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Abstract

Modal Acoustic Velocimetry was introduced by Triana et al. (2014) as a new
method inspired from helioseismology for probing fluid flows. Acoustic modes
are excited in a spinning fluid-filled spheroid. Rotation and fluid flow modify
the characteristics of these modes, lifting the degeneracy of non-axisymmetric
modes. So far, this method has only been applied to stationary or statistically
stationary flows, by measuring frequency splittings in the spectral domain. Here,
we develop strategies to probe libration-induced flows. One strategy operates in
the frequency domain and relies on the periodicity of the flow, while the other
one rests on a high-resolution algorithm in the time domain. The retrieved mode
frequency splittings are compared to those computed for an asymptotic libration-
induced flow (Greenspan 1968), validating both our strategies. Inversion of these
splittings to retrieve fluid flow is presented in a companion article (Nataf and Su
2025).
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1 Introduction

This article describes acquisition strategies developed to apply Modal Acoustic
Velocimetry for flows produced by longitudinal libration in a rapidly spinning gas-
filled spheroid. These strategies are implemented in the ZoRo experiment. The basics
of Modal Acoustic Velocimetry are recalled in this introduction, together with a brief
description of libration-induced flows, a presentation of the ZoRo setup, and a reminder
about acoustic modes. Two acquisition strategies are presented in section 2. Resulting
experimental results are compared with theoretical predictions in section 3. Section 4
discusses the limitations and perspectives of our study, and we conclude in Section 5. A
companion article (Nataf and Su 2025) deals with the inversion of the data presented
in this study and presents maps of the retrieved flows.

1.1 Modal Acoustic Velocimetry

Modal Acoustic Velocimetry (MAV) was introduced by Triana et al. (2014) as a new
method to measure flow velocity in fluid-filled cavities. It is inspired by helioseismology
and proves useful in experiments where tracers cannot be employed, such as in rapidly
rotating spheres or spheroids (Triana et al. 2014; Mautino 2016; Su et al. 2020; Su
2020; Vidal et al. 2020). The method consists in exciting the acoustic normal modes
of the fluid in the cavity, and measuring for each mode the frequency shift induced
by solid body rotation and fluid flow. Previous works (Triana et al. 2014; Mautino
2016; Su et al. 2020; Su 2020) focused on stationary or statistically stationary flows.
Acoustic modes can then be excited by long-lasting chirps, covering a wide frequency
range and providing a fine frequency resolution. In this article, we report on strategies
we developed to apply MAV on non-stationary flows, focusing on time-periodic flows
induced by libration.

1.2 Libration

Libration-induced flows in rapidly-rotating spheres and spheroids have received a lot of
attention because of their geophysical and planetary relevance (Aldridge 1967; Tilgner
1999; Comstock and Bills 2003; Noir et al. 2009; Busse 2010; Le Bars et al. 2015;
Cébron et al. 2021). For longitudinal libration, the instantaneous rotation frequency
fshell(t) of a gas-filled shell can be written as:

fshell(t) = fo +∆f sin(2πflibt), (1)

where fo, ∆f , and flib denote the average shell rotation rate, libration amplitude,
and libration frequency, respectively. We will only consider cases with ∆f ≪ fo and
flib ≪ fo, allowing to neglect non-linear effects and the harmonic modulation of the
boundary-layer flow, respectively.

This shell motion can be regarded as a continuous succession of infinitesimal spin-
up and spin-down forcings, which have been studied in detail by Greenspan and co-
workers (Greenspan and Howard 1963; Greenspan 1968).

In the asymptotic regime corresponding to rapid rotation and small libration ampli-
tude, the induced flow obeys Proudman-Taylor constraint, and is thus z-independent
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(where z marks the coordinate along the rotation axis) except in a thin viscous
boundary layer beneath the shell, the Ekman layer.

In an axisymmetric shell spinning around its symmetry axis, fluid flow is then a
function of cylindrical radius and time only. Following Deleplace (2005, p.42-46), the
fluid rotation rate ffluid(s, t) in the rotating frame is then obtained as

ffluid(s, t)

∆f
=

ξ√
1 + ξ2

sin

(
2πflib t+ π + arctan

1

ξ

)
, (2)

where the expression of ξ depends on the geometry of the shell. For a sphere of radius
ro, it is given by

ξ =
flib

fEkman
(1− s2)3/4, (3)

where s is the cylindrical radius, normalized by ro and

fEkman

fo
=

√
2πν

for2o
= 2πEk1/2,

where ν is the kinematic viscosity of the fluid, and Ek = ν/(2πfor
2
o) is the Ekman

number. The expression for an axisymmetric spheroid is derived in Appendix A.
Figure 1 shows the fluid rotation rate predicted for flib/fEkman = 0.266, which

corresponds to flib = 0.05 Hz for the ZoRo experiment filled with air at normal
conditions (ν = 1.5× 10−5 m2 s−1), spinning at fo = 15 Hz. Dimensionless fluid flow
rotation rate ffluid(s, t)/∆f is contoured in an s-t map, with time t normalized by
Tlib = 1/flib.

Another representation is proposed in Figure 2, where s-profiles of the fluid rotation
rate (in the librating shell frame) are shown at different libration phases every 36◦

from 0◦ to 324◦. Crosses give the same quantities as measured in the equatorial plane
of an axisymmetric numerical simulation performed in the spherical geometry, using
the XSHELLS package (Schaeffer 2013; Kaplan et al. 2017), with ∆f = 1.5 Hz and
Ek = 4 × 10−6. The differences between the finite amplitude numerical simulation
and the analytical asymptotic expression are very small in this parameter range. For
large libration amplitudes ∆f , longitudinal rolls develop in the Ekman boundary layer
during the spin-down phase of the libration cycle (Noir et al. 2009). These rolls are
clearly observed in axisymmetric numerical simulations when increasing ∆f to 3.6 Hz.

In this article, we restrict our attention to the stable regime for which Greenspan’s
asymptotic theory provides an excellent flow prediction. This is the type of time-
periodic flow that we produced and analyzed in our ZoRo experiment, which we now
describe.

1.3 The ZoRo experiment

The ZoRo experiment was set-up to investigate convective and mechanically induced
flows in a rapidly rotating gas-filled spheroid. Such flows are observed or expected in
the fluid enveloppes of planets. The experiment consists in an aluminum shell that can
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Fig. 1 Isocontours of fluid rotation rate as a function of time and cylindrical radius, as predicted
by Greenspan’s theory for libration in a rapidly spinning sphere, with flib/fEkman = 0.266. Fluid
rotation rate is expressed in the spinning shell reference frame, and normalized by ∆f . Cylindrical
radius and time are normalized by ro and Tlib, respectively.

spin around a vertical axis at rates up to 50 rotations per second. The shell can be
filled with different gases (air, nitrogen, argon) kept at pressures between 0.3×105 and
4 × 105 Pa. The axisymmetric cavity has an equatorial radius req = 0.2 m and polar

radius rpol = 0.19 m. A sphere of the same volume has radius ro = 3

√
r2eqrpol = 0.1966

m.
The MAV technique was implemented in ZoRo since strong centrifugal effects

disqualify tracer-based techniques. The rotating shell is thus equipped with four
loudspeakers and fourteen microphones. Su et al. (2020) describe the methodology
developed to excite, measure, model, and process the acoustic modes of ZoRo. They
also show measurements of acoustic mode splitting caused by the Coriolis force in solid
body rotation, confirming the theory of Ledoux (1951). More details can be found in
Su et al. (2020) and Su (2020).

Libration is produced by varying the instantaneous spin rate of the shell with time
in a sinusoidal fashion. Particular care is given to the synchronization of the various
measurements (see Appendix B for details). In ZoRo, the libration flow shown in
Figure 1 is obtained with fo = 15 Hz and flib = 0.05 Hz, when it is filled with air at
ambient pressure and temperature (ν = 1.5 × 10−5 m2 s−1). The Ekman number is
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Fig. 2 Same libration flow as in Figure 1, with fo = 15 Hz, flib = 0.05 Hz and ∆f = 1.5 Hz.
Solid lines show fluid rotation rate as a function of cylindrical radius from Greenspan’s theory, for
selected libration phases from 0◦ to 324◦ in 36◦-steps. Crosses are the corresponding fluid rotation
rates measured in the equatorial plane of an axisymmetric numerical simulation (Ek = 4× 10−6).

then Ek = 4×10−6, yielding fEkman = 0.188 Hz, and the exponential thickness of the
viscous layer beneath the shell, called the Ekman layer, is δEkman =

√
ν/(2πfo) = 0.4

mm.

1.4 Acoustic modes

We briefly recall here a few basic properties of acoustic modes in a gas-filled spheroid
(more details in (Ledoux 1951; Moldover et al. 1986; Mehl 2007; Aerts et al. 2010;
Triana et al. 2014; Su et al. 2020; Vidal et al. 2020)). Starting from a full sphere,
we recall that acoustic modes are quantized. The pressure field of a resonant acoustic
mode can we written as:

p(r, θ, ϕ) =nRl(r)Y
m
l (θ, ϕ), (4)

where Y m
l (θ, ϕ) is the spherical harmonic of degree l and order m, which describes

the surface variation of the mode’s pressure field. Index n gives the number of zeroes
of function nRl(r), which provides the radial variation of the mode’s pressure field,
and is given by nRl(r) = jl(nkl r), where jl is the spherical Bessel function of the
first kind, of degree l, and nkl is such that, for a rigid shell, nR

′
l|r=1 = 0, where the

prime represents the r-derivative. Each mode resonates at a specific frequency nf
m
l .
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In a sphere of radius ro, frequencies are m-degenerate: nf
m
l =nfl = nkl c/(2πro) for

all m, with c the sound velocity of the gas.
In a spheroid, this m-degeneracy is partly lifted, but doublets nS

±m
l still have the

same frequency. Global rotation and/or azimuthal flows lift this remaining degeneracy.
MAV thus measures the frequency difference between singlets nS

−m
l and nS

m
l to

retrieve global axisymmetric maps of azimuthal flow velocity.
Following Su et al. (2020), we compute predicted mode frequencies nf

m
l by pertur-

bation theory to the second order in ellipticity, in order to obtain the right ordering of
the doublets. Note that we the projection on spherical harmonics is an approximation
in the spheroidal case, and only applies for moderate flattening. See Su et al. (2020)
for details, and Vidal et al. (2020) for a more complete and rigorous presentation.
One limitation of the shape perturbation theory we use (Mehl 2007) is that it does
not provide the eigen function perturbation. However, the flattening of ZoRo is small
enough that using the spherical eigen modes is appropriate. A method for computing
pressure fields at higher-order in ellipticity is presented in Albo et al. (2010).

2 MAV strategies for time-periodic flows

Previous MAV exercises (Triana et al. 2014; Mautino 2016; Su et al. 2020) excited
acoustic modes by playing long chirps covering a large frequency range, and retrieved
mode frequencies from the Fourier transform of the recorded signals. This strategy is
well fit for stationary flows or for retrieving the mean of a moderately fluctuating flow.
For time-varying flows such as those generated by libration, one would like to capture
acoustic signatures in a short time lapse, of the order of a second for the case shown
in Figure 1. From Nyquist’s theorem, frequency resolution would then be of the order
of one Hertz.

However, we will see that these flows produce mode splittings that typically range
from 0.5 Hz to 15 Hz. This suggests that a frequency resolution of 1 Hz is not sufficient
to properly constrain the flow. Faced to this problem, we developed and tested two
strategies, which we now present.

2.1 Long chirps repeated with a libration phase offset

Our first strategy is to play and record long chirps (typically ∼ 90 seconds) covering
the full frequency range (500 to 5 000 Hz) we can access. We thus obtain Fourier power
spectra with a resolution of the order of 0.01 Hz. Of course, flow evolves while the
chirp is played, but a given mode is only excited at a given time, or rather during a
short time lapse (typically less than 0.2 to 1 second). Keeping track of the evolution of
libration phase during the chirp, the measured splitting of a given mode can then be
attributed to a known libration phase. By repeating the same chirp at different initial
libration phase we scan the evolution of each mode splitting with libration phase.

An example is shown in Figure 3. Libration parameters are fo = 15 Hz, flib = 0.05
Hz and ∆f = 1.5 Hz, and we play an 82s–long chirp spanning from 500 to 5 000 Hz.
This chirp is repeated 10 times. During one chirp, the setup experiences 4.1 libration
periods. Successive chirps thus sample the libration flow with a phase shift of 36◦.
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Fig. 3 Frequency spectra of split acoustic doublet 1S
±3
3 for 10 successive libration phases, 36◦ apart.

Libration parameters : fo = 15 Hz, flib = 0.05 Hz and ∆f = 1.5 Hz. (a) measured power spectra.
The plot is a zoom centered at 2395 Hz of full spectra obtained by playing a 82s–long chirp spanning
from 500 to 5 000 Hz. The legend indicates the libration phase achieved by the setup when the center
frequency is played. (b) synthetic spectra computed from the splitting predicted by the convolution
of the acoustic sensitivity kernel with Greenspan’s libration flow model. Note that a phase delay of
10◦ has been added to the synthetics as compared to the measured data. The two magenta stems
mark the frequencies of the 1S3

3 and 1S
−3
3 singlets for solid body rotation of the fluid with the shell

at spin rate fo.

We compute the power spectrum of the signals recorded for each of the ten 82s–long
chirps.

Figure 3a displays a zoom of the ten spectra focused on acoustic doublet 1S
±3
3 .

As in Su et al. (2020), each spectrum is obtained following these steps: (i) since this
doublet is equatorially symmetric (because l−m is even), we first sum the time-records
of pairs of equatorially symmetric microphones; (ii) we compute the power spectrum
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of three such summed time-records; (ii) we take the mean of these three power spectra.
The libration phase of each mean power spectrum, as listed in the legend, is deduced
from the time t − t0 at which the central frequency of the doublet is played in the
chirp, t0 corresponding to a nul libration phase.

Figure 3b shows synthetic power spectra computed for the same libration phases,
augmented by a 10◦ delay (for reasons to be discussed later). Each spectrum is built
following these steps: (i) the theoretical frequencies of the 1S

3
3 and 1S

−3
3 singlets are

obtained by convolving the acoustic velocity kernel with the theoretical libration-
flow model of equation 2 for the considered libration phase 2πflib(t − t0); (ii) the
acoustic power spectrum is computed by convolving each singlet’s resonance lines with
a Lorentzian (Su et al. 2020).

In this figure, the largest splitting is obtained for a libration phase of 59◦. From
Figures 1 and 2, we see that the fluid rotation rate (in the spinning shell frame) is
retrograde and near its minimum at that phase. The splitting decreases as the libration
phase increases, until a phase of 167◦ when a single frequency peak is observed. This
occurs when the splitting due to the fluid flow exactly cancels the splitting due to the
shell spin, which is indicated by the two magenta stems for a fo = 15 Hz spin rate. As
the fluid flow becomes positive (prograde) the two singlets cross each other, yielding
a splitting that increases again to a secondary maximum at a phase of 347◦.

The exact same evolution is observed in Figure 3a, with almost identical ampli-
tudes. The main difference is the width of the resonance peaks, which is larger than
expected from the theory, some widening being probably due to the evolution of the
flow during the resonance buildup.

Our phase-offset long chirp strategy then consists in measuring the frequency
splitting of as many doublets as possible for ten successive libration phases.

For each doublet, the splitting estimate and its error bar are obtained with the
following steps (Su et al. 2020): (i) ‘plus’ and ‘minus’ time-records are obtained from
the sum and difference of sound recorded by four pairs of equatorially-symmetric
microphones (nS

±m
l doublets with even l −m show up in ‘plus’ records, while those

with odd l−m are seen in ‘minus’ records); (ii) ‘plus’ and ‘minus’ records are Fourier
transformed; (iii) the resulting four ‘plus’ power spectra are averaged yielding ‘mean+’
power spectrum, and ‘mean-’ is obtained similarly; (iv) doublets nS

±m
l are identified in

these spectra with the help of synthetic spectra, and a windowed spectrum is extracted
together with a first estimate of mode splitting; (v) individual synthetic spectra are
built varying four of their constitutive ingredients: doublet’s peak-to-peak splitting,
doublet’s mean frequency, doublet’s amplitude, and singlets’ peak width; (vi) a grid
search on these four elements provides the best splitting and its error bar.

This strategy only applies to time-periodic flows and requires that the played chirp
largely dominates over other noise sources.

2.2 Short chirps and high-resolution frequency analysis

We developed a second strategy: play a short chirp centered on the frequency of a
single acoustic doublet. Fluid rotation splits this doublet into two singlets with slightly
different frequencies. The time-domain record of a given microphone thus consists in
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Fig. 4 Examples of the high-resolution analysis. Histograms (in red) of frequencies recovered by the
iterative IRWIN algorithm for doublet 1S3

3 at three different libration phases. The dot-dashed blue
line gives the standard Fourier spectrum computed for each 0.82s-long time window.

the superposition of two sine signals with slightly different periods. A one second-long
record contains thousands of cycles, enough to detect and measure the two frequencies
with a precision of 0.01 Hz. In other words, while obtaining the full frequency spectrum
is limited by Nyquist theorem, this limit vanishes when the signal consists in the sum
of a small number of sines that we wish to retrieve.

Processing follows a variant of the IRWIN method presented by Roux et al. (2004)
and Philippe et al. (2008). The main ingredients of this method is recalled in Appendix
D. For our application, the following steps are taken: (i) a short chirp (lasting typically
less than 1 second) is repeatedly played on one or two loudspeakers, covering the res-
onance frequency range of a targeted doublet. (ii) we compute the auto-correlation of
each record. (iii) we choose the number of monochromatic components to be searched
for, and the frequency interval for the search. (iv) we launch an ensemble of inver-
sions. (v) we gather the results in histograms that count the number of times each
frequency has been recovered in the ensemble. One or two peaks normally stand up,
yielding the singlets’ frequencies and their error bar. (vi) the procedure is repeated
for the following chirps, probing successive phases pf the libration-induced flow.

Figure 4 illustrates the performance of our high-resolution algorithm for three dif-
ferent libration phases for doublet 1S

±3
3 . While Nyquist theorem limits the frequency

resolution of the standard power spectrum (dot-dash blue line) of our 0.82s-long time
window, the high-resolution algorithm (red) isolates one or two frequencies very pre-
cisely in the time-domain signals. The middle panel shows a case when the algorithm
only marginally recovers the frequencies.

The main limitation of this technique is that only a limited number of doublets can
be targeted at the same time. We obtained good results with up to four simultaneous
doublets, but the examples shown below target a single doublet. One advantage of
this method is that it can be used to probe non-periodic time-varying flows.

3 Comparing observations and synthetics

We give here examples of measurements obtained with both strategies. The data are
compared with predictions computed by convolving the time-dependent fluid flow with
the kernel of each acoustic mode. Fluid flow ffluid(s, t) is computed using the linear
geostrophic theory of Greenspan and Howard (1963) adapted to libration in a spheroid,
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namely from equations (2) and (A2). Note that we often replace time t by the libration
phase ϕ(t) = 2πflib t mod 2π. The acoustic kernel nKm

l (s) provides the frequency
splitting δf

nS
±m
l

(t) of acoustic doublet nS
±m
l (see definition and expression in Nataf

and Su (2025)). Note that although we compute mode frequencies by perturbation
theory to second-order in ellipticity (Su et al. 2020), we use the acoustic kernels of a
sphere.

3.1 Mode splitting collection from phase-offset chirps
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Fig. 5 Peak-to-peak frequency splitting in Hz as a function of libration phase for six selected acoustic

doublets nS
|m|
l . Data points with error bars are measured in the ZoRo experiment librating with

fo = 15 Hz, flib = 0.1 Hz and ∆f = 1.5 Hz. Phase-offset chirps with two different durations were
used: 90s (blue) and 39s (red) Splittings predicted from Greenspan’s theory are drawn for ZoRo’s
spheroid (solid line) and for the sphere (dashed line), which plot on top of each other.

We could measure the frequency splittings of some 53 doublets with the phase-offset
long chirps strategy. Figure 5 compares results obtained for two chirp durations: 90
and 39 seconds. Libration parameters are: fo = 15 Hz, flib = 0.1 Hz and ∆f = 1.5 Hz.
For each selected acoustic doublet nS

±m
l , the measured splitting (frequency difference

between spectral peaks of nS
−m
l and nS

+m
l singlets) is plotted as a function of libration

phase. All splittings are first corrected for the effect of the Coriolis force computed
at the rotation rate of the shell fshell(t). We use the Ledoux coefficients of Vidal
et al. (2020) computed for ZoRo’s flattening, but the difference with the spherical
Ledoux coefficients is negligible except for the lowest frequency fundamental modes.
The measurements are compared to the splittings predicted by the libration flow model
for a spheroid (solid line) and for a sphere (dashed line), which are almost perfectly
superposed. The signature of the time-varying libration flow is very well retrieved
by MAV, but data appear to probe a libration flow that is about 20◦ further, which
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corresponds to a delay of about 0.5s. No significant difference is seen between the two
chirp durations. We will get back to the delay problem in section 3.2.
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Fig. 6 Frequency splittings for two different libration frequencies: flib = 0.1 Hz (blue) and 0.05 Hz
(magenta), both with fo = 15 Hz and ∆f = 1.5 Hz as in Figure 5. Symbols and error bars for mea-
surements with 90s- and 98s-long phase-offset chirps. Sine solid lines for corresponding Greenspan’s
predictions for ZoRo’s spheroid.

Figure 6 compares two cases with different libration frequencies: flib = 0.1 Hz as
in Figure 5 versus flib = 0.05 Hz (98 s-long chirp). At smaller libration frequencies,
fluid gets toward better synchronisation with shell’s rotation rate, implying smaller
differential rotation and smaller phase shift between the fluid and the shell. This
behaviour is clearly seen in the synthetic curves, and well recovered by MAV.

The splitting evolution with phase libration is shown in Appendix C for all 53
acoustic modes.

3.2 Short chirps results

We tested the short-chirp technique on acoustic doublet 1S
±3
3 . First tests with chirps

spanning 2 350 to 2 430 Hz in 4 seconds were performed for a uniform shell rotation,
with fo ranging from 1 to 20 Hz, providing splittings from 0.19 to 3.85 Hz, with error
bars of about 0.01 Hz, in excellent agreement with Ledoux coefficients computed by
3rd order-perturbation in ellipticity and rotation rate by Vidal et al. (2020).

The method was then applied to libration flows. Figure 7 shows an example of 1S
±3
3

doublet’s splitting as a function of libration phase. Libration parameters are fo = 15
Hz, flib = 0.084 Hz and ∆f = 1.5 Hz. A succession of 32 identical signals is played.
Each signal consists of a 0.37 s-long chirp from 2360 to 2398 Hz, followed by a 0.37 s
silence. The signal is played simultaneously by two loudspeakers placed at latitudes
+45◦ and −45◦ along the same meridian, thus favoring equatorially symmetric modes.
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Fig. 7 Splitting example of the short chirps method. Libration parameters: fo = 15 Hz, flib = 0.084
Hz and ∆f = 1.5 Hz. A succession of 32 short chirps centered around the resonant frequencies of the

1S
±3
3 doublet. Each chirp plays frequencies 2 360 to 2 398 Hz in 0.37s and is followed by a silence of

equal duration.

The overall sequence covers two libration periods. The resulting record is chopped
to recover the response to each individual chirp, and the high-resolution algorithm is
applied to each of the 32 extracted time records. The algorithm measures the proba-
bility for a given frequency to be present in the record. Figure 7 is a composite plot of
the probability maps of all 32 segments. Two frequencies clearly emerge, which follow
a sine pattern, thus revealing the variation of the 1S

±3
3 doublet’s frequency splitting as

a function of libration phase. Note that the two sine curves cross each-other, because
the splitting produced by the flow exceeds the Coriolis splitting for this doublet, as in
Figure 3.

We now go deeper into the analysis of these measurements. Figure 8 compiles
several measurements and predictions for this doublet. We first retrieve the frequency
splitting for each chirp from the data of Figure 7, yielding the green solid curve in
Figure 8. Note that the resulting sine curve is not centered on the zero line but on the
magenta horizontal dash line, which marks the splitting due to solid body rotation
at the fo spin rate (i.e., the Ledoux coefficient times fo). The green dash-dot curve
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Fig. 8 Comparison between predicted and measured frequency splitting of the 1S
±3
3 doublet. Libra-

tion parameters as in Figure 7: fo = 15 Hz, flib = 0.084 Hz and ∆f = 1.5 Hz. The x-axis is time
given in chirp number. There are exactly 16 chirps in one libration period. The y-axis is the frequency
difference between singlets 1S

−3
3 and 1S

+3
3 . The green solid curve is derived from the data of Figure

7. The green dash-dot line is the sine fit of frequencies obtained for another run (see text). The blue
solid line gives the frequency splitting predicted by convolving Greenspan’s libration flow with the
acoustic splitting kernel (for a sphere) of the 1S

±3
3 doublet. The blue dashed and blue dotted lines

are the same prediction shifted by −0.37s and 0.37s respectively. The magenta symbols are from a
computation taking into account the exact spheroidal geometry of the experiment. The magenta hor-
izontal dash line gives the splitting for solid body rotation at fo = 15 Hz.

is a sine fit of the data obtained in another run, playing a succession of 64 chirps
lasting 0.74s (no silence between chirps), from 2 350 to 2 430 Hz. The two curves almost
coincide.

Let us compare these data with the splitting expected for this libration flow.
The blue solid line gives the time-evolution of the frequency splitting predicted from
Greenspan’s linear theory, after convolution of the time-dependent fluid flow with the
acoustic kernel. The time taken into account for the computation of the flow is the
center-time of the 0.74s-long chirp. The blue dotted line instead considers the start-
time of the chirp, while the blue dash line considers the end-time of the chirp. We see
that the data almost perfectly agree with the latter prediction, both in pattern, in
amplitude, and in phase. We conclude that the mode splitting we measure is perfectly
consistent with the fluid flow predicted by Greenspan’s linear theory. This is in line
with the results shown in Figure 2, which show an excellent agreement between that
theory and a finite amplitude axisymmetric simulation. However, our measurements
confirm a delay of the order of 0.3s between the flow and its acoustic modal response,
confirming the observations of section 3.1. We believe that it corresponds to the time
for a mode to build up, as detailed in Appendix E.

13



We checked for another potential bias. The acoustic kernels we use to compute
the predicted splittings are for a sphere. Since it was shown by Su et al. (2020) that
theory had to be extended to second order perturbations in ellipticity in order to
provide a correct ordering of the frequencies of a given multiplet, our simplification
could introduce a bias. We checked that this was not the case, at least for the 1S

±3
3

doublet presented here. For that, we ran a simulation of the acoustic response of a
ZoRo-like spheroid using the finite-element COMSOL Multiphysics®software, with
fo = 15 Hz, imposing Greenspan’s flow. The magenta symbols in Figure 8 give the
results we obtain for two different libration phases. They plot exactly on the blue solid
line, which corresponds to the response of a sphere.

3.3 Combining both strategies

One advantage of the high-resolution method is that it provides a much more precise
estimate of the frequency splitting. This might turn important when inverting splitting
data to retrieve fluid flow velocity. Conversely, the short chirp strategy targeting a
single mode provides a limited information on the flow. It therefore appears interesting
to combine the two strategies, which is what we have done. From the first strategy,
we obtained first-step splitting data for a large collection of doublets (typically ∼ 50),
covering all libration phases (typically from 0 to 360◦ in 36◦ steps). We then extracted
the raw acoustic signals and the corresponding played chirp segment around the time
at which these doublets were excited. These short signals were then analyzed with our
high-resolution technique. The main difference with the direct short-chirp strategy is
the contamination of the records by remnants of other resonances than the targeted
doublet.

Figure 9 shows a few examples of the results we obtain. The first example,
for the 0S

1
2 doublet, shows two frequencies that are very precisely retrieved, fitting

Greenspan’s prediction within less than 0.2 Hz, the higher frequency singlet being less
prominent. The detections around 950 Hz are from the 0S

2
2 doublet.

In the second example, for 0S
1
4 , the recovered dominant frequencies appear shifted

by some 15 Hz from the expected values. It could be due to the interference with the
neighbouring 0S

2
4 doublet.

For the 0S
5
5 doublet, the lower frequency is well retrieved but one cannot clearly

identify the frequency of the second singlet.
The last example (mode 3S

3
3) yields good results, but spurious hits might render

the proper identification difficult.
Our tests show that this combined strategy can give good results, allowing for a

higher precision, when the number of intervening frequencies is limited, but is unsuc-
cessful when many modes are present within the considered time-window. A more
evolved treatment along the same lines could probably yield better results.

3.4 Acoustic mode splitting collection

Using the phase-shifted long chirp strategy, we were able to measure the splitting of
53 identified doublets, with frequencies between 500 and 5 000 Hz, from multiplet 0S1

to multiplets 0S14, 1S10, 2S5 and 3S4, for almost all libration phases.

14



0
S

2

1

2 4 6 8 10

Chirp Number

940

945

950

955

960

965

970

975

980

F
re

q
u
e
n
c
y
 [
H

z
]

0
S

4

1

2 4 6 8 10

Chirp Number

1605

1610

1615

1620

1625

1630

1635

1640

1645

F
re

q
u
e
n
c
y
 [
H

z
]

0
S

5

5

2 4 6 8 10

Chirp Number

1870

1875

1880

1885

1890

1895

1900

1905

1910

1915

F
re

q
u
e
n
c
y
 [
H

z
]

3
S

3

3

2 4 6 8 10

Chirp Number

4280

4285

4290

4295

4300

4305

4310

4315

4320

F
re

q
u
e
n
c
y
 [
H

z
]

Fig. 9 Examples of results obtained with the combined long chirps-high resolution strategy. As in
Figure 7, the color maps are composites of 10 stripes corresponding to 10 successive libration phases
(x-axis). Each stripe gives the probability that a given frequency (y-axis) is present in the piece of
record analyzed by the high-resolution algorithm. Uniform blue stripes when no data is available. The
white dashed lines and circles are the predictions obtained by convolving Greenspan’s geostrophic
azimuthal flow with the acoustic splitting kernel. From left to right: 0S1

2 , 0S
1
4 , 0S

5
5 , and 3S3

3 doublets.
The trend towards larger frequency for larger libration number is due to the warming up of the gas
inside ZoRo. It is taken into account in the predictions.

Figure 10 shows an example of splittings measured for a libration phase of 180◦ (by
least-square sine interpolation of the data at 10 libration phases), with fo = 15 Hz,
flib = 0.05 Hz and ∆f = 1.5 Hz. Overtone (n > 0) spectral peaks are usually much
more narrow than those of fundamentals (n = 0), yielding smaller splitting error bars.
These data are used in a companion article (Nataf and Su 2025) that focuses on the
inversion of such data to recover fluid flow.

4 Limitations and perspectives

So far, the value of Modal Acoustic Velocimetry for mapping fluid flows in gas-filled
containers was only demonstrated for steady or statistically steady flows (Triana et al.
2014; Mautino 2016; Su et al. 2020; Su 2020). We have presented and tested two
different strategies to acquire acoustic data in a gas-filled container when the gas
experiences a non-stationary flow. Our first strategy only applies to time-periodic
flows. By playing a suite of long chirps that are offset by an increasing phase lag with
respect to the periodic flow, we can retrieve the frequency splitting of a large collection
of acoustic doublets (typically 60) from each spectra of the suite. We can therefore
sample the flow at different phases and get a rather complete flow map by inversion,
given the large number of recovered doublets.
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Fig. 10 Measured peak-to-peak splitting (in Hz) of 53 doublets, labeled along the x-axis by their
(n, l, |m|) index triplet. Libration-driven flow at a phase of 180◦, with fo = 15 Hz, flib = 0.05 Hz and
∆f = 1.5 Hz.

Our second strategy relies on playing a succession of very short chirps that can
follow the flow evolution. Non-periodic flows can thus be monitored, but only through
their signature on a limited number of acoustic doublets (typically 1 to 4). The high-
resolution algorithm we developed provides a much higher resolution of the frequency
splitting than the classical measurement from the power spectra.

In both cases, we have observed that a given acoustic mode samples the flow at a
time delayed by of a few tenths of a second after its eigenfrequency is played. We think
that it is due to the time it takes for a mode to build up, but this point would need
further analyses. As a matter of fact, libration-induced flows provide an interesting and
original tool for probing the buildup process of a large collection of acoustic modes.

Although the acquisition of the data is quite fast, its post-processing is rather
time-consuming, requiring visual inspection of the spectra for reliable mode identi-
fication and splitting measurement. Su et al. (2020) have shown how to build very
realistic synthetic spectra. The prediction of libration flows is also very reliable. One
can therefore envision more automated or artificial intelligence-based processing.

The focus of our present article is rather methodological. We hope it opens the way
to a broader experimental study of libration or precession flows in more exotic regimes.

5 Conclusion

We present the first application of Modal Acoustic Velocimetry to time-varying fluid
flows. Focusing on periodic libration-induced flows, we have proposed and tested two
acquisition strategies.

The first one rests on exciting a large collection of acoustic modes by playing
long-duration chirps (typically 100s) spanning a large frequency range (typically from
500 to 5 000 Hz) in order to obtain a good spectral resolution (typically 0.01 Hz) of
the resonance peaks, and thus of the frequency splitting produced by the flow. By
playing such chirps several times (typically 10 times) starting at successive phases of
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the libration-induced flow, we can recover the time-evolution of the flow. The trick
being to relate the time at which a given acoustic doublet is excited to the libration
phase at that instant.

The second strategy targets individual doublets, which we excite by a succession of
short chirps (typically spanning 80 Hz in 0.4s). Each chirp probes a different phase of
libration. For such a short chirp, a standard power spectrum is not efficient at resolving
the frequency splitting of the doublet. But its duration is long enough for hundreds
of cycles to be played and recorded. We thus apply a high-resolution algorithm that
tests for the presence of a limited number of monochromatic components and yields
the two dominant frequencies, corresponding to the individual singlets.

Both methods yield mode splittings that agree very well with the predictions
derived from Greenspan’s theory (Greenspan 1968). However, we observe a small unex-
pected delay, which we attribute to the time needed for the acoustic mode to build
up. A detailed study of this delay could bring interesting constraints of this buildup
process.

We could acquire the time-evolution of the splitting of 53 acoustic doublets for
various libration parameters. A companion article presents the results of 1D- and 2D-
inversions of such measurements to recover the time-evolution of the libration-induced
fluid flow.

Supplementary information. Supplementary Material provides the audio file
example HP0111 per spe O15L3T12 3f.wav (30.8 Mo). The file is in the ‘WAV’ for-
mat and contains 11 channels sampled at 44100 Hz on 16 bits. The first eight channels
are the signals recorded by 8 microphones situated at a latitude of ±32◦ and different
longitudes. Channels 9 and 10 record a libration trigger signal, and a chirp start sig-
nal, respectively. Channel 11 records a magnetometer signal used as a rev-counter (see
Appendix B for details). The file contains the acoustic response of the ZoRo experi-
ment to a succession of 32 short signals simultaneously played on two loudspeakers at
latitudes +45◦ and −45◦ along the same meridian. Each of the 32 signals consists in
a short chirp, playing frequencies 2 360 to 2 398 Hz in 0.37s, followed by a silence of
equal duration. This chirp targets acoustic doublet 1S

±3
3 . Libration parameters are:

fo = 15 Hz, flib = 0.0841 Hz, and ∆f = 1.5 Hz.
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Appendix A Libration in a spheroid

Given a longitudinal libration of the spheroid given by equation (1), we derive the
expression of the fluid rotation rate ffluid(s, t) in the reference frame of the spinning
spheroid. The spheroid being specified by its equatorial req and polar rpol radii, we
define

fEkman

fo
=

√
ν

2πfor2eq
= Ek1/2 and c =

rpol
req

.

The regime of interest is flib/fo ≪ 1 in our case, and the boundary Ekman layers can
then be considered as steady. Greenspan and co-workers (Greenspan and Howard 1963;
Greenspan 1968) have studied the spin-up of a fluid in axisymmetric containers of
geometry −f(s) ≤ z ≤ g(s). Using equation (5.17) of Greenspan and Howard (1963),
we obtain that the expression for ffluid(s, t) is the same as equation (2) for the sphere
if the ξ parameter is given by

ξ =
flib

fEkman

f + g

[1 + (f ′)2]1/4 + [1 + (g′)2]1/4
, (A1)

where the prime denotes the derivative with respect to the cylindrical radius s. Con-
sidering the spheroid geometry f = g = c(1− s2)1/2, we retrieve that ξ−1 is given by
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equation (A10) of Noir and Cébron (2013), i.e.

ξ =
flib

fEkman

f3/2

(f2 + c4s2)1/4
=

flib
fEkman

c

[1− s2(1− c2)]
1/4

(1− s2)3/4, (A2)

where the cylindrical radius s is now normalized by req. Since 1 + (f ′)2 = f−2 in the
sphere (c = 1), ξ is easily formulated in function of the normalized semi-column height
f(s). By contrast, equation (A2) cannot be simply derived from the formula in the
sphere (equation 2) where the normalized semi-column height f in the sphere would
have been replaced by that of the spheroid f = c(1−s2)1/2. Note finally that the fluid
response ffluid(s, t) can also be obtained for any values of flib/fo by considering time
periodic boundary layers, but at the price of a more complex expression Cébron et al.
(2021).

Appendix B Experimental libration diagnostics

Our strategies require sound playing, sound recording, and mechanical driving of the
spheroid to be synchronized within a few hundredth of a second. We describe here
the steps taken to achieve this goal. The guiding idea is to record synchronization
signals together with the acoustic signals on the same data acquisition card, all writ-
ten is the same wave-format audio file. One typical file thus consists in 11 channels:
signals from 8 microphones, a libration nul-phase trigger, a chirp start trigger sig-
nal, and a magnetometer signal. The latter is used as a rev-counter: 3 magnets are
installed at known longitudes at the equator of the spheroid, yielding a specific sig-
nature as they pass in front of a magnetometer chip fixed in the Lab reference frame.
An Audacity®screenshot of part of a typical audio file is shown in Figure B1. The
complete file is given as Supplementary Material.

Figure B2 illustrates how we exploit the audio files to check the response of the
motor to the libration instructions, and to synchronize the acoustic records with the
libration record. Time is counted from the start of the audio file. The blue vertical
stems mark times at which the libration phase is an integer multiple of 2π, as read
from channel 9. The red vertical stems mark chirp starts obtained from channel 10.
The blue dots give the instantaneous spin rate of the spheroid computed from the
magnetometer signal of channel 11. It can be compared with the requested spin rate
(green line) constructed from the libration parameters (fo = 15 Hz, flib = 0.084114
Hz, ∆f = 1.5 Hz) timed by channel 9’s trigger.

For this to work, the motor drive should execute the instructions with a minimal
delay. The Kollmorgen AKM73Q®motor drive executes instructions sent by a National
Instruments real-time compactRIO (cRIO) controller via an EtherCAT®network com-
munication protocol. The requested motor spin rate, and the measured torque and spin
rate are exchanged between the cRIO and the servo every 1ms (larger than the 62.5µs
lower limit for this protocol). The measured values are averaged over 10 samples. The
whole experiment is controlled by a home-made program, written in National Instru-
ment LabVIEW®language, and operated through a multi-tabs user interface running
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Fig. B1 Audacity®screenshot of part of a typical audio file. Only channels 7 to 11 are shown.
Channels 7 and 8 are microphone records. Channel 9 shows one libration nul-phase trigger. Five chirp
start triggers are seen on channel 10. Channel 11 records the magnetometer signal that is used as a
rev-counter.

on a Windows®Personal Computer (PC) connected to the cRIO via ethernet. All other
measurements are retrieved through Data Acquisition Cards connected to this PC.

The PID settings of the motor drive result from a compromise: minimize the
time-delay between instructed and achieved spin rate, while keeping the level of instan-
taneous torque fluctuations low enough to limit noise and allow for large libration
amplitudes.

Our acoustic chirps are computed by a Python program and written in a six
channels WAV file. The first four channels are the signals sent to each of the four loud-
speakers, while the last two only contain a trigger that marks the chirp start. All six
channels are played by an ASUS®Xonar DGX audio card in the main PC. Tests reveal
that the signals sent by the audio card are delayed by 15ms on channels 5 and 6, and
by 5ms on channel 4. These delays are corrected for in the synchronization software.
We checked that no delay was introduced on all channels of the TASCAM®US-16x8
Audio/MIDI Interface used to process the microphone signals.

Appendix C Supplementary plots

Figures C3 and C4 show frequency splitting versus libration phase for our collection
of 53 acoustic doublets nS

±m
l . ZoRo is filled with nitrogen at atmospheric pressure.

Libration parameters are: fo = 15 Hz, flib = 0.05 Hz and ∆f = 1.5 Hz. Chirps
played from 500 to 5 000 Hz in 82s. Measured splittings are plotted with their error
bars. The dashed lines are sine-interpolations of the measurements. The solid lines
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are predictions obtained by convolving the geostrophic azimuthal flow of Greenspan’s
theory with the splitting kernel of each acoustic doublet.

Appendix D High-resolution algorithm

Many theoretical, numerical, and experimental works have been performed on the
determination of discrete frequencies in a multi-tone audible signal that can be gener-
alized to a complex spectrum search (Kay and Marple 1981). High-resolution methods
were developed such as the multiple signal classification (MUSIC) technique (Rajan
and Bhatta 1993; Candy and Sullivan 1989; Chouhan and Anand 1993; Krasny and
Antonyuk 1997), the Prony method (Shang et al. 1988), and the more sophisticated
ESPRIT algorithm (Roy and Kailath 1989; Roy et al. 2003). This latter approach
is similar to the more general matrix-pencil method (Hua and Sarkar 1990; Laroche
1993).

The originality of IRWIN (Roux et al. 2004; Philippe et al. 2008) is to combine a
modified Prony method (Scharf and Demeure 1991) with an iterative approach that
looks for the frequency occurrence when different sets of data points are chosen within
the time record.

We present here the main steps of the algorithm. We assume that the acoustic
pressure field recorded at a given microphone is dominated by M monochromatic
signals. Naming δt the sampling time step of the record, we can express the time-record
P (n) over a time-window nδt as:

P (n) =
M∑

m=1

ãm [exp (iωmδt)]
n
=

M∑
m=1

ãmznm, (D3)
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where ωm is the angular frequency of the m monochromatic component, and ãm its
amplitude. Our goal is to identify the components zm of largest amplitude from a col-
lection of time-windows with increasing number of points n, i.e. solving the following
set of equations:

P (0) = ã1 + ã2 + ...+ ãM
P (1) = ã1z1 + ã2z2 + ...+ ãMzM
...

P (M − 1) = ã1z
M−1
1 + ã2z

M−1
2 + ...+ ãMzM−1

M

...

P (2M − 1) = ã1z
2M−1
1 + ã2z

2M−1
2 + ...+ ãMz2M−1

M

(D4)

The first step is to symbolically invert the first M equations of this system to
express amplitudes ã1 to ãM as a function of the data P (0) to P (M − 1) and of the
phases z1 to zM . Replacing ã1 to ãM in the last M equations, one obtains a system
that is strongly non-linear in the variables zm but linear in the Elementary Symmetric
Polynomials (ESP) Em of the zm unknowns, given by:

E1 =

M∑
i=1

zi, E2 =

M∑
i=1

M∑
j=i+1

zizj , ..., EM = πM
i=1zi. (D5)

One thus recovers the following set of linear equations:
P (M) = P (M − 1)E1 − P (M − 2)E2 + ...+ (−1)M−1P (0)EM

P (M + 1) = P (M)E1 − P (M − 1)E2 + ...+ (−1)M−1P (1)EM

...
P (2M − 1) = P (2M − 2)E1 − P (2M − 3)E2 + ...+ (−1)M−1P (M − 1)EM

(D6)

The ESP are then easily obtained. The unknowns zm are obtained as the roots of a
polynomial of degree M whose coefficients are the ESP E1 to EM .

Appendix E Acoustic mode buildup

Both strategies we developed rely on the capture of the flow by a given acoustic mode.
When the flow is time-dependent, the question is: when does the mode capture the
flow? The results presented in sections 3.1 and 3.2 both indicate that this capture
occurs a few tenths of a second after the resonance peak frequency of the mode is
played. Here, we show that this is comparable to the time it takes for a mode to build
up or to fade away.

We tested mode buildup by first identifying the resonant frequency of a few modes,
playing 10s-long monochromatic sounds, with a step-by-step frequency increase of 1
Hz. The frequency yielding the largest amplitude is the resonant frequency. We then
played a sine signal at this frequency for 10s, and observed the raise of the response
on our microphone array.

Figure E5 shows the growth and decay of mode 1S
3
3 at one microphone. The enve-

lope of the signals can be fit by 1−exp (−t/τ) and exp (−t/τ) functions (Trusler 1991,
p.219), defining buildup time τ . In the ZoRo experiment at rest, our measurements
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yield buildup times τ = 0.30, 0.22, and 0.20s for modes 0S
2
2 , 1S

3
3 and 2S

0
1 , respec-

tively. We have not conducted a systematic survey of these buildup times, and the
effect of the rotation, of playing a chirp, and of the convolution with the time-varying
flow remain to be explored. However, this analysis supports our interpretation of the
observed time-delay of our observation with respect to Greenspan’s prediction as being
due to mode buildup.
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Grenoble Alpes [2020-....] (February 2020). https://theses.hal.science/tel-02612799

Shang, E., Wang, H., Huang, Z.: Waveguide characterization and source localization
in shallow water waveguides using the Prony method. The Journal of the Acoustical
Society of America 83(1), 103–108 (1988)

Tilgner, A.: Driven inertial oscillations in spherical shells. Physical Review E 59(2),
1789 (1999)

Trusler, M.: Physical Acoustics and Metrology of Fluids. CRC Press, ??? (1991)

Triana, S.A., Zimmerman, D.S., Nataf, H.-C., Thorette, A., Lekic, V., Lathrop, D.P.:
Helioseismology in a bottle: Modal Acoustic Velocimetry. New Journal of Physics
16(11), 113005 (2014)

Vidal, J., Su, S., Cebron, D.: Compressible fluid modes in rigid ellipsoids: towards
modal acoustic velocimetry. Journal of Fluid Mechanics 885 (2020)

25

https://theses.hal.science/tel-02612799


0

90

18
0

27
0

36
0

-202
0
S

22

o
b

se
rv

ed

p
re

d
ic

te
d

si
n

e 
fi

t

0

90

18
0

27
0

36
0

-6-4-2024
0
S

33

0

90

18
0

27
0

36
0

-505
0
S

44

0

90

18
0

27
0

36
0

-202
1
S

11

0

90

18
0

27
0

36
0

-1
00

1
0

0
S

55

0

90

18
0

27
0

36
0

-4-2024
1
S

22

0

90

18
0

27
0

36
0

-505
1
S

33

0

90

18
0

27
0

36
0

-505-5
2
S

11

0

90

18
0

27
0

36
0

-505

1
S

44

0

90

18
0

27
0

36
0

-505-50
1
S

42

0

90

18
0

27
0

36
0

-505

2
S

22

0

90

18
0

27
0

36
0

-505

1
S

55

0

90

18
0

27
0

36
0

-1
00

1
0

0
S

97

0

90

18
0

27
0

36
0

-1
00

1
0

2
S

33

0

90

18
0

27
0

36
0

-1
00

1
0

1
S

64

0

90

18
0

27
0

36
0

-1
00

1
0

1
S

62
0

90

18
0

27
0

36
0

-1
00

1
0

0
S

1
1

9

0

90

18
0

27
0

36
0

-1
00

1
0

1
S

75

0

90

18
0

27
0

36
0

-1
0-505

1
S

73

0

90

18
0

27
0

36
0

-1
0-505

1
S

71

0

90

18
0

27
0

36
0

-1
0-50

3
S

22

0

90

18
0

27
0

36
0

-1
0-50

0
S

1
2

1
0

0

90

18
0

27
0

36
0

-1
0-50

1
S

86

0

90

18
0

27
0

36
0

-1
0-50

1
S

82

0

90

18
0

27
0

36
0

-1
0-505

3
S

33

0

90

18
0

27
0

36
0

-2
00

2
0

1
S

97

0

90

18
0

27
0

36
0

-2
00

2
0

1
S

1
0

8

Fig. C3 Frequency splitting (in Hertz) versus libration phase (in degrees) for 27 equatorially sym-

metric nS
|m|
l doublets. Libration parameters: fo = 15 Hz, flib = 0.05 Hz and ∆f = 1.5 Hz. From

ten phase-offset 82s-long chirps. Solid line: splitting prediction from Greenspan’s theory. Dashed line:
least-square sine fit to measured splittings.
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Fig. C4 Same as Figure C3 for 26 equatorially anti-symmetric nS
|m|
l doublets.
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Fig. E5 An example of mode buildup and decay. Doublet 1S3
3 was excited, by playing a 10s-long

monochromatic sound at its resonance frequency of 2362 Hz. The record at one of the microphones
is displayed. (a) Zoom on the growth of the acoustic mode. (b) Zoom on its decay. The envelopes
are well fit by 1 − exp (−t/τ) and exp (−t/τ) (magenta dashed lines) with τ = 0.22 and τ = 0.24,
respectively.
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