake-earthquake inteyaatmechanisms, some significant low
values are observed in high heat flow areas in Californiafitoimg the existence of thermal

control on earthquake triggering.

1 INTRODUCTION

Interactions between earthquakes have been long recagtizge an important mechanism for
earthquake triggering. A large fraction of earthquakeastrumental catalogs are aftershocks (Reasen-
berg 1985)), which can be explained by stress changes obpieevents (Dieterich 1994; Harris
1998; Stein 1999). Vice versa, earthquakes which canndtiieused to any preceding earthquake
are likely to be related to aseismic sources. Usually theeats are associated to the stationary
aseismic process of stress build-up due to constant tecpdatie motions. While this might be
correct on long-time scales, transient aseismic forcirtp 1 magma intrusion (Toda et al. 2002),
fluid flow (Miller et al. 2004) or slow slip events (Holtkamp@Brudzinski 2011) are frequently
occurring on short-time scales. Because these aseisnuegges are usually not directly observ-
able, aseismic transients are generally ignored in seisnmmdeling and forecasting. However,
modeling of transient aseismic triggering is important oioly because it can help to retrieve im-
portant information about the underlying mechanism, k& Because the estimation of seismicity
parameters can be - as we will show - strongly biased if thesteats are ignored. This can directly
affect our ability for short-time forecasting or seismizhed assessment because both rely on a
proper knowledge of the earthquake-earthquake intersctmmodel the clustering properties or
decluster the seismicity, respectively.

An important seismicity parameter is theparameter, which determines how the number of
aftershocks depends on the mainshock magnitud@/hile there is good empirical evidence that
the aftershock productivity grows exponentially with as ~ ¢*™, the exact value of varies
substantially between empirical studies, in particulatneen windows-based cluster definitions
and epidemic type aftershock sequence (ETAS) model fitsfdrneer class yields typically val-
ues aroundn(10) (Helmstetter et al. 2005), although Christophersen andi5(@0D08) showed



Impact of aseismic transients on parameter estimations 3
that the inferredv-value is up to the specific choice of dependence of the $patidows on the
mainshock magnitude. Am = In(10) value gives a0™-scaling, which can be expected for static
stress triggering (Hainzl et al. 2010). Furthermarayould be close to the value of the exponent
of the Gutenberg-Richter law] (m) oc 1070 = (10" j e q ~ In(10)b. This would imply self-
similarity of the triggering process, in particular, thenwuiative effect of earthquakes in different
magnitude bins would be the same. However, those resultisased on comparing the total af-
tershock productivity of many mainshocks with differentgnaudes. More sophisticated models,
which differentiate between direct and secondary aftershativity, can estimate the-parameter
for individual sequences and often find significantly smadlevalues (Ogata 1992; Marsan and
Lengliné 2008). Hainzl et al. (2008) showed that an undenagion of « can result in the latter
case from assuming spatial isotropy of aftershock occagremhich in fact aligns along the main-
shock rupture. They also demonstrated the severe effecichf& parameter-bias on forecasts of
ongoing aftershock sequences. However, the anisotrofgcsabek distributions cannot explain
small a-estimations, which are based only on time and magnitudernmtion without using the
hypocenter information. In particular, very small valuas< 1, are found for swarm activity,
e.g. in Japan and Central Europe, and water-injection mdigseismicity (Ogata 1992; Hainzl and
Ogata 2005; Lombardi et al. 2006; Lei et al. 2008). Theseltesould have important conse-
guences for triggering mechanisms, because the cumuédtes of smaller events in earthquake
swarms would then dominate compared to that of larger eaatkes. It is important to stress that
low a-values, if they are real, preclude earthquake forecassinge small shocks then dominate
the triggering budget, a reliable forecast would requircige knowledge of these small sources,
down to the smallest possible rupture length, a more thaltecigang task.

In this study, we show that smailtvalues inverted by means of the space-independent ETAS
model do not necessarily point to differences in the eadkgtearthquake interaction mechanism;
they can simply result from neglecting underlying aseisimamsients. This might explain the
observed smalk-values in the cases of earthquake swarms or induced séigmibere aseismic
sources such as fluid flows are expected or known.

We firstly introduce in section 2 the recently developed apph by Marsan et al. (2012),
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which we used for detecting time-dependent aseismic fgroidetailed analysis of synthetic
earthquake sequences is presented in Sec. 3 to illusteatefféct of ignoring transient forcing
in seismicity parameter estimations. Then we apply the augilogy to recent swarm activity in
Western Bohemia and earthquake clusters in southern @aéf¢Sec. 4). Finally, our results are

discussed and summarized in last two sections.

2 METHOD

The method for detecting time-dependent background fgrbias been recently introduced by
Marsan et al. (2012). The approach is based only on the tideragnitude information of the
earthquake occurrenceg (m; withi = 1, ... N). The rational is to separate the background forc-
ing rate x.(t) and the contribution/(¢) related to earthquake-earthquake triggering, where the
observed earthquake ratét) is assumed to be a linear superposition of both terkis, =

wu(t) + v(t). The interaction termv(t) is modeled using the epidemic type aftershock sequence

(ETAS) model (Ogata, 1988)

vit)= > Kemimme) (¢ 4 — ;)77 (1)

1t <t

wherec andp are the parameters of the Omori-Utsu aftershock decay lasu(et al. 1995). The
constantd< anda describe the magnitude-dependent aftershock prodycawd .. is the lower
magnitude cut of the analyzed catalog.

The algorithm for the model estimation consists of the fwlltg steps:

(0) Start with non-zero constant background ratg = 1
(1) Estimate the ETAS-parametess «, ¢, p by maximizing the log-likelihood (LL) value.

(2) Calculate probabilities that the events belong to bemlkgd:

wi = () /(u(ts) + 32 Ke™™ e+t — 1))

kit <t;
(3) Estimate the time-dependent background rate using-thearest neighbors:

itn/2

p(ti) = Z wk‘/(tiJrn/Q - tifn/2)
k=i—n/2
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(4) Repeat with step (1) until convergence of both the ETA@Qupeters and the background rate

is reached.

To select the appropriate smoothing windewthe Akaike Information Criterion (AIC) is used:
must minimizeAIC = 2(N/n — LL(n)). HereN/n is a proxy for the number of free parameters

in u(t), and penalizes models with smallvalues that allow.(t) to vary too quickly.

3 SYNTHETIC TESTS

We firstly analyze the effect of time-dependent aseismicifigr and catalog incompleteness for
synthetic simulations, where the underlying dynamics isvkm For that purpose, we performed
ETAS simulations with a set of typical triggering paramst&r = 0.015,a = 1.84,¢ = 0.01
day!,p = 1.2 and Gutenberg-Richter distributed magnitudes withvalue of 1. These parame-
ters refer to a theoretical branching parameter of abouth&h means that on average 80% of
the earthquakes in the catalogs are aftershocks. Howeigkélue is reached only on long-time
scales, while most short catalogs consist of only small ntage events leading to a smaller per-
centage of aftershocks. Anyway, the aftershock percerdgageeds typically 50%. For the back-
ground termu(t) of the ETAS model, we test three different versions desdriselow. In each
case, we analyzed 100 random independent simulations fatistieal evaluation. A summary of

all parameters and definitions of our synthetic simulatisrshown in Table 1.

3.1 Effect of time-dependence

We explored the effect of two different types of time-depamichseismic forcing on the parameter
estimation. In one kind of simulations (ETAS-1), the tengd@hanges of the background forcing
are smooth. The second type (ETAS-2) simulates the effgat®d for an underlying aseismic
stress step such as related to slow slip events. In this taseseismic transient triggering is
modeled by a Omori-Utsu-type decaying rate. Two exampl&SIéiS-1 and ETAS-2 simulations
are shown in Fig. 1. In addition to these two types, we alsdyaed simulations with constant
background rate (ETAS-0) for comparison.

For each of these simulations, we estimated the ETAS-pdeaisnen the one hand with the
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standard approach assuming constant background forcohgoanthe other hand, with the new
iterative method taking potential time-dependent foraimigp account (see Sec. 2). The results
for N, = 500 background events are shown in Fig. 2. Along with those foallen data sets

(N, = 100), our findings can be summarized in the following way:

(i) Inthe case of the ETAS-0 simulations with constant backgd forcing, both methods yield
similar unbiased estimations of the true underlying patamseln particular, the time-dependent
method by Marsan et al. (2012) correctly identifies in alnatighe cases the constant background
rate, even in the case of small data sets (100 backgrountsg¢ven

(i) Vice versa, in the case of the simulations with time-elegent forcing (ETAS-1 and ETAS-2),
the method by Marsan et al. (2012) find a time-dependentrfgras preferred solution in almost
all cases. Thus, the new method is able to detect aseismgidrds in these data sets.

(i) The estimation of the ETAS-parameters assuming amtsiackground forcing yields strongly
biased aftershock productivity parameters if aseismicifigris present. In particular, the parame-
ters K anda are biased, while the Omori-Utsu parameteasndp are less affecteds is overesti-
mated andv is significantly underestimated. As a consequence, theattd background rate is
only in the order of 20% of the true value.

(iv) Inthe same case, the new method yields almost unbiegedages. In particular, the-value

is well-recovered with moderate uncertainties.

3.2 Effect of catalog errors

Besides transient forcing, catalog problems can also leéadhses in parameter estimates, in par-
ticular towards lowy-values. To show this, we analyzed ETAS simulations (ETASabich were
artificially manipulated to represent three different tyjpé catalog problems, namely (i) underes-
timated completeness; (ii) time-varying completenesd;(an missing events directly after earth-

guakes. Namely:

() Underestimated (time-independent) completenessi@sphat the data set is incomplete at
low magnitudes. We simulate this by removing earthquakesrding to a probability erfgm —

me)/v/20.,) with o,, = 0.5, where erfc is the complementary error function. This meags
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that am = m. + 0.5 event remains in the catalog with a probability of 0.68 andagnitude
m = m.+1 event with probability of 0.95. This erfc-shape is empillicéound when investigating
the probability of earthquake detection in regional earthk@ catalogs (e.g. Ogata and Katsura
1993; Daniel et al., 2008).

(i) Time-dependentincompleteness: All earthquakes witk m.+0.5 are removed in the time
window between 35 and 65 days.

(i) Incompleteness after events: To account for the ole@rincompleteness of catalogs af-
ter mainshocks (Kagan 2004), we adopt the estimated inagenm@ss function for California,
Meut(m, At) = m — 4.5 —0.751og,,(At), whereAt is the time (in days) after an earthquake with
magnituden (Helmstetter et al. 2006). We removed all earthquakes ftoerstmulated catalogs
for which the magnituder; does not fulfill the conditiomn; > m...(m;,t; — t;) related to any

preceding earthquake< 1.

Examples for all three cases are shown in Fig. 3. For stzdisgtivaluation, we again analyzed 100
synthetic catalogs in each case.

The estimated ETAS-parameters are summarized in Table garticular, we found that re-
moving about half of the events from the catalog in case &j$sonly to a lowering ofC but not to
any bias in the other parameters. Thus this case cannotbensble for lowa-values. However,
the other two cases lead to a significant underestimation{b@ameter. This can be understood
because in case (ii) the missing events in the time period afays have a similar effect as a de-
crease of the background rate during this time. In caset{ig) scaling of the incompleteness time
period with the mainshock magnitude lowers the apparerdymtivity of larger events compared
to that of lower magnitudes. In the latter case, the bias of however quite small as long as
is not very small (e.g. a median value®f= 1.71 instead of the true underlying value of 1.84 is
estimated in our standard casecof 0.01 days), but becomes significant for smaNalues. We
repeated the analysis for simulations witk= 0.0007 days (1 min) for which we rescaled tiié-
value to 0.008 to restore approximately the same branchargnpeter. In this case, the maximum

likelihood method yields a value of 1.54.
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This analysis shows that catalog errors of type (ii) and lgoth lead to significant biases in
the a-estimation. However, these biases can be avoided by mgitice likelihood space, i.e. by
restricting the number of earthquakes and/or the timeamatdor which the parameters are opti-
mized. In particular, we investigated two restrictionstedf tikelihood space, while the observation
space (used for the calculation of the rate function, Eqefijains the same: optimization is only
done for (a) larger earthquakes, > m,. + 0.5 (applied to case ii), and (b) events outside the in-
completely recorded time-periods directly after eartlkgsgapplied to case iii). We find that these
restrictions help to avoid the bias in the parameter estim#ésee Tab. 2). Thus for the applications

in the following section, we applied both restrictions te tikelihood space.

4 APPLICATIONS
4.1 Western Bohemia swarms

Episodic occurrence of earthquake swarms is well-knowhnerrégion in West Bohemia/Vogtland,
Central Europe, with the most intensive earthquake agtreitorded in the years 1896/97, 1903,
1908/09, 1985/86, 2000, and 2008. Since 1994, the Novy Kasta has been monitored by
the local seismic network WEBNET (see http://www.ig.cakeo/structure/observatories/west-
bohemia-seismic-network-webnet) providing high quatita, which enable detailed studies of
the triggering mechanisms and driving forces of the WesteBala/\Vogtland swarms based on
seismicity data. Due to the presence of close-by, @Manations and observed correlations of
their isotopic content with swarm activity (Braeuer et &002), episodic intrusions of fluid or
magma are likely to be one of the driving forces of the obsgearthquake clusters. This inter-
pretation was confirmed by analysis of the seismicity shgvarsystematic temporal changes of
the clustering properties and frequency-magnitude 8igtion during swarm activity (Hainzl and
Fischer 2002), as well as hypocenter migration (Parotidis. 003; Dahm et al. 2008).

Applying the ETAS-model to the year 2000 earthquake swaram# and Ogata (2005) found
a lowa-value and a strong time-dependence of the backgrounahfprigiowever, they chose rather
arbitrarily a smoothing time window of 10 days and fixed thé\&1triggering parameters for their

analysis. We thus reanalyze the same swarm activity witinéwe methodology of Marsan et al.
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(2012). In addition to the year 2000 swarm, we also invetdjshe latest large swarm, which
occurred in 2008. In both cases, we analyzed the earthquda&gdvided by the WEBNET. The
frequency-magnitude distribution of both swarms is showRig. 4(a). The overall distributions
can be approximately fitted by favalue of about 1, but a closer inspection reveals a kink at
m ~ 1.5. This magnitude seems to separate two different regimes:1.25 for m > 1.5 and
b~ 0.9 for m < 1.5 with an estimated magnitude of completeness being arolind e data set
consists of 2450 events in the year 2000 and 2563 events iyetre2008 withA/;, > 0.5. The
temporal occurrence of the events is shown in Figure 4(bYand

All results of our ETAS-model analysis are summarized inl@&o The analysis of the activity
with the standard ETAS-model (constant background ratdjigivery lowa-values, namely 0.55
and 0.28 for the year 2000 and 2008 swarms, respectivelyefsdstrated in the last section,
these estimations might be affected by partial incompkgerof the catalog and time-dependent
aseismic forcing. Therefore we firstly restricted the likebd space to magnitudes above 1.5,
where the kink in the frequency magnitude distribution iserfved. Additionally we excluded the
potentially incomplete time periods directly after earthiges, where we used again the empirical
incompleteness function of Helmstetter et al. (2006) (s $.2). As a result, the-values signif-
icantly increase to values of 1.50 and 1.55. Besides paieéntompleteness, we cannot exclude
the possibility that this strong increase can also indisatee real differences in nucleation and
interaction of then < 1.5 swarm events, which might be indicated by their apparentfgrént
b-value.

Accounting additionally for time-dependent backgrountiiog does not further increase the
values, witha = 1.41 and 1.56 then. Nevertheless, the inversion reveals a stanmtion of the
background forcing rate during both swarms (see lines in £igWhile the inversion assuming
constant background indicates only a negligible percentsgoackground events of 0.4% and
0.2%, a much higher percentage of 11% and 19% is associagsgiemic forcing when relaxing

this a priori assumption.
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4.2 California clusters

We used the catalog downloaded from the Southern Calif&arthquake Data Center (SCEDC)
between 1980/1/1 and 2011/12/31 with 101,930 earthquakéswagnitudem > 2. The mag-
nitude cutoff is used in accordance to the magnitude of cetapkss defined by the constraint
that 95% of the events can be modeled by a power-law fit of thguincy-magnitude distribu-
tion, following the procedure of Wiemer and Wyss (2000).His data set, we limit our search for
mainshocks to the square area definedb$0° —37.00° latitude andl 13.58° —121.76° longitude.

The separation into clusters is done in agreement with theadaised by Enescu et al. (2009).
An eventis considered as indicator of a cluster if at leaBteM@nts occurred within a temporal”
and spatial- < R window around it. Furthermore, this event has to be the &rgeent within the
same spatiotemporal window to separate aftershock actaléted to some preceding events. We
consider only clusters, where the largest earthquake rmamis between 3.5 and 6.0, because the
use of circular spatial windows is considered only appudprfor the triggering zones ai < 6
events. We used a time window 6f= 100 days and the search radiésis taken to be 5 times
of the estimated fracture lengily whereL is assumed to scale with the earthquake magnitude
according tal, = 0.01 - 10°*™ km (Working Group on California Earthquake Probabiliti2803;
Helmstetter et al., 2005). Our selection criteria yieldscB&ters. For each of them we use, if
available in the catalog, the seismicity of the 1000 dayseutang the cluster in the same region
as input information for the calculation of the ETAS ratebeTso-called observation space is
therefore]—1100 : 100] days andn > 2.

The parameter estimations might be affected by partiahmpieteness of the catalog and time-
dependent aseismic forcing as shown in our synthetic teses$ec. 3). To test this, we firstly an-
alyzed the clusters assuming constant background forcitigput any additional restrictions for
the likelihood space. This unrestricted LL-space is defiaed-100 : 100] days andn > 2. In
a second step, we still assumed a constant backgrounddofmihrestricted the likelihood space
tom > 2.5 and excluded the potentially incomplete time periods adtethquakes according to
the results from Helmstetter et al. (2006) described in S&t.In the final step, we additionally

allow for time-dependent background forcing in the parangtversion. For all three cases, the



Impact of aseismic transients on parameter estimations 11
results for the inverted ETAS-parameters are summarizddlate 4. A systematic change of the
parameters is observed. In particular, thealue is found to increase from a median value of 1.65
to 1.96 in agreement with our observations in the synthestst Thus the-values converge to
the values estimated for stacked aftershock activity, foictve.g. Helmstetter et al. (2005) found
a1p = 1.05 4+ 0.05 related to the basis of 10, which is equivalentto= 2.4 4+ 0.1. Although
the stacking procedure relates all aftershocks to the hagksand measures therefore the dressed
activity in contrast to the ETAS parameters, which are egldb the direct (undressed) aftershock
activity, the results of both approaches are expected to bieei same range. Furthermore,@n
value around 2.3 would be also in agreement with resultgédicsstress triggering models (Hainzl
et al. 2010). Because of this, we now ask the question the wtnearound: How many of the clus-
ters are in agreement with a valuecof= 2.3, that means, &0™-scaling? To answer this question,
we repeated our analysis for restricted LL-space and atldwee-dependent background forcing
with fixed o = 2.3. Clearly this always leads to a worse fit with a smaller LLenglbecause the
fitting has one free parameter less. For the judgment of thefiance of allowingy to deviate
from 2.3, we use again the Akaike information criterion. Whelfihat 21 out of the 36 clusters can
be best described hy = 2.3. Thus the majority of clusters can be described by'&-scaling
of the productivity. In the other cases, we further identifiee clusters, where the difference in
the AIC-value is at least 2, i.eAAIC = AIC,—23 — AIC > 2. Note thatexp(—AAIC/2)
can be interpreted as the relative probability thatdhe- 2.3 model minimizes the (estimated)
information loss (Burnham and Anderson 2002). Nine clsséee found withAAIC' > 2; two
of them witha > 2.3 and 7 witha < 2.3. These deviations from 2.3 seem to be not random. In
particular, we find that the clusters with significant lewvalues correlate well with areas of high
heat flow. This is shown in Figure 5, where the estimataedlues are plotted as a function of the
heat flow measurement closest to the mainshock. This tremgpp@ees well with observations of
low «a-values & =~ 1.6) on oceanic transform faults (McGuire et al. 2005), for whiggh heat
flow is expected (Behn et al. 2007). Our results verify thailtesof Enescu et al. (2009) who

found already correlations between high heat flow anddevalues. However, the past study did
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neither consider partial incompleteness nor account ftar@l aseismic forcing. Our new results

indicate that the previous results were no artefacts rkatéhose factors.

5 DISCUSSION

Our analysis shows that the maximum likelihood estimatibrthe ETAS-parameters can be
strongly affected by catalog problems and aseismic tratsi&Vhile possible catalog problems
can be considered by appropriate restrictions of the Llcspa the standard ETAS-model ap-
plications, the latter issue needs more sophisticatecbappes such as the iterative ETAS-based
algorithm by Marsan et al. (2012) used in this paper.

In addition to the two discussed issues, a number of othdvl@ms have been previously
shown to have also influence on the results of earthquakéeding models. In our study, we
ignored the spatial information of the earthquake catalogsder to avoid some of these problems,
in particular the bias resultant from anisotropic aftedhdustering (Hainzl et al. 2008) or space-
dependent background seismicity (Harte 2012). Neverssel@her problems cannot be avoided
such as missing links in magnitude, space and time. Not&@yntissed triggering effect from
events smaller than the cut-off magnitude is importantiiStte and Werner 2005). Unobserved
events can trigger events above the threshold giving riseparently independent background
events that seem to increase the constant background rateapparent rate. Although this can
strongly affect the estimation of the background level,lifss for the trigger parameters, ¢, «,
andp does not exceed a few percent (Wang et al. 2010), which is reodiler than the bias
observed in our analysis. Finally, Touati et al. (2011) shdwhat a high background rate can mask
the earthquake triggering behavior. However, this seenf@t@ only minor effects in our case
because our approach has been demonstrated to yield retinsaons for synthetic simulations
(see section 3). In comparison, catalog problems and amdismsients, as discussed in this paper,
seem to have a stronger impact on the estimation of the trigg@meters and should therefore

not be ignored in future studies.
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6 CONCLUSION

While earthquake interactions are known to be responsdrl@ farge fraction of recorded seis-
micity, the corresponding seismicity parameters desugitihe aftershock productivity are not
well-constrained and a matter of ongoing debate. In pdaticthe a-parameter determining the
magnitude-dependence of the trigger potential is cruarldentifying the underlying trigger-
ing mechanism and for forecasting ongoing earthquake segge Previous analysis of stacked
seismicity resulted in significantly higher values than BBased inversions. Our analysis now
demonstrates that can be strongly underestimated by the ETAS model, if pcaeoétalog prob-
lems and aseismic transients are ignored. This might eslpeexplain the previously observed
small a-values in the case of earthquake swarms and water-injettguced seismicity, where
transient forcing is expected or known (Ogata 1992; Haindl@gata 2005; Lei et al. 2008).

Our applications to earthquake swarms in Western Bohendi@arthquake clusters in Califor-
nia indicate a significant increase of thgarameter after accounting for potential incompleteness
and transient aseismic forcing. The majority of earthquaksters in California become compat-
ible with « = § = In(10)b ~ 2.3. Thus both estimation procedures, the ETAS and the stacking
approach, lead to concordant results. This is not triviabloge one method estimates the param-
eter on basis of secondary aftershock triggering withinratividual sequence, while the other
method compares the cumulative productivity of differeimshocks. Furthermore, = 3 im-
plies that the impact of lower magnitude events is not asigtes previously thought. And finally,

a =~ 2.3 would be in agreement with estimations for static streggéing (Hainzl et al. 2010).

However, some of the analyzed seismicity clusters showifgigntly smallera-values also
after accounting for incompleteness and transient aseifoncing. Both analyzed earthquake
swarms in Western Bohemia have similar valuesxof= 1.4 — 1.5 and seven clusters in Cali-
fornia show significant deviations to smalleivalues. These clusters show clear correlations with
regions of higher heat flow. Thus proper accounting for inpl@teness and transient aseismic
forcing can help to avoid artificial parameter estimatiosisvell as to detect true variations of the

earthquake interaction mechanism.
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7 DATA AND RESOURCES

The heat flow data are taken from the USGS online heat flow dagabttp://earthquake.usgs.gov/researcl
(accessed at February 2012). The California earthqualkdogahas been downloaded from the
Southern California Earthquake Data Center (SCEDC, hitpW.data.scec.org/eq-catalogs/datag loc.phj

The WEBNET swarm catalogs have been provided by Tomas Fische
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Table 1. Characteristics and parameters of the ETAS-simulatiohgre/! denotes the Heaviside function. The choiceldf, for ETAS-2 is such that a

mainshock of magnitudé/,,, occurring att = 50 days would on average triggé¥, direct aftershocks in the following 50 days (remaining doraof the

catalog).
time-intervals catalog [—100 : 100] days
LL-optimization 7 = [0 : 100] days
magnitudes 0 < m < 4; Gutenberg-Richter distributed with= 1

ETAS-parameter triggering K = 0.015,a = 1.84,¢ = 0.01 day !, p = 1.2
background number N, =100 or 500 inT
ETAS-0 w(t) = Ny /T
ETAS-1 w(t) = (Ny/T)(0.3 + (0.7/50)(1.0 — cos(27(t/50 — 0.5)))H (t — 25)H (75 — t)
ETAS-2 w(t) = (Ny/T)(0.3 + 0.7K exp(—aM,y, ) (¢ 4+t — 50) P H(t — 50)
with M,,, = In (Ny(p — 1)/(K(cP~! — (¢ + 50)P71))) /o

8T
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Table 2. Estimated ETAS-parameters for synthetic catalogs witfi@aily removed events representing typical catalog peots. The true parameters are

that given in Tab.1, only in the last two cases of (iii), thend i -value are changed to increase the effect of incompleteness

type of missing events K [Ky9% Koo%) a ooy, agoy] ¢ [c10% coo%] [days] P [P10% Poo]

(i) time-independent incompleteness  0.008 [0.005 0.011B4 11.71 1.97] 0.012[0.006 0.018] 1.20[1.05 1.32]

(i) incomplete time period 0.030[0.015 0.047] 1.45[1.080] 0.010 [0.006 0.016] 1.15[1.02 1.33]
... with L L-space restriction 0.011 [0.007 0.016] 1.91[1.732.10] 1©..005 0.039] 1.32[1.03 1.56]

(i) incomplete first aftershocks 0.018[0.012 0.026] 1j153 1.88] 0.017 [0.008 0.025] 1.28[1.13 1.41]
...forc =0.0007 day; K = 0.008 0.014[0.009 0.021] 1.54[1.351.71] 0.0011[0.0007 0.0018]20[1.12 1.27]
...with L L-space restriction 0.008 [0.006 0.010] 1.87[1.741.98] 008)[0.0005 0.0010] 1.21[1.141.27]

SuoITeW 1S9 Jewe.red uo Sl IsUe.) J IS IBse JOo 1oedul |
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Table 3. Results for the estimated ETAS parameters in the case ofatftegeiake swarms in Western Bohemia. To avoid incomplegepeoblems, the

0¢

likelihood value has been optimized in the second and thass dor each swarm only for the > 1.5 earthquakes. Theé5 < m < 1.5 events were only
used for the calculation of the rate function.
year background background fraction K Q@ c P
2000 constant 0.4% 0.0185 0.55 0.00048 1.35
.. with L L-space restriction 2% 0.0050 1.50 0.00026 1.33
wu(t) 11% 0.0036 1.41 0.00026 1.37
2008 constant 0.2% 0.0269 0.28 0.00041 1.29
.. with L L-space restriction 0.6% 0.0065 1.55 0.00081 1.37
wu(t) 19% 0.0045 1.56 0.00045 1.36
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Table 4. Median values as well as the 10% and 90% quantiles of the a&stthE TAS parameters for the 36 earthquake clusters ino@ahf. The first two

cases refer to the inversion based on constant backgrouciddavithout (a) and with (b) additional restrictions ogtlikelihood space. The case (c) shows

the results in the case that time-dependent backgrounihdpicallowed with restricted likelihood space.

K [Ki09% Kgo%) a [aigy agoyl ¢ [cio% cooy] [days] P [P1o% ool

(a) constant background 0.023 [0.000029 0.040] 1.65 [0.87]2 0.0057 [0.00023 0.033] 1.06 [0.85 1.27]

(b) ...with LL-space restriction 0.011 [0.000004 0.027] 1.75 [1.00 3.42J0033 [0.00011 0.030] 1.11[0.88 1.29]

© pult) 0.005 [0.000001 0.024] 1.96 [0.84 3.40] 0.0028 [0.0000132}0 1.20 [0.99 1.54]

SuoITeW 1S9 Jewe.red uo Sl IsUe.) J IS IBse JOo 1oedul |
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Figure 1. Examples of tested ETAS simulations: (a) transient trigmewith smooth transient forcing
(ETAS-1) and (b) with mainshock-type aseismic forcing (ESF&). Both simulations consists of 100 back-

ground events. The dotted lines refer to the true backgréamthg rates.

Figure 2. Inversion results for ETAS-simulations with constant foge(ETAS-O0, left in each plot) and tran-
sient forcing (middle: ETAS-1 and right: ETAS-2). Black slats indicate the inversion results assuming
constant background rate, while red symbols refer to resyftotential time-dependent forcing is consid-
ered. We only show here the results witl) = 500 background events; simulations with 100 background
earthquakes yield similar results, albeit with larger etrars. The true parameters of the simulations are
indicated by the horizontal line. In all cases, crosses teféhe median value of 100 simulations while the

error bars show the range between the 10% and 90% quantiles.

Figure 3. Examples of earthquake catalogs artificially corruptecpresent realistic catalog problems. Red
points refer to events deleted from the analyzed cataldgs.plots (a) to (c) refer to case (i) to (iii) in the

text and Tab. 2, respectively.

Figure 4. Western Bohemia swarm activity observed in the year 2000 20@8: (a) the frequency-
magnitude distributionshfvalues of 0.88 and 1.25 indicated by dashed lines); (b) enohégnitude versus
time plots, where the dotted lines refer to the inverted bemknd rates. Note that the cutoff magnitude for

the analysis is set to 0.5.

Figure 5. Scatter plot of estimated-values and the spatially closest heat-flow value. Black®imindicate
clusters which can be explained by= 2.3, i.e. AAIC = AICy3 — AIC < 0, while the colored points
indicate clusters, where the Akaike information criter@ings to a differentu-value: o« < 2.3 (red) and

a > 2.3 (green). Large symbols refer to those clusters with higlggrificance, AAIC > 2.
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