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ABSTRACT

The epidemic-type aftershock sequence (ETAS) model has been shown to describe success-

fully the spatiotemporal evolution of the statistical seismicity properties, if earthquake trigger-

ing is related to tectonic forcing and earthquake-induced stress changes. However, seismicity

is locally often dominated by stress changes related to transient aseismic processes. To avoid

erroneous model fitting leading to biased forecasts, it is important to account for those tran-

sients. We apply a recently developed iterative algorithm based on the ETAS model to identify

the time-dependent background and ETAS-parameters simultaneously. We find that this pro-

cedure works well for synthetic data sets if catalog errors are appropriately considered. Vice

versa, ignoring the time-dependence leads to significantlybiased parameter estimations. In

particular, theα-value describing the magnitude-dependence of the triggering kernel can be

strongly underestimated if transients are ignored. Lowα-values have been previously found

for swarm activity, for which transient aseismic processesare expected to play a major role.

These observed anomalously lowα-values might thus indicate the importance of transient forc-

ing, rather than being due to differences in the earthquake-earthquake trigger mechanism. To

explore this, we apply the procedure systematically to earthquake clusters detected in south-

ern California and to earthquake swarm activity in Vogtland/Western Bohemia. While lowα-
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values are mostly shown to be a consequence of catalog errorsand time-dependent forcing but

not related to different earthquake-earthquake interaction mechanisms, some significant low

values are observed in high heat flow areas in California, confirming the existence of thermal

control on earthquake triggering.

1 INTRODUCTION

Interactions between earthquakes have been long recognized to be an important mechanism for

earthquake triggering. A large fraction of earthquakes in instrumental catalogs are aftershocks (Reasen-

berg 1985)), which can be explained by stress changes of previous events (Dieterich 1994; Harris

1998; Stein 1999). Vice versa, earthquakes which cannot be attributed to any preceding earthquake

are likely to be related to aseismic sources. Usually those events are associated to the stationary

aseismic process of stress build-up due to constant tectonic plate motions. While this might be

correct on long-time scales, transient aseismic forcing such as magma intrusion (Toda et al. 2002),

fluid flow (Miller et al. 2004) or slow slip events (Holtkamp and Brudzinski 2011) are frequently

occurring on short-time scales. Because these aseismic processes are usually not directly observ-

able, aseismic transients are generally ignored in seismicity modeling and forecasting. However,

modeling of transient aseismic triggering is important notonly because it can help to retrieve im-

portant information about the underlying mechanism, but also because the estimation of seismicity

parameters can be - as we will show - strongly biased if the transients are ignored. This can directly

affect our ability for short-time forecasting or seismic hazard assessment because both rely on a

proper knowledge of the earthquake-earthquake interactions to model the clustering properties or

decluster the seismicity, respectively.

An important seismicity parameter is theα-parameter, which determines how the number of

aftershocks depends on the mainshock magnitudem. While there is good empirical evidence that

the aftershock productivity grows exponentially withm as∼ eαm, the exact value ofα varies

substantially between empirical studies, in particular, between windows-based cluster definitions

and epidemic type aftershock sequence (ETAS) model fits. Theformer class yields typically val-

ues aroundln(10) (Helmstetter et al. 2005), although Christophersen and Smith (2008) showed
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that the inferredα-value is up to the specific choice of dependence of the spatial windows on the

mainshock magnitude. Anα = ln(10) value gives a10m-scaling, which can be expected for static

stress triggering (Hainzl et al. 2010). Furthermore,α would be close to the value of the exponent

of the Gutenberg-Richter law,N(m) ∝ 10−bm = eln(10)bm, i.eα ≈ ln(10)b. This would imply self-

similarity of the triggering process, in particular, the cumulative effect of earthquakes in different

magnitude bins would be the same. However, those results arebased on comparing the total af-

tershock productivity of many mainshocks with different magnitudes. More sophisticated models,

which differentiate between direct and secondary aftershock activity, can estimate theα-parameter

for individual sequences and often find significantly smaller α-values (Ogata 1992; Marsan and

Lengliné 2008). Hainzl et al. (2008) showed that an underestimation ofα can result in the latter

case from assuming spatial isotropy of aftershock occurrence, which in fact aligns along the main-

shock rupture. They also demonstrated the severe effect of such a parameter-bias on forecasts of

ongoing aftershock sequences. However, the anisotropic aftershock distributions cannot explain

smallα-estimations, which are based only on time and magnitude information without using the

hypocenter information. In particular, very small values,α < 1, are found for swarm activity,

e.g. in Japan and Central Europe, and water-injection induced seismicity (Ogata 1992; Hainzl and

Ogata 2005; Lombardi et al. 2006; Lei et al. 2008). These results could have important conse-

quences for triggering mechanisms, because the cumulativeeffect of smaller events in earthquake

swarms would then dominate compared to that of larger earthquakes. It is important to stress that

low α-values, if they are real, preclude earthquake forecasting: since small shocks then dominate

the triggering budget, a reliable forecast would require precise knowledge of these small sources,

down to the smallest possible rupture length, a more than challenging task.

In this study, we show that smallα-values inverted by means of the space-independent ETAS

model do not necessarily point to differences in the earthquake-earthquake interaction mechanism;

they can simply result from neglecting underlying aseismictransients. This might explain the

observed smallα-values in the cases of earthquake swarms or induced seismicity, where aseismic

sources such as fluid flows are expected or known.

We firstly introduce in section 2 the recently developed approach by Marsan et al. (2012),
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which we used for detecting time-dependent aseismic forcing. A detailed analysis of synthetic

earthquake sequences is presented in Sec. 3 to illustrate the effect of ignoring transient forcing

in seismicity parameter estimations. Then we apply the methodology to recent swarm activity in

Western Bohemia and earthquake clusters in southern California (Sec. 4). Finally, our results are

discussed and summarized in last two sections.

2 METHOD

The method for detecting time-dependent background forcing has been recently introduced by

Marsan et al. (2012). The approach is based only on the time and magnitude information of the

earthquake occurrence (ti, mi with i = 1, . . . N). The rational is to separate the background forc-

ing rateµ(t) and the contributionν(t) related to earthquake-earthquake triggering, where the

observed earthquake rateλ(t) is assumed to be a linear superposition of both terms,λ(t) =

µ(t) + ν(t). The interaction termν(t) is modeled using the epidemic type aftershock sequence

(ETAS) model (Ogata, 1988)

ν(t) =
∑

i:ti<t

Keα(mi−mc)(c + t − ti)
−p , (1)

wherec andp are the parameters of the Omori-Utsu aftershock decay law (Utsu et al. 1995). The

constantsK andα describe the magnitude-dependent aftershock productivity andmc is the lower

magnitude cut of the analyzed catalog.

The algorithm for the model estimation consists of the following steps:

(0) Start with non-zero constant background rateµ(t) = µ0

(1) Estimate the ETAS-parametersK, α, c, p by maximizing the log-likelihood (LL) value.

(2) Calculate probabilities that the events belong to background:

wi = µ(ti)/(µ(ti) +
∑

k:tk<ti

Keα(mk−mc)(c + ti − tk)
−p)

(3) Estimate the time-dependent background rate using then-nearest neighbors:

µ(ti) =
i+n/2
∑

k=i−n/2

wk/(ti+n/2 − ti−n/2)
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(4) Repeat with step (1) until convergence of both the ETAS parameters and the background rate

is reached.

To select the appropriate smoothing windown, the Akaike Information Criterion (AIC) is used:n

must minimizeAIC = 2(N/n − LL(n)). HereN/n is a proxy for the number of free parameters

in µ(t), and penalizes models with smalln values that allowµ(t) to vary too quickly.

3 SYNTHETIC TESTS

We firstly analyze the effect of time-dependent aseismic forcing and catalog incompleteness for

synthetic simulations, where the underlying dynamics is known. For that purpose, we performed

ETAS simulations with a set of typical triggering parameters K = 0.015, α = 1.84, c = 0.01

day−1, p = 1.2 and Gutenberg-Richter distributed magnitudes with ab-value of 1. These parame-

ters refer to a theoretical branching parameter of about 0.8, which means that on average 80% of

the earthquakes in the catalogs are aftershocks. However, this value is reached only on long-time

scales, while most short catalogs consist of only small magnitude events leading to a smaller per-

centage of aftershocks. Anyway, the aftershock percentageexceeds typically 50%. For the back-

ground termµ(t) of the ETAS model, we test three different versions described below. In each

case, we analyzed 100 random independent simulations for a statistical evaluation. A summary of

all parameters and definitions of our synthetic simulationsis shown in Table 1.

3.1 Effect of time-dependence

We explored the effect of two different types of time-dependent aseismic forcing on the parameter

estimation. In one kind of simulations (ETAS-1), the temporal changes of the background forcing

are smooth. The second type (ETAS-2) simulates the effect expected for an underlying aseismic

stress step such as related to slow slip events. In this case,the aseismic transient triggering is

modeled by a Omori-Utsu-type decaying rate. Two examples ofETAS-1 and ETAS-2 simulations

are shown in Fig. 1. In addition to these two types, we also analyzed simulations with constant

background rate (ETAS-0) for comparison.

For each of these simulations, we estimated the ETAS-parameters on the one hand with the
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standard approach assuming constant background forcing and, on the other hand, with the new

iterative method taking potential time-dependent forcinginto account (see Sec. 2). The results

for Nb = 500 background events are shown in Fig. 2. Along with those for smaller data sets

(Nb = 100), our findings can be summarized in the following way:

(i) In the case of the ETAS-0 simulations with constant background forcing, both methods yield

similar unbiased estimations of the true underlying parameters. In particular, the time-dependent

method by Marsan et al. (2012) correctly identifies in almostall the cases the constant background

rate, even in the case of small data sets (100 background events).

(ii) Vice versa, in the case of the simulations with time-dependent forcing (ETAS-1 and ETAS-2),

the method by Marsan et al. (2012) find a time-dependent forcing as preferred solution in almost

all cases. Thus, the new method is able to detect aseismic transients in these data sets.

(iii) The estimation of the ETAS-parameters assuming constant background forcing yields strongly

biased aftershock productivity parameters if aseismic forcing is present. In particular, the parame-

tersK andα are biased, while the Omori-Utsu parametersc andp are less affected.K is overesti-

mated andα is significantly underestimated. As a consequence, the estimated background rate is

only in the order of 20% of the true value.

(iv) In the same case, the new method yields almost unbiased estimates. In particular, theα-value

is well-recovered with moderate uncertainties.

3.2 Effect of catalog errors

Besides transient forcing, catalog problems can also lead to biases in parameter estimates, in par-

ticular towards lowα-values. To show this, we analyzed ETAS simulations (ETAS-0), which were

artificially manipulated to represent three different types of catalog problems, namely (i) underes-

timated completeness; (ii) time-varying completeness; and (iii) missing events directly after earth-

quakes. Namely:

(i) Underestimated (time-independent) completeness implies that the data set is incomplete at

low magnitudes. We simulate this by removing earthquakes according to a probability erfc((m −

mc)/
√

2σm) with σm = 0.5, where erfc is the complementary error function. This meanse.g.
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that am = mc + 0.5 event remains in the catalog with a probability of 0.68 and a magnitude

m = mc+1 event with probability of 0.95. This erfc-shape is empirically found when investigating

the probability of earthquake detection in regional earthquake catalogs (e.g. Ogata and Katsura

1993; Daniel et al., 2008).

(ii) Time-dependent incompleteness: All earthquakes withm ≤ mc +0.5 are removed in the time

window between 35 and 65 days.

(iii) Incompleteness after events: To account for the observed incompleteness of catalogs af-

ter mainshocks (Kagan 2004), we adopt the estimated incompleteness function for California,

mcut(m, ∆t) = m− 4.5− 0.75 log10(∆t), where∆t is the time (in days) after an earthquake with

magnitudem (Helmstetter et al. 2006). We removed all earthquakes from the simulated catalogs

for which the magnitudemi does not fulfill the conditionmi ≥ mcut(mj , ti − tj) related to any

preceding earthquakej < i.

Examples for all three cases are shown in Fig. 3. For statistical evaluation, we again analyzed 100

synthetic catalogs in each case.

The estimated ETAS-parameters are summarized in Table 2. Inparticular, we found that re-

moving about half of the events from the catalog in case (i) leads only to a lowering ofK but not to

any bias in the other parameters. Thus this case cannot be responsible for lowα-values. However,

the other two cases lead to a significant underestimation theα-parameter. This can be understood

because in case (ii) the missing events in the time period of 30 days have a similar effect as a de-

crease of the background rate during this time. In case (iii), the scaling of the incompleteness time

period with the mainshock magnitude lowers the apparent productivity of larger events compared

to that of lower magnitudes. In the latter case, the bias ofα is however quite small as long asc

is not very small (e.g. a median value ofα = 1.71 instead of the true underlying value of 1.84 is

estimated in our standard case ofc = 0.01 days), but becomes significant for smallc-values. We

repeated the analysis for simulations withc = 0.0007 days (1 min) for which we rescaled theK-

value to 0.008 to restore approximately the same branching parameter. In this case, the maximum

likelihood method yields a value of 1.54.
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This analysis shows that catalog errors of type (ii) and (iii) both lead to significant biases in

theα-estimation. However, these biases can be avoided by reducing the likelihood space, i.e. by

restricting the number of earthquakes and/or the time-interval for which the parameters are opti-

mized. In particular, we investigated two restrictions of the likelihood space, while the observation

space (used for the calculation of the rate function, Eq. 1) remains the same: optimization is only

done for (a) larger earthquakes,m ≥ mc + 0.5 (applied to case ii), and (b) events outside the in-

completely recorded time-periods directly after earthquakes (applied to case iii). We find that these

restrictions help to avoid the bias in the parameter estimation (see Tab. 2). Thus for the applications

in the following section, we applied both restrictions to the likelihood space.

4 APPLICATIONS

4.1 Western Bohemia swarms

Episodic occurrence of earthquake swarms is well-known in the region in West Bohemia/Vogtland,

Central Europe, with the most intensive earthquake activity recorded in the years 1896/97, 1903,

1908/09, 1985/86, 2000, and 2008. Since 1994, the Novy Kostel area has been monitored by

the local seismic network WEBNET (see http://www.ig.cas.cz/en/structure/observatories/west-

bohemia-seismic-network-webnet) providing high qualitydata, which enable detailed studies of

the triggering mechanisms and driving forces of the West Bohemia/Vogtland swarms based on

seismicity data. Due to the presence of close-by CO2 emanations and observed correlations of

their isotopic content with swarm activity (Braeuer et al. 2007), episodic intrusions of fluid or

magma are likely to be one of the driving forces of the observed earthquake clusters. This inter-

pretation was confirmed by analysis of the seismicity showing a systematic temporal changes of

the clustering properties and frequency-magnitude distribution during swarm activity (Hainzl and

Fischer 2002), as well as hypocenter migration (Parotidis et al. 2003; Dahm et al. 2008).

Applying the ETAS-model to the year 2000 earthquake swarm, Hainzl and Ogata (2005) found

a lowα-value and a strong time-dependence of the background forcing. However, they chose rather

arbitrarily a smoothing time window of 10 days and fixed the ETAS-triggering parameters for their

analysis. We thus reanalyze the same swarm activity with thenew methodology of Marsan et al.
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(2012). In addition to the year 2000 swarm, we also investigated the latest large swarm, which

occurred in 2008. In both cases, we analyzed the earthquake data provided by the WEBNET. The

frequency-magnitude distribution of both swarms is shown in Fig. 4(a). The overall distributions

can be approximately fitted by ab-value of about 1, but a closer inspection reveals a kink at

m ≈ 1.5. This magnitude seems to separate two different regimes:b ≈ 1.25 for m > 1.5 and

b ≈ 0.9 for m ≤ 1.5 with an estimated magnitude of completeness being around 0.5. The data set

consists of 2450 events in the year 2000 and 2563 events in theyear 2008 withML ≥ 0.5. The

temporal occurrence of the events is shown in Figure 4(b) and(c).

All results of our ETAS-model analysis are summarized in Table 3. The analysis of the activity

with the standard ETAS-model (constant background rate) yields very lowα-values, namely 0.55

and 0.28 for the year 2000 and 2008 swarms, respectively. As demonstrated in the last section,

these estimations might be affected by partial incompleteness of the catalog and time-dependent

aseismic forcing. Therefore we firstly restricted the likelihood space to magnitudes above 1.5,

where the kink in the frequency magnitude distribution is observed. Additionally we excluded the

potentially incomplete time periods directly after earthquakes, where we used again the empirical

incompleteness function of Helmstetter et al. (2006) (see Sec. 3.2). As a result, theα-values signif-

icantly increase to values of 1.50 and 1.55. Besides potential incompleteness, we cannot exclude

the possibility that this strong increase can also indicatesome real differences in nucleation and

interaction of them < 1.5 swarm events, which might be indicated by their apparently different

b-value.

Accounting additionally for time-dependent background forcing does not further increase the

values, withα = 1.41 and 1.56 then. Nevertheless, the inversion reveals a strongvariation of the

background forcing rate during both swarms (see lines in Fig. 4). While the inversion assuming

constant background indicates only a negligible percentage of background events of 0.4% and

0.2%, a much higher percentage of 11% and 19% is associated toaseismic forcing when relaxing

this a priori assumption.
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4.2 California clusters

We used the catalog downloaded from the Southern CaliforniaEarthquake Data Center (SCEDC)

between 1980/1/1 and 2011/12/31 with 101,930 earthquakes with magnitudem ≥ 2. The mag-

nitude cutoff is used in accordance to the magnitude of completeness defined by the constraint

that 95% of the events can be modeled by a power-law fit of the frequency-magnitude distribu-

tion, following the procedure of Wiemer and Wyss (2000). In this data set, we limit our search for

mainshocks to the square area defined by32.50◦−37.00◦ latitude and113.58◦−121.76◦ longitude.

The separation into clusters is done in agreement with the method used by Enescu et al. (2009).

An event is considered as indicator of a cluster if at least 100 events occurred within a temporal±T

and spatialr ≤ R window around it. Furthermore, this event has to be the largest event within the

same spatiotemporal window to separate aftershock activity related to some preceding events. We

consider only clusters, where the largest earthquake magnitude is between 3.5 and 6.0, because the

use of circular spatial windows is considered only appropriate for the triggering zones ofm ≤ 6

events. We used a time window ofT = 100 days and the search radiusR is taken to be 5 times

of the estimated fracture lengthL, whereL is assumed to scale with the earthquake magnitude

according toL = 0.01 · 100.5m km (Working Group on California Earthquake Probabilities,2003;

Helmstetter et al., 2005). Our selection criteria yields 36clusters. For each of them we use, if

available in the catalog, the seismicity of the 1000 days preceding the cluster in the same region

as input information for the calculation of the ETAS rates. The so-called observation space is

therefore:[−1100 : 100] days andm ≥ 2.

The parameter estimations might be affected by partial incompleteness of the catalog and time-

dependent aseismic forcing as shown in our synthetic tests (see Sec. 3). To test this, we firstly an-

alyzed the clusters assuming constant background forcing without any additional restrictions for

the likelihood space. This unrestricted LL-space is definedas [−100 : 100] days andm ≥ 2. In

a second step, we still assumed a constant background forcing, but restricted the likelihood space

to m ≥ 2.5 and excluded the potentially incomplete time periods afterearthquakes according to

the results from Helmstetter et al. (2006) described in Sec.3.2. In the final step, we additionally

allow for time-dependent background forcing in the parameter inversion. For all three cases, the
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results for the inverted ETAS-parameters are summarized inTable 4. A systematic change of the

parameters is observed. In particular, theα-value is found to increase from a median value of 1.65

to 1.96 in agreement with our observations in the synthetic tests. Thus theα-values converge to

the values estimated for stacked aftershock activity, for which e.g. Helmstetter et al. (2005) found

α10 = 1.05 ± 0.05 related to the basis of 10, which is equivalent toα = 2.4 ± 0.1. Although

the stacking procedure relates all aftershocks to the mainshock and measures therefore the dressed

activity in contrast to the ETAS parameters, which are related to the direct (undressed) aftershock

activity, the results of both approaches are expected to be in the same range. Furthermore, anα-

value around 2.3 would be also in agreement with results for static stress triggering models (Hainzl

et al. 2010). Because of this, we now ask the question the other way around: How many of the clus-

ters are in agreement with a value ofα = 2.3, that means, a10m-scaling? To answer this question,

we repeated our analysis for restricted LL-space and allowed time-dependent background forcing

with fixed α = 2.3. Clearly this always leads to a worse fit with a smaller LL-value, because the

fitting has one free parameter less. For the judgment of the significance of allowingα to deviate

from 2.3, we use again the Akaike information criterion. We find that 21 out of the 36 clusters can

be best described byα = 2.3. Thus the majority of clusters can be described by a10m-scaling

of the productivity. In the other cases, we further identified the clusters, where the difference in

the AIC-value is at least 2, i.e.∆AIC = AICα=2.3 − AIC ≥ 2. Note thatexp(−∆AIC/2)

can be interpreted as the relative probability that theα = 2.3 model minimizes the (estimated)

information loss (Burnham and Anderson 2002). Nine clusters are found with∆AIC ≥ 2; two

of them withα > 2.3 and 7 withα < 2.3. These deviations from 2.3 seem to be not random. In

particular, we find that the clusters with significant lowα-values correlate well with areas of high

heat flow. This is shown in Figure 5, where the estimatedα-values are plotted as a function of the

heat flow measurement closest to the mainshock. This trend compares well with observations of

low α-values (α ≈ 1.6) on oceanic transform faults (McGuire et al. 2005), for which high heat

flow is expected (Behn et al. 2007). Our results verify the results of Enescu et al. (2009) who

found already correlations between high heat flow and lowα-values. However, the past study did
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neither consider partial incompleteness nor account for potential aseismic forcing. Our new results

indicate that the previous results were no artefacts related to those factors.

5 DISCUSSION

Our analysis shows that the maximum likelihood estimation of the ETAS-parameters can be

strongly affected by catalog problems and aseismic transients. While possible catalog problems

can be considered by appropriate restrictions of the LL-space in the standard ETAS-model ap-

plications, the latter issue needs more sophisticated approaches such as the iterative ETAS-based

algorithm by Marsan et al. (2012) used in this paper.

In addition to the two discussed issues, a number of other problems have been previously

shown to have also influence on the results of earthquake clustering models. In our study, we

ignored the spatial information of the earthquake catalogsin order to avoid some of these problems,

in particular the bias resultant from anisotropic aftershock clustering (Hainzl et al. 2008) or space-

dependent background seismicity (Harte 2012). Nevertheless, other problems cannot be avoided

such as missing links in magnitude, space and time. Notably the missed triggering effect from

events smaller than the cut-off magnitude is important (Sornette and Werner 2005). Unobserved

events can trigger events above the threshold giving rise toapparently independent background

events that seem to increase the constant background rate toan apparent rate. Although this can

strongly affect the estimation of the background level, thebias for the trigger parametersK, c, α,

andp does not exceed a few percent (Wang et al. 2010), which is muchsmaller than the bias

observed in our analysis. Finally, Touati et al. (2011) showed that a high background rate can mask

the earthquake triggering behavior. However, this seems tohave only minor effects in our case

because our approach has been demonstrated to yield robust estimations for synthetic simulations

(see section 3). In comparison, catalog problems and aseismic transients, as discussed in this paper,

seem to have a stronger impact on the estimation of the trigger parameters and should therefore

not be ignored in future studies.
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6 CONCLUSION

While earthquake interactions are known to be responsible for a large fraction of recorded seis-

micity, the corresponding seismicity parameters describing the aftershock productivity are not

well-constrained and a matter of ongoing debate. In particular, theα-parameter determining the

magnitude-dependence of the trigger potential is crucial for identifying the underlying trigger-

ing mechanism and for forecasting ongoing earthquake sequences. Previous analysis of stacked

seismicity resulted in significantly higher values than ETAS-based inversions. Our analysis now

demonstrates thatα can be strongly underestimated by the ETAS model, if potential catalog prob-

lems and aseismic transients are ignored. This might especially explain the previously observed

small α-values in the case of earthquake swarms and water-injection induced seismicity, where

transient forcing is expected or known (Ogata 1992; Hainzl and Ogata 2005; Lei et al. 2008).

Our applications to earthquake swarms in Western Bohemia and earthquake clusters in Califor-

nia indicate a significant increase of theα-parameter after accounting for potential incompleteness

and transient aseismic forcing. The majority of earthquakeclusters in California become compat-

ible with α = β = ln(10)b ≈ 2.3. Thus both estimation procedures, the ETAS and the stacking

approach, lead to concordant results. This is not trivial because one method estimates the param-

eter on basis of secondary aftershock triggering within an individual sequence, while the other

method compares the cumulative productivity of different mainshocks. Furthermore,α = β im-

plies that the impact of lower magnitude events is not as strong as previously thought. And finally,

α ≈ 2.3 would be in agreement with estimations for static stress triggering (Hainzl et al. 2010).

However, some of the analyzed seismicity clusters show significantly smallerα-values also

after accounting for incompleteness and transient aseismic forcing. Both analyzed earthquake

swarms in Western Bohemia have similar values ofα = 1.4 − 1.5 and seven clusters in Cali-

fornia show significant deviations to smallerα-values. These clusters show clear correlations with

regions of higher heat flow. Thus proper accounting for incompleteness and transient aseismic

forcing can help to avoid artificial parameter estimations as well as to detect true variations of the

earthquake interaction mechanism.
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7 DATA AND RESOURCES

The heat flow data are taken from the USGS online heat flow database: http://earthquake.usgs.gov/research/borehole/heatflo

(accessed at February 2012). The California earthquake catalog has been downloaded from the

Southern California Earthquake Data Center (SCEDC, http://www.data.scec.org/eq-catalogs/datemag loc.php).

The WEBNET swarm catalogs have been provided by Tomas Fischer.
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Table 1. Characteristics and parameters of the ETAS-simulations, whereH denotes the Heaviside function. The choice ofMm for ETAS-2 is such that a

mainshock of magnitudeMm occurring att = 50 days would on average triggerNb direct aftershocks in the following 50 days (remaining duration of the

catalog).

time-intervals catalog [−100 : 100] days

LL-optimization T = [0 : 100] days

magnitudes 0 ≤ m ≤ 4; Gutenberg-Richter distributed withb = 1

ETAS-parameter triggering K = 0.015, α = 1.84, c = 0.01 day−1, p = 1.2

background number Nb = 100 or 500 inT

ETAS-0 µ(t) = Nb/T

ETAS-1 µ(t) = (Nb/T )(0.3 + (0.7/50)(1.0 − cos(2π(t/50 − 0.5)))H(t − 25)H(75 − t)

ETAS-2 µ(t) = (Nb/T )(0.3 + 0.7K exp(−αMm)(c + t − 50)−pH(t − 50)

with Mm = ln
(

Nb(p − 1)/(K(cp−1 − (c + 50)p−1))
)

/α
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Table 2.Estimated ETAS-parameters for synthetic catalogs with artificially removed events representing typical catalog problems. The true parameters are

that given in Tab.1, only in the last two cases of (iii), thec andK-value are changed to increase the effect of incompleteness.

type of missing events K [K10% K90%] α [α10% α90%] c [c10% c90%] [days] p [p10% p90%]

(i) time-independent incompleteness 0.008 [0.005 0.011] 1.84 [1.71 1.97] 0.012 [0.006 0.018] 1.20 [1.05 1.32]

(ii) incomplete time period 0.030 [0.015 0.047] 1.45 [1.05 1.80] 0.010 [0.006 0.016] 1.15 [1.02 1.33]

. . . with LL-space restriction 0.011 [0.007 0.016] 1.91 [1.73 2.10] 0.017 [0.005 0.039] 1.32 [1.03 1.56]

(iii) incomplete first aftershocks 0.018 [0.012 0.026] 1.71[1.53 1.88] 0.017 [0.008 0.025] 1.28 [1.13 1.41]

. . . for c = 0.0007 day;K = 0.008 0.014 [0.009 0.021] 1.54 [1.35 1.71] 0.0011 [0.0007 0.0015]1.20 [1.12 1.27]

. . . with LL-space restriction 0.008 [0.006 0.010] 1.87 [1.74 1.98] 0.0008 [0.0005 0.0010] 1.21 [1.14 1.27]
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Table 3. Results for the estimated ETAS parameters in the case of the earthquake swarms in Western Bohemia. To avoid incompleteness problems, the

likelihood value has been optimized in the second and third case for each swarm only for them ≥ 1.5 earthquakes. The0.5 ≤ m < 1.5 events were only

used for the calculation of the rate function.

year background background fraction K α c p

2000 constant 0.4% 0.0185 0.55 0.00048 1.35

. . . withLL-space restriction 2% 0.0050 1.50 0.00026 1.33

µ(t) 11% 0.0036 1.41 0.00026 1.37

2008 constant 0.2% 0.0269 0.28 0.00041 1.29

. . . withLL-space restriction 0.6% 0.0065 1.55 0.00081 1.37

µ(t) 19% 0.0045 1.56 0.00045 1.36
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Table 4.Median values as well as the 10% and 90% quantiles of the estimated ETAS parameters for the 36 earthquake clusters in California. The first two

cases refer to the inversion based on constant background forcing without (a) and with (b) additional restrictions of the likelihood space. The case (c) shows

the results in the case that time-dependent background forcing is allowed with restricted likelihood space.

K [K10% K90%] α [α10% α90%] c [c10% c90%] [days] p [p10% p90%]

(a) constant background 0.023 [0.000029 0.040] 1.65 [0.91 2.87] 0.0057 [0.00023 0.033] 1.06 [0.85 1.27]

(b) . . . withLL-space restriction 0.011 [0.000004 0.027] 1.75 [1.00 3.41]0.0033 [0.00011 0.030] 1.11 [0.88 1.29]

(c) µ(t) 0.005 [0.000001 0.024] 1.96 [0.84 3.40] 0.0028 [0.00001 0.032] 1.20 [0.99 1.54]
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Figure 1. Examples of tested ETAS simulations: (a) transient triggering with smooth transient forcing

(ETAS-1) and (b) with mainshock-type aseismic forcing (ETAS-2). Both simulations consists of 100 back-

ground events. The dotted lines refer to the true backgroundforcing rates.

Figure 2. Inversion results for ETAS-simulations with constant forcing (ETAS-0, left in each plot) and tran-

sient forcing (middle: ETAS-1 and right: ETAS-2). Black symbols indicate the inversion results assuming

constant background rate, while red symbols refer to results if potential time-dependent forcing is consid-

ered. We only show here the results withNb = 500 background events; simulations with 100 background

earthquakes yield similar results, albeit with larger error bars. The true parameters of the simulations are

indicated by the horizontal line. In all cases, crosses refer to the median value of 100 simulations while the

error bars show the range between the 10% and 90% quantiles.

Figure 3.Examples of earthquake catalogs artificially corrupted to represent realistic catalog problems. Red

points refer to events deleted from the analyzed catalogs. The plots (a) to (c) refer to case (i) to (iii) in the

text and Tab. 2, respectively.

Figure 4. Western Bohemia swarm activity observed in the year 2000 and2008: (a) the frequency-

magnitude distributions (b-values of 0.88 and 1.25 indicated by dashed lines); (b) and (c) magnitude versus

time plots, where the dotted lines refer to the inverted background rates. Note that the cutoff magnitude for

the analysis is set to 0.5.

Figure 5.Scatter plot of estimatedα-values and the spatially closest heat-flow value. Black symbols indicate

clusters which can be explained byα = 2.3, i.e.∆AIC = AIC2.3 − AIC ≤ 0, while the colored points

indicate clusters, where the Akaike information criteria points to a differentα-value:α < 2.3 (red) and

α > 2.3 (green). Large symbols refer to those clusters with higher significance,∆AIC ≥ 2.
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