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Abstract

Modal Acoustic Velocimetry consists in mapping fluid flow in a container from
the modifications of its acoustic resonances it induces. In a companion article
(Nataf et al. 2025), we presented measurements of 53 acoustic mode frequency
‘splittings’ produced by a libration-induced flow. The present article aims at
recovering models of this flow through the inversion of the splitting data. We
apply the SOLA inversion method, often used in helioseismology. Our data con-
strain the azimuthally-averaged fluid rotation rate. Both 1D- and 2D-inversions
are performed. We know that the linear flow model of Greenspan (1968) gives a
good account of the observed splittings. The inversions recover the main char-
acteristics of this time-dependent flow. The 2D-inversion confirms the invariance
of the flow along the rotation axis. Resolution kernels show that flow can be
mapped on patches that spread over ∼ 5% of a meridian quarter-plane.

Keywords: Modal Acoustic Velocimetry, libration, spheroid, acoustics, SOLA

1 Introduction

In a companion article entitled ‘Modal Acoustic Velocimetry in libration-driven flows
- Part 1 : Acquisition strategies’ (Nataf et al. 2025), noted ‘Paper 1’ in the following,
we presented different strategies to acquire the frequency splitting of acoustic doublets
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in a gas-filled rotating spheroid subject to longitudinal libration, expressed as:

fshell(t) = fo +∆f sin(2πflibt). (1)

Such splittings were measured for 53 nS
±m
l acoustic ‘doublets’ at several different

phases of the periodic libration flow. The present article aims at recovering flow
properties from these measurements.

1.1 Modal Acoustic Velocimetry for libration flows

How to obtain flow maps from the acoustic doublets’ frequency splittings measured
by Modal Acoustic Velocimetry (MAV)? Let us first recall that such a splitting can
be produced both by the Coriolis acceleration (Ledoux 1951) and by fluid flow within
the container (Aerts et al. 2010). Only the axisymmetric azimuthal component of
flow velocity can be retrieved. Our goal is thus to obtain 2D meridional maps of
axisymmetric fluid azimuthal velocity (or fluid rotation rate ffluid).

Greenspan’s linear theory of longitudinal libration in rapidly rotating spheroids
indicates that this velocity component largely dominates the flow, except in a very
thin Ekman layer beneath the container wall, where fluid experiences large meridional
velocities (Greenspan 1968). In the experiments we performed, the thickness of the
Ekman layer is less than 0.5mm, to be compared with the 0.20m equatorial radius
of the spheroid. The theory also reveals that the flow organizes itself in concentric
cylinders aligned with the rotation axis. Fluid azimuthal velocity thus only depends
upon cylindrical radius s. Therefore a 1D inversion should also provide a good fit to
the measured frequency splittings.

We have shown in Paper 1 that convolving Greenspan’s flow with acoustic splitting
kernels provides predicted frequency splittings that closely match the measured ones,
apart for a small systematic time delay. This offers a good opportunity for assessing
how well Modal Acoustic Velocimetry resolves and constrains fluid flow in actual
experiments. Note that there is a linear relationship between mode frequency splitting
and fluid rotation rate.

1.2 Flow velocity kernels

Once a collection of mode splittings is available, the next step is to invert these split-
tings to retrieve the flow velocity field. Let us first recall the relationship between the
measured splittings and the fluid rotation rate. Given the properties of rapidly spin-
ning fluids, we consider two coordinate systems: a classical (r, θ) system, with θ the
colatitude and r the radius, and an (s, z) system with s the cylindrical radius, and z
the coordinate along the spin axis. All lengths are normalized by the inner radius of

the shell ro = 3

√
r2eqrpol = 0.1966 m.

1.2.1 2D kernels

Following Triana et al. (2014), we express the difference nδf
m
l between the frequen-

cies of singlets nS
−m
l and nS

m
l as a function of the rotation rate ffluid(r, θ) of the
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axisymmetric flow by:

nδf
m
l = 2m

∫ 1

0

∫ π

0
nK

m
l (r, θ)ffluid(r, θ) rdrdθ, (2)

where sensitivity kernel nK
m
l (r, θ) is given by:

nK
m
l (r, θ) =

r sin θ

nIl

{
ξ2rp

2 + ξ2h

[
q2 +

m2

sin2 θ
p2 − 2

pq

tan θ

]
− 2ξhξrp

2

}
, (3)

with:

p = Pm
l (cos θ), q =

dPm
l (cos θ)

dθ
, ξr =

d [nRl(r)]

dr
and ξh =

nRl(r)

r
, (4)

and nIl a normalization integral:

nIl =

∫ 1

0

[
|ξr(r)|2 + l(l + 1)|ξh(r)|2

]
r2 dr. (5)

Pm
l (cos θ) is the associated Legendre polynomial, and the radial eigenfunction

nRl(r) equals the spherical Bessel function of the first kind jl evaluated at nkl r:

nRl(r) = jl(nkl r), (6)

with nkl such that ξr(1) = 0 (no radial wave displacement at the solid shell boundary).
Note that all kernels are positive and symmetrical with respect to the equator of

the reference frame. Although we compute mode frequencies to the second order in
ellipticity, we stick to kernels of the sphere in our inversions. A method for computing
pressure fields at higher-order in ellipticity in presented in Albo et al. (2010).

The 2D sensitivity kernels nK
m
l (r, θ) of the collection of 53 modes discussed in this

article are displayed in Appendix A.

1.2.2 1D kernels

Since Greenspan’s flow is z-invariant, we integrate (r, θ) mode splitting kernels over
z to get nKm

l (s) sensitivity kernels, in order to recover ffluid(s). We first express the
2D (r, θ) kernels in the (s, z) reference frame:

nKm
l (s, z) = nK

m
l (r =

√
s2 + z2, θ = arctan(s/z)). (7)

We then integrate over z to obtain the 1D nKm
l (s) sensitivity kernels:

nKm
l (s) =

∫ h(s)

−h(s)
nKm

l (s, z) dz with h(s) =
√

1− s2, (8)
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which provides the frequency splitting nδf
m
l of acoustic doublet nS

±m
l through:

nδf
m
l = 2m

∫ 1

0
nKm

l (s)ffluid(s) ds. (9)

Figure 1 displays the 1D sensitivity kernels nKm
l (s) as a function of dimensionless

cylindrical radius s for the collection of modes analyzed in this article. Note that
kernels are not sharply localized and that sensitivity to fluid flow is obtained for
0.2 ≲ s/ro ≲ 0.9, all kernels dropping to 0 at s/ro = 0 and s/ro = 1.
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4

Fig. 1 Plot of 1D sensitivity kernels nKm
l (s) as a function of dimensionless cylindrical radius s for

the collection of 53 acoustic doublets nS
±m
l analyzed in this article.

1.3 Tuning for libration flows

Here, we aim at recovering the libration-induced flow rotation rate in the frame of
the spinning shell. This is why we corrected measured frequency splittings from the
Coriolis splitting computed for the instantaneous spin rate of the shell. We can then
use the kernels presented in the previous section to obtain ffluid in the shell reference
frame.

1.4 Inversion methods

Many inversion methods can be used for solving our linear problem. We will not
review the vast literature on this topic, but only recall a few methods used in previous
MAV studies. Two different methods were used in the seminal paper of Triana et al.
(2014): a Tikhonov regularization and a semi-spectral Bayesian inversion. The former
minimizes the second spatial derivatives of the flow velocity, while the latter relies
on spherical harmonics to deal with the latitudinal flow variation, while a Bayesian
approach is taken for its radial variation. A critical assessment of both methods is given
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by Mautino (2016) who reviews several alternatives. He also stresses that, considering
the limited number of modes used in these early studies, the choice of the model
smoothness parameters plays a major role, a concern shared by Su (2020) who used
the semi-spectral Bayesian algorithm.

1.4.1 SOLA inversion

In order to better assess the intrinsic resolving power of a given data set of acoustic
splittings, it seems appropriate to turn to ‘Optimally Localized Averages’ (OLA) inver-
sion methods, pioneered by Backus and Gilbert (1967). These methods have recently
gained a renewed interest in seismology (Zaroli 2019), and are widely used in helio-
seismology since the seminal papers of Pijpers and Thompson (1992, 1994). The idea
of this class of methods is to extract from the data the best unbiased value of model
parameters at a given location, or more precisely within a given volume around the
target location. Two variants stand out: ‘Multiplicative Optimally Localized Averages’
(MOLA) and ‘Subtractive Optimally Localized Averages’ (SOLA).

The results of this article are obtained using the SOLA inversion method, closely
following the detailed prescriptions of Zaroli (2019). Appendix B provides a summary
of SOLA’s procedure and notations. In our 2D SOLA inversions, we target disks of
a given radius in the meridional plane, while our targets are s-segments in our 1D
inversions.

The main drawback of OLA inversion methods is that they only target a few
selected spots of model space. Hence, they do not provide a complete continuous ‘best’
model. This prevents computing the resulting best fitting data, to be compared with
the original data with their error bars. In the simple examples we show, we circumvent
this limitation by targeting enough spots in model space. A smooth continuous model
is then built by interpolation/extrapolation, from which synthetic data of the inverted
model can be computed.

Although OLA methods are often presented as ‘parameter-free’, they involve a
‘trade-off’ parameter η, which governs the ratio between resolution misfit and model
variance (see equation B1). The choice of η can be made to obtain a normalized misfit
close to 1. Since we observe that Greenspan’s flow provides a very good fit to our
splitting data, we can double check that the chosen ‘trade-off’ parameter provides
flows that respect the smoothness of Greenspan’s flow, given the collection of mode
splittings we retrieve, and the precision of the measurements.

We present the ingredients and the results of a 1D SOLA inversion in Section 2,
and of a 2D SOLA inversion in Section 3, both for a selected libration run with fo = 15
Hz, flib = 0.05 Hz and ∆f = 1.5 Hz (see Paper 1 for explanations). Limitations and
perspectives are given in Section 4, and we conclude with Section 5.

2 1D SOLA flow inversion

Since we do expect libration flow to be largely z-invariant, we start with 1D SOLA
inversions. In Paper 1, we obtained the frequency splitting of a collection of 53 acoustic
doublets for 10 different phases of the periodic libration flow. Due to our acquisition
strategy, the sampled libration phases are different for different modes. For all modes,

5



the variation of the frequency splitting with libration phase is well fit by a sine. We
thus use this sine pattern to interpolate our measurements to a set of 10 fixed libration
phases from 0◦ to 324◦ in 36◦ steps. We attribute to each interpolated splitting an error
equal to the mean of the 10 (or less) estimated errors for the considered measurements
for each mode. An inversion of the 53 acoustic splittings is performed for each of the 10
selected libration phases. Note that although 10 independent inversions are computed,
the data they invert correspond to the phases of a single sinusoidal fit of each mode.

2.1 Fluid rotation rate profiles

Fig. 2 1D SOLA inversion results for libration flow (fo = 15 Hz, flib = 0.05 Hz and ∆f = 1.5 Hz):
normalized fluid rotation rate as a function of dimensionless cylindrical radius for 10 libration phases
(legend in degrees). The width of the color boxes gives the targets’ width, while their height is the
inversion error. The color dashed lines are the predictions from Greenspan’s flow at each libration
phase delayed by 10◦.

Figure 2 gathers the fluid rotation rate ffluid(s) s-profiles obtained from the inver-
sions at 10 libration phases. The width of each box gives the target’s width, while its
height is the error estimate of the inverted model for this target. For comparison, we
draw the profiles predicted by Greenspan’s linear theory. In Paper 1, we pointed out
that the measured splittings appear to be late by a few tenths of a second, probably
because our acquisition strategy does not account for the time it takes for an acoustic
mode to build up. Therefore, we add a phase-delay of 10◦ (corresponding to 0.56s) to
the synthetics.

For this inversion, we chose η = 40. The amplitudes and trends of the theoretical
profiles are well retrieved in our inversion. However, the gentle decrease of ffluid with
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s between s = 0.7 and s = 1 is not correctly retrieved. We will discuss the reasons for
this disagreement in section 4, where we also explore the effect of different values of η.

2.2 Resolution kernels

An advantage of the SOLA inversion method is that it emphasizes the actual resolving
power of the data, in a more objective way than other methods.

Fig. 3 Resolution kernels A(k)(s) for the 1D SOLA inversion of the splittings of 53 acoustic doublets.
For each of the 12 targets, the resolution kernel is plotted as a function of dimensionless cylindrical
radius, on top of a gray-shaded vertical band that gives the position and width of the target.

Figure 3 plots the resolution kernels A(k)(s) for the 12 s-segments we target. All
resolution kernels appear well peaked around the target, except for the target near
the center axis (s/ro = 0.4). Low scores in these regions are expected, since all MAV
flow kernels vanish on the axis (see Figure 1). Negative lobes present for most kernels
indicate that the estimate of the flow rotation rate we retrieve is not perfectly ‘unbi-
ased’. We also note that the width of the resolution kernels at mid-height is at least
twice as large as the targets’ width.

2.3 Data fits

We now examine the fit to the data achieved by our inverted 1D models. Remember
that the SOLA method only provides the best model estimate at targets. We need a
complete s-profile to compute the predicted frequency splittings of the acoustic dou-
blets we inverted. We use MATLAB®’s modified Akima (Akima 1970) interpolation
method to construct a smooth ffluid(s) curve, imposing ffluid = 0 at s = 1. We can
thus compare the measured frequency splittings, with their error bars, to the splittings
predicted by our best model. Figure 4 shows such a comparison for a libration phase
of 180◦. We see that our model can explain almost all measurements within their error
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Fig. 4 Measured peak-to-peak frequency splitting [Hz] of our collection of 53 acoustic doublets for
a libration phase of 180◦, with their error bars (black symbols). The red symbols are the splittings
predicted from a smoothed s-profile of ffluid of our inverted model (grey-shaded targets in Figure
3). The (n, l,m) indices of the modes are indicated beneath the x-axis.

bars, with an average normalized misfit misfit ≃ 0.73, where misfit is defined as:

misfit =

√√√√〈(
δfpred − δfmeas

σ

)2
〉
, (10)

in which δfmeas is the measured splitting of a given doublet, σ is its error bar, and
δfpred is the splitting predicted by the inverted model for the same mode. The average
is performed over the 53 doublets of our collection.

3 2D SOLA flow inversion

We now turn to a 2D inversion, with the goal of examining how well our mode collection
constrains the z-invariance of fluid flow that characterizes Greenspan’s asymptotic
solution. We thus use the 2D kernels presented in section 1.2.1 to invert the same
collection of 53 splittings and retrieve ffluid(r, θ) at selected (r, θ) targets.

3.1 Fluid rotation rate maps

We chose 64 targets that cover most of an (r, θ) quarter-plane, as depicted in Figure 5.
Remember that one can only retrieve flows that are symmetrical with respect to the
equator. Targets are placed on an (s, z) grid, so that we can draw smoothed s-profiles
of ffluid at different z, as depicted in Figure 5c. The targets are disks, with radius
equal to 0.025, except for the z-column at s = 0.25, where we chose a radius of 0.075,
anticipating the poor spatial resolution we expect near the axis.

Figure 5 displays the results we obtain for a libration phase of 180◦, with η = 40.
Inverted ffluid/∆f at target locations are given in 5a, with an error shown in Figure
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Fig. 5 2D SOLA inversion results for libration flow (fo = 15 Hz, flib = 0.05 Hz and ∆f = 1.5 Hz)
at a libration phase of 180◦. (a) disks in a meridional quarter-plane represent the location and size of
the 64 chosen targets, and are colored with the value of the normalized fluid rotation rate ffluid/∆f
obtained by the inversion. (b) the inversion error is colored in a similar representation. (c) ffluid/∆f
as a function of cylindrical radius s for all 64 targets. At each target, the horizontal bar gives its
width, while the vertical bar is the inversion error. Smoothed s-profiles (solid lines) are obtained from
the targets’ results at each of their 6 z-coordinate by Makima-interpolation.

5b. Figure 5c gathers the s-profiles obtained at all 6 z-lines. Value for each target is
given with a horizontal bar giving the target’s radius, and a vertical bar the estimated
error. Smooth s-profiles computed as in section 2 are also drawn.
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Fig. 6 2D SOLA inversion results for libration flow (fo = 15 Hz, flib = 0.05 Hz and ∆f = 1.5 Hz):
normalized fluid rotation rate as a function of cylindrical radius for 10 libration phases (legend in
degrees). For each libration phase, the values obtained at the 6 values of z are drawn. The color solid
lines are the predictions from Greenspan’s flow at each libration phase delayed by 10◦.
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Figure 6 gathers the fluid rotation rate ffluid s-profiles obtained from the inversions
at 10 libration phases. The results are very similar to those shown in Figure 3 from
the 1D inversion. The 2D inversion confirms the z-invariance of the flow. The same
deviations from Greenspan’s predictions show up for s between 0.7 and 1.

3.2 Resolution kernels

Fig. 7 Resolution kernels A(k)(r, θ) for the 2D SOLA inversion of the splittings of 53 acoustic
doublets. For each of the 64 targets, the amplitude of the resolution kernel is color-mapped in a
meridional quarter-plane. A black circle indicates the position and radius of the target.

Resolution kernels A(k)(r, θ) are displayed in Figure 7. As expected, resolution is
very poor near the vertical axis. The kernels are rather well-peaked at target locations
for most other targets, but their radius at mid-height is at least twice as large as the
chosen target’s radius, like in the 1D s-inversion. However, we observe that the 2D-
inversion can clearly resolve the variation of flow rotation rate with z in most of the
domain. We can thus be confident that the near-coincidence of the 6 s-profiles for
each libration phase in Figure 6 is a resolved feature of the flow, in agreement with
Greenspan’s theory.

3.3 Data fits

As discussed in section 2.3, we need a complete model in order to compute the
predicted splittings. We thus constructed a smooth model by first interpolating the
target’s results along s (as shown in Figure 5), and then interpolating these profiles
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in z. Both interpolations are performed with MATLAB®’s modified Akima (Akima
1970) interpolation. Fluid rotation rate is set to zero at the boundary (r = 1).

We can then compute the frequency splitting predicted by our inverted model for
all 53 acoustic doublets. The fit to the data is almost identical to the fit of the 1D
SOLA inversion shown in Figure 4, with misfit = 0.70.

4 Limitations and perspectives

Despite the excellent agreement between measured splittings and their prediction from
Greenspan’s flow model, as displayed in Paper 1 (apart for the observed time-delay),
the retrieval of the fluid flow from these splittings appears somewhat disappointing.
There is no problem with the time-variation, which is already established from the
data and its sinusoidal fit. However, one might have thought that the 1D s-inversion,
with only 12 targets, would fit Greenspan’s profile. It is not quite the case, as shown
in Figure 3.

OLA inversion methods are often presented as ‘parameter-free’ (e.g. see Zaroli
2019). This is true in the sense that no a priori information on the model smoothness,
for example, is needed. However, there remains a choice to be made on the trade-off
parameter η. All results presented so far were obtained with η = 40, for both the 1D-
and 2D-inversions.
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Fig. 8 Normalized fluid rotation rate as a function of cylindrical radius of target locations, from the
inversion of frequency splittings at a 180◦ libration phase, for different values of the η parameter.
The horizontal bars give the targets’ width, while the vertical bars are the inversion error. The blue
dotted line is Greenspan’s profile at a libration phase of 180◦, while the dashed blue line is the same
at a phase delayed by 10◦. (a) results from the inversions of measured splittings; (b) results from the
inversions of synthetic splittings computed from Greenspan’s model.

In Figure 8 we illustrate the impact of different choices for η, in the example of a 1D-
inversion for a libration phase of 180◦. Figure 8a compares the normalized fluid rotation
rate obtained at our 12 s-targets for four inversions with values of η: 10, 20, 40 and
80. The smoothed profile is also shown for η = 40, together with Greenspan’s profiles
for a libration phase of 180◦ (dotted line) and 190◦ (dashed line). We observe that
all models overestimate fluid velocity around s = 0.5, and underestimate it between
s = 0.6 and 0.9. This is a consequence of the trade-offs between these two regions,
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which is also visible in the side lobes of the resolution kernels shown in Figure 3.
Increasing η reduces the oscillation and widens the resolution kernels. It also reduces
the error on the inverted model, but this error only measures the propagation of the
data error in the ‘weighted average’ (Zaroli 2019). It does not reflect the deviation of
that weighted average from the true model. The average normalized misfit only weakly
depends upon η, with misfit = 0.73, 0.74, 0.73 and 0.83 for η = 10, 20, 40 and 80,
respectively.

Deviations of the inverted models from Greenspan’s flow model could be due to the
ellipticity of the ZoRo shell, which is not taken into account in our sensitivity kernels.
It could also be the sign of flow complexities that show up for strong enough libration
(Noir et al. 2009). They could also be due to limitations of the acquisition strategies
exposed in Paper 1, or to a variation of the observed time-delay with mode numbers.
We don’t think that it is the case, because of the excellent agreement between observed
splittings and those predicted by convolving Greenspan’s flow with the acoustic sen-
sitivity kernels and also because synthetic tests display similar spurious oscillations.
This is illustrated in Figure 8b, which shows profiles obtained from the inversions of
synthetic splittings, predicted by Greenspan’s flow model, using the same collection
of modes, with their individual error, and adding a random noise within that error
range. Oscillations around the true model (dotted blue line) are observed for the dif-
ferent values of η. The reason is to be found in the limited spatial resolution allowed
by the set of 53 splittings we could measure. Figure 1 shows that individual sensitivity
kernels are a bit wide, and that their complementarity is limited.

We note that we lack splitting measurements for nS
±m
l doublets with m ≲ l. This

is because their spectral peaks tend to overlap with those of neighboring doublets.
For fundamental doublets (n = 0), spectral peaks are wide and often difficult to pick
unambiguously. However, synthetic spectra computed for Greenspan’s flow model do
provide a good fit to these unresolved spectra. It is thus certainly feasible to obtain
more information from the full frequency spectrum, or from the time-domain analysis
proposed in Paper 1.

5 Conclusion

We have applied the SOLA inversion method to a set of 53 frequency splittings of
acoustic doublets, acquired for several phases of a libration-driven flow, as described in
Paper 1. The inversion yields fluid flow rotation rate ffluid as a function of cylindrical
radius s (1D-inversion) or in an (r, θ) meridional quarter-plane (2D-inversion). The
retrieved values, shown in Figure 2 and 6, respectively, are in good agreement with
Greenspan’s solution for this libration flow (Greenspan 1968; Nataf et al. 2025). The
flow amplitudes and time-variation are very well retrieved, but the exact s-profiles
of ffluid are not perfectly recovered. The analysis of the resolution kernels, shown in
Figures 3 and 7, indicates that the data offer a good (r, θ)-resolution, but over an
averaging area of ∼ 5% of a meridional quarter-plane. The resolution vanishes near
the vertical spin axis, and some trade-offs are present, in particular in the equatorial
region. Obtaining the splittings of more nS

±m
l acoustic doublets, in particular with
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m ≲ l, should improve the resolution and the retrieval of the fluid flow. We believe that
Modal Acoustic Velocimetry offers interesting prospects in fluid dynamic experiments.
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Appendix A 2D sensitivity kernels

Figure A1 shows the 2D sensitivity kernels nK
m
l (r, θ) for the collection of 53 acoustic

doublets nS
±m
l inverted in this study. The ellipticity of ZoRo’s shell is ignored for

these kernels.
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Fig. A1 Meridional map (upper half) of 2D sensitivity kernels nKm
l (r, θ) for the collection of 53

nS
±m
l acoustic doublets inverted in this article. Remember that all kernels are positive and symmetric

with respect to the equator.

Appendix B SOLA inversion

We recall here the SOLA algorithm, closely following the rules and notations given
by Zaroli (2019). The SOLA method aims at finding the optimal unbiased weighted
average m̂(k) of the true model m(r) over a given target k, defined by a function
T (k)(r), typically a ball centered on r(k). For that, it minimizes a cost function:

C(k) =

∫ [
A(k)(r)− T (k)(r)

]2
d3r+ η2σ2

m̂(k) (B1)

subject to the unimodular condition:∫
A(k)(r) d3r = 1. (B2)

The first term of C(k) measures the deviation of the averaging kernel from the target
kernel, while the second term measures the model variance, weighted by the square
of the trade-off parameter η. Note that, following Zaroli (2019), we choose the same
value of η for all targets k.
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Because of the linear relationship between the model parameters and the measured
data, one can express the optimal model we are looking for as:

m̂(k) =

N∑
i=1

x
(k)
i di, (B3)

with N the number of measurements di. The inversion consists in finding the coeffi-

cients x
(k)
i that minimize the cost function C(k). One can then recover the weighted

average m̂(k) from equation B3, and the averaging kernel (resolution kernel) by:

A(k)(r) =
N∑
i=1

x
(k)
i Ki(r), (B4)

where Ki(r) is the sensitivity kernel of the ith data. The propagated model error is
obtained from:

σ2
m̂(k) =

N∑
i=1

(
x
(k)
i

)2

. (B5)

Note that σm̂(k) only measures the error brought by propagating the data errors to the
model space. It is not an estimate of the true error (weighted average m̂(k) estimate
minus the ‘true’ model m(r(k))).

We direct the reader to section 2 of Zaroli (2019) for a detailed description of the

SOLA inversion procedure that yields the requested x
(k)
i coefficients.

In our application, the data vector di is the set of peak-to-peak frequency splittings
obtained in Paper 1, corrected for the Coriolis splitting of the spinning shell, and
normalized by their measurement error. The weighted average m̂(k) is the inverted
rotation rate ffluid of the fluid flow in the spinning shell reference frame, at a given
target k. The target function T (r)(k) is defined on an s-segment between s(k) − w(k)

and s(k)+w(k) in the 1D-inversion, and on a disk of radius w(k) centered on an (r, θ)(k)

point in the 2D-inversion. In both cases, its uniform amplitude a(k) is set in order for
T (r)(k) to satisfy the unimodular condition B2.

References

Aerts, C., Christensen-Dalsgaard, J., Kurtz, D.W.: Asteroseismology. Springer, Dor-
drecht Heidelberg London New York (2010)

Albo, P.G., Gavioso, R., Benedetto, G.: Modeling steady acoustic fields bounded in
cavities with geometrical imperfections. International Journal of Thermophysics
31(7), 1248–1258 (2010)

Akima, H.: A new method of interpolation and smooth curve fitting based on local
procedures. Journal of the ACM 17(4), 589–602 (1970)

Backus, G.E., Gilbert, J.: Numerical applications of a formalism for geophysical inverse
problems. Geophysical Journal International 13(1-3), 247–276 (1967)

15



Greenspan, H.P.: The Theory of Rotating Fluids. Cambridge Monographs on Mechan-
ics and Applied Mathematics. Cambridge University Press, Cambridge, UK (1968)

Ledoux, P.: The nonradial oscillations of gaseous stars and the problem of Beta Canis
Majoris. Astrophysical Journal 114 (1951)

Mautino, A.R.: Inverse spectral methods in acoustic normal mode velocimetry of high
Reynolds number spherical Couette flows. Master’s thesis, University of Maryland
(2016)

Noir, J., Hemmerlin, F., Wicht, J., Baca, S.M., Aurnou, J.M.: An experimental and
numerical study of librationally driven flow in planetary cores and subsurface oceans.
Physics of the Earth and Planetary Interiors 173(1-2), 141–152 (2009) https://doi.
org/10.1016/j.pepi.2008.11.012

Nataf, H.-C., Roux, P., Su, S., Cardin, P., Cébron, D., Do, Y.: Modal Acous-
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