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Abstract

Alfvén waves within the Earth’s fluid core have been detected through
the monitoring of the magnetic field at observatories situated on the
Earth’s surface. Inside the core, geostrophic motions consist of oscilla-
tions of cylindrical annuli about the rotation axis and propagate as Alfvén
waves, with periods in the range 10-100 years. These waves cause torques
acting on the mantle and yield time changes of the rotation period of the
solid Earth that are also monitored. From a modeling of these waves,
Zatman and Bloxham had initiated the inversion of the magnetic field
threading the coaxial geostrophic cylinders in the core interior.

We give an account of existing theoretical models of torsional Alfvén
waves within the Earth’s core. We complement the previous studies that
have considered standing waves only by investigating the propagation of
torsional Alfvén waves as an initial value problem instead. Interestingly,
the direction of propagation of the waves may indicate where dissipation
takes place. In this respect, including a solid inner core in the model is
crucial.

1 Introduction

The Coriolis force is a key ingredient of large scale dynamics of the Earth’s fluid
core, where the waves that are the more important in the dynamo process and
have periods on the order of the magnetic diffusion time are strongly influenced
by rotation. An exact balance between the Coriolis and pressure forces set
apart the geostrophic motions, which are readily accelerated by Lorentz and
other forces. They can form fast Alfvén waves, weakly influenced by magnetic
diffusion. These transverse waves propagate in the directions perpendicular to
the rotation axis. Their frequency is linearly dependent on the intensity of the
magnetic field transverse to the wave motions [Roberts, 1967]. Their study,
which was initiated by Braginsky [1970], has thus the potential to give precious
informations on the otherwise hidden magnetic field within the core [Zatman
and Bloxham, 1998].

Models of the magnetic field at the Earth’s surface can be downward con-
tinued to the surface of the metallic core because the solid mantle of the Earth



is almost electrically insulating. At the Earth’s surface, the declination of the
magnetic field has been mapped for a few centuries [Jonkers et al., 2003]. It
turns out that this is the appropriate timescale to study the evolution of the
large scale (up to harmonic degree 3-4) and nondipolar parts of the magnetic
field. Measurements at magnetic observatories have enabled to characterize
changes in the Earth magnetic field up to degree 6-8 for the last century. Fi-
nally, variations of the magnetic field up to degree 13 between 1980 and 2000
[Hulot et al., 2002] and up to degree 11 during the last few years [Olsen, 2002]
have been recently retrieved from satellite measurements. We note that the
variation of the magnetic field of harmonic degree 13 between 1980 and 2000 at
the Earth’s surface is comparable but still smaller to the total intensity of the
magnetic field of this degree at either of the two epochs [Hulot et al., 2002]. It is
now well established that the duration of magnetic field features is decreased in
proportion of their lengthscale, as expected from a physical standpoint. Unfor-
tunately, the rapid attenuation of small scale features of the Earth’s magnetic
field throughout the mantle will severely limit our ability to map it at the CMB.

In addition to these variations, sudden changes of the large scale part of
the magnetic field have been detected in observatories. They occur simultane-
ously throughout large regions of the Earth’s surface [Alexandrescu et al., 1996].
These events can be characterized as very rapid changes of the rate of variation
of the Earth’s magnetic field. It is customary to call them “jerks”. The first
global one to be detected occurred in 1969. It has been followed by similar
events in 1978, 1991 and 1999. Their recurrence period is reminiscent of the
solar cycle. However, the magnetic signal has predominantly an internal ori-
gin according to spherical harmonic analyses [Malin and Hodder, 1982] and the
magnetic jerks were first detected after isolation of the solar-cycle related vari-
ation [Ducruix et al., 1980]. With one exception [Duhau and Martinez, 1995],
studies of the internal part of the solar-cycle related variation have considered
only magnetic induction in the solid mantle, leaving out processes in the liquid
core. Bloxham et al. [2002] have just argued that the regularity of the occur-
rence of jerks during the last thirty years may result from the propagation of
Alfvén torsional waves within the Earth’s core.

It is only recently that a host of geophysical applications followed up the
initial study of Braginsky [1970]. The trace of Alfvén waves has been searched
in models of core surface flow u , of typical speed a few 10~*m.s~!, derived from
the secular variation (SV) of the Earth’s magnetic field through the equation:
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where B, is the radial component of the magnetic field at the core-mantle bound-
ary (CMB), inferred from models of the magnetic field at the Earth’s surface,
assuming an insulating mantle. This approach has been validated when it has
been shown that changes in core angular momentum carried by geostrophic mo-
tions extracted from surface flow models balance fairly well observed changes
in the angular momentum of the solid Earth [Jault et al., 1988, Jackson et al.,
1993, Hide et al., 2000, Pais and Hulot, 2000]. The basic tenet of these studies is
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that time-dependent zonal motions are geostrophic. The main difficulty is that
zonal motions are not dominant at the core surface. It is compounded by the
lack of models accounting for the non-zonal part of the motions. Recent maps
of flow at the core surface show strong westward winds in the equatorial region
of the Atlantic hemisphere and few motions in the Pacific hemisphere. After
these early studies, Zatman and Bloxham [1997] noted that most of the zonal
motions uy(#) (us orthoradial component, 6 colatitude) symmetrical about the
equator of their velocity models from 1900 to 1990 can be fitted as the sum of
two standing oscillations, with periods 76 and 53 years. Redoing the same anal-
ysis for the shorter epoch 1957-2001 with data better resolved in time, Bloxham
et al. [2002] found three oscillatory motions, with periods 45, 20 and 13 years.

In the case of axisymmetrical solid boundaries, the torsional Alfvén equation
amounts to an equation for the density of angular momentum within the core.
Hide et al. [2000] argued, from the velocity models of Jackson et al. [1993], that
there is propagation of core angular momentum density from the equatorial
to polar regions. Equations of Alfvén waves, in an unbounded fluid, are not
modified under time inversion. When dissipative terms at the boundaries are
omitted, this remains true for the special waves studied here and no direction of
propagation is privileged. The observation of Hide et al. [2000], if it is confirmed,
thus gives an indication of the importance of dissipation for the evolution of
torsional Alfvén waves inside the core. The question of a favoured direction of
propagation has been left untouched by previous models as they were restricted
to standing oscillations. In contrast, we choose here to set an initial value
problem.

The geometry of the fluid outer core very much dictates the characteristics
of these waves. Geostrophic motions u, obey the balance:

2p(Q2 xuy) =-Vpy, ug-nly=0, (2)

where n is the outward normal to the boundary ¥ of the fluid volume, and p,
the pressure. Geostrophic motions are independent of the coordinate z in the
direction of the rotation axis, and are entirely defined by their streamlines on
3, the pair of geostrophic contours I'. Denote respectively zr and zp the z2-
coordinates along each upper and lower geostrophic contours. The length H =
zr—2zp is an invariant of each pair of contours and the geostrophic cylinders C are
defined in a unique way by their total height H. The pressure p, is constant on
each cylinder C, parallel to the rotation axis, generated by geostrophic contours.
Neither the Coriolis force nor the pressure force enter directly the equation
governing the time evolution of the geostrophic velocity. Indeed, integrating the
momentum equation on C to eliminate these forces, as suggested by Bell and
Soward [1996], yields:
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taking into account possible fluctuations of the spin rate Q of the mantle and
noting the position vector r, the unit vector along the rotation axis e,, the



geostrophic contour at the height H above the bottom boundary T'(H, z), the
core density p, the magnetic field B, the electric current density j, and the
buoyancy force pg. We omit here both the viscous and the nonlinear terms.
Assuming a quasi-static ambient magnetic field, we linearize the expression for
the Lorentz force. In presence of the geostrophic motions, a magnetic field b is
induced: _

%—?sz(ung), (4)
in the interior of the core, where the time changes of b are fast enough to make
diffusion negligible. Egs. (3) and (4), with j = Vxb/uo and jxB ~ jx B+jxb,
are analogous to the equations of Alfvén waves (uo is the magnetic permeability).

In the case of an axisymmetrical container, the geostrophic contours are
circular, the buoyancy term vanishes from Eq. (3), and the magnetic term can
be transformed into:
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where (s, ¢, z) are cylindrical coordinates, dl is the element of length along the
boundary in a meridional section, and By is the outward normal component
of the magnetic field at the boundary. In writing Eq. (5), we have assumed
that the container is also symmetrical with respect to the equatorial plane. In
the axisymmetrical case, the angular momentum density is constant on each
geostrophic cylinder. Multiplying Eq. (3) by the distance s to the rotation
axis and integrating it in the fluid volume gives the equation governing the core
angular momentum. In this transformation, the first term on the right hand side
of (5) vanishes and the last term gives the total electromagnetic torque acting
on the core. It vanishes also if the mantle is electrically insulating. Then, there
is conservation of the total core angular momentum.

In the next section, we follow the interpretation of the equation of torsional
Alfvén waves within an entirely fluid spherical body in terms of transport of
angular momentum. This explains well the amplification of the waves in the
vicinity of the equator of the core-mantle boundary (CMB). In the third section,
we discuss the influence of possible bumps at the CMB. That enables us to stress
that the description in terms of density of angular momentum and torques on
geostrophic cylinders is convenient only in the spherical case. We consider also
the pressure torque acting on the mantle throughout the propagation of Alfvén
waves. The model is modified to include a solid inner core in a fourth section.
At this stage, we have to reinstate the magnetic dissipation also. Finally, we
list some works in progress as well as pending problems.
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2 Propagation of Alfvén waves within an entirely
fluid spherical body

The study of Alfvén waves in the spherical case was initiated by Braginsky
[1970] from Egs. (3), (4), and (5). He showed how to eliminate b except for a
surface term. The derivation has just been detailed by Jault [2003]. A magnetic
diffusion layer, set up to match the magnetic field induced in the core interior
to the magnetic field in the mantle has to be taken into account. In a spherical
core, the equation for Alfvén torsional waves is:
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where (7,0, ¢) are spherical coordinates, a the core radius (whence 27 = (a? —
5%)1/2), ey the unit azimuthal vector, u, = sw,(s)ey, A the variable thickness
of a hypothetical thin layer of electrical conductivity o,,(6, #) at the bottom of
the mantle, B, the magnetic field component normal to the core surface, b
the magnetic field at the bottom of the insulating volume inside the mantle,
and {B?} a measure of the s-component of the magnetic field averaged on each
geostrophic cylinder:
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Even though an expression of by, /dt |,—, as a function of wy is directly ob-
tained from Eq. (4), the determination of db,,/dt |,—, necessitates an integra-
tion over the entire core surface. It can be achieved through the calculation of
the potential V', such that

b, =-VV, (8)

which is derived from b,y,,. In the case of axisymmetrical B (and thus b), there
is no poloidal ingredient in bs and by, vanishes. In the non-axisymmetrical
case, however, the last term of Eq. (6) makes the propagation mechanism non
local. Time changes of the mantle spin-rate d€/dt, which are linearly related
to the time changes of core angular momentum carried by geostrophic motions,
yield another non-local coupling mechanism between the motions of the different
geostrophic cylinders. Indeed, we cannot simply transform Eq. (6) into an
*

equation for w; = (w, + ) because of coupling with the mantle (the second



term on the right hand side). Eq. (6) is finally completed by two boundary
conditions,
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which is required to avoid a singularity at (s = a) when ¢ B2d¢ # 0 at the
equator [Buffett, 1998], and
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in the case of non-axisymmetrical B . The mechanism of propagation is de-
scribed by the first two terms of Eq. (6). As the wave propagates, there is
transport of angular momentum density 27s’w,. At the edges of the domain,
where either s or 27 vanishes, we expect amplification of w,. In the geophysical
case, this does not happen near the rotation axis because of the very efficient
coupling between the solid and electrically conducting inner core and the wave
motions. On the other hand, Fig. 2 of Zatman and Bloxham [1997] indicates
amplification of the geostrophic motions at the equator zp = 0. Arguably, their
representation minimizes the actual intensification at the equator because of the
regularization conditions that are required for the modelling.

We set an initial-value problem. Eq. (6) can be transformed into a set of
equations that are readily solved numerically:
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where 7 is an auxiliary variable. This is completed by equations for by, at the
boundary (see Eq. (8)) and for Q. As the actual magnetic field in the core
interior and the distribution of {B2} are unknown, Buffett [1998] based a for-
ward modelling of torsional waves on maps of magnetic field inferred from a
numerical geodynamo model. We build a three-dimensional map of the interior
magnetic field from models of the large scale magnetic field at the core-mantle
boundary, seeking solutions that have the geometry of free decay modes and
neglecting entirely the toroidal component. This is acceptable since our calcula-
tion has only an illustrative purpose. The root mean square {B?}l/ ? (s), shown
on Fig. 1 (full curve), for this ambient magnetic field can be compared with
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Figure 1: Cylindrical average {B2?}'/2 in mT units respectively for the three-
dimensional quasi-static magnetic field of Section 2 (full curve) and the axisym-
metrical field of Section 4 (dashed curve). In the latter case, and for s < b,
the dashed and dotted curves show respectively {B2}!/? in the Northern and
Southern Hemispheres.

the models of Zatman and Bloxham [1998] and Buffett [1998]. At t = 0, we set
7 =0 and by, = 0. Finally, we make a variety of choices for the initial value of
wy. We use conservation of total energy, kinetic and magnetic as a diagnostic,
when the mantle is electrically insulating. Indeed, the last portions of our runs
have to be discarded as waves with ever decreasing length-scales pile up near
the rotation axis. Before this final stage, there is amplification of the motions
in the equatorial region, as expected. Neither positive nor negative s-direction
of propagation is favoured. We find very similar results whether we include
the last surface term of Eq.(6) or not. Finally, we do not dwell on the most
conspicuous feature, which is the magnification of the waves as they get nearer
to the axis since it is drastically modified in presence of a solid and electrically
conducting inner core.

3 Topographical effects at the CMB

It is estimated from nutation models and nutation series derived from very long
baseline interferometry that the ellipticity of the fluid outer core exceeds its
hydrostatic equilibrium value by 3.8% [Mathews et al., 2002]. That corresponds
to an excess of the equatorial radius by 350m. This value gives us a lower
estimate of the height of the corrugations at the CMB. Many seismological
studies have been devoted to the estimation of the CMB topography amplitude.
Recently, Garcia and Souriau [2000] concluded that when averaging over regions
of 20 degrees lateral extent, the topography amplitude is in the range ~ £1.5



km. They found also larger amplitude when averaging over smaller regions.
Sze and Van der Hilst [2003] concurred but argued that the currently available
seismic data can resolve CMB topography at least in some regions. They found
3 km peak-to-peak undulations.

In presence of topography at the CMB or at the Inner Core Boundary (ICB),
geostrophic contours deviate from circles. Then, both the magnetic and buoy-
ancy forces contribute to the geostrophic acceleration because the component of
the buoyancy force parallel to the geostrophic contours does not vanish. Propa-
gation of torsional waves comes with a pressure torque acting at the CMB. This
net torque acting on the mantle is non zero and may play a role in the changes of
the Earth’s rate of rotation over 10—10? years. This is what motivated the inclu-
sion of CMB topography in models of torsional waves propagation [Buffett, 1998|
as the origin of core-mantle coupling is not yet elucidated. Neglecting Lorentz
forces at the top of the core, the non-hydrostatic pressure can be estimated at
the core surface from secular variation data [Chulliat and Hulot, 2000]. It is of
the order of £103Pa. peak-to-peak. Then, a typical magnitude of the pressure
torque acting at the CMB of area ¥ on the solid mantle is hp% (102°N.m.),
which is 10? larger than the actual torque between core and mantle inferred
from LOD variations. On the other hand, the typical pressure B%/uq associ-
ated with magnetic fields like the one considered in the previous section is only
0.1 Pa. More important pressures are obtained when one assumes that there is
a large zonal toroidal magnetic field By(s, z)egin the core interior, which is in-
visible at the core surface and is parallel to the geostrophic cylinders in spherical
geometry. However, Anufriyev and Braginsky [1977] found that the magnitude
of the pressure torque scales then only as h2B(§E /poa because the action of the
zonal pressure cancels out when integrated on the core surface. More general
studies are needed to decide whether the magnetic field in the core interior can
be strong enough to make the pressure field carried by the torsional oscillations
significant for Earth rotation studies without making the Alfvén timescale too
rapid. Finally, other mechanisms, such as the transport of density anomalies by
the torsional waves, can also be contemplated [Jault et al., 1996].

From a theoretical viewpoint, the interesting question is whether the pressure
at the CMB can provide the restoring torque for differential rotation between
the core and the mantle in the same way as the magnetic field provides the
restoring force for torsional oscillations in the core interior. The work of Kuang
and Chao (2001, 2003) gives some indication that the pressure torque may play
a role of this kind. They have recently incorporated topographic coupling in a
self-consistent convective dynamo model. They account for the topography by
modifying the boundary conditions for the velocity and magnetic fields. That
ensures that the geostrophic contours are distorted as the result of the modified
no-penetration condition. They find a large cancellation in the integral that
gives the pressure torque at the core surface.

A discussion of the topographical effects at the CMB starts with Eq. (3). We
lump together the magnetic and buoyancy forces as a force F. The circulation
of the force F along a geostrophic contour I'(H, z) is written:
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Assuming that the corrugations are smooth and of height A small compared
with the core radius a, we use a perturbation approach (¢ = h/a). We first note
that, beyond the order O(g), the interpretation of Eq. (3) as a torque balance
is not correct, as already noted by Fearn and Proctor [1992] in the course of
a derivation of the Taylor’s condition. The angular momentum density is not
uniform on the geostrophic cylinders C(H). The distance to the rotation axis
from C(H) varies and the geostrophic velocity changes along a contour because
the thickness of the annulus A(H) enclosed between two geostrophic cylinders
C(H) and C(H +dH) is not uniform. As aresult, Eq. (3) cannot be transformed
into a torque budget at the O(g?) order. Eq. (3) governs the kinetic energy of
the geostrophic motions rather than the angular momentum density since one
way to obtain it is to take the dot product of any geostrophic-like vector field
with the momentum equation. In conclusion, on the one hand, it is necessary
to invoke the pressure torque to write the equation which gives the differential
rotation between core and mantle but, on the other hand, it is not natural, and
even not correct beyond the order O(g), to interpret the equation governing the
time evolution of the geostrophic velocity as a torque budget.

Returning now to the order O(e), we would like to write how Eq. (6) is
modified when the geostrophic contours are distorted. With this aim in view,
it is helpful to define a spherical reference state and to transform the contours
I'(H, z) into circles. Anufriyev and Braginsky [1977] suggested also to study
separately the effects of topographies respectively symmetrical and antisym-
metrical with respect to the equatorial plane. However, we are not aware that
such a project has been achieved. Previous studies inspired by angular momen-
tum considerations have included only a pressure term at the core surface to
take into account topographical effects. A discussion of the symmetrical case
shows that it is not satisfactory. Then, the geostrophic contours are distorted
in the s-direction by an amount es;(s,¢). Consider again the annulus A(H)
enclosed between two geostrophic cylinders C(H) and C(H + dH). There are
pressure torques acting on the two interior sides C(H) and C(H + dH) of A(H)
and also an O(g) perturbation of the torque exerted by the force Fy(s, ¢, 2) e
on A(H) because of both the variable distance to the axis along a contour and
the variable thickness of A(H) . Thus, the action of the pressure at the top
and the bottom of the annulus cannot be considered in isolation and knowing
the pressure at the boundary does not suffice to calculate the influence of the
boundary topography on the geostrophic acceleration.

4 Influence of a conducting inner core
In the special case of a spherical cavity enclosed between two spheres of radius

respectively b and a, the geostrophic contours are circular and the geostrophic
velocity is constant on each cylinder C. However, inside the region delimited



by the cylindrical surface X1 (s = b) tangent to the inner core, the cylindrical
average {B?} calculated above and below the inner core differs because the
ambient magnetic field B is not symmetrical with respect to the equatorial
plane. In the Northern and Southern hemispheres, we have respectively

(B2} (s) = 27%1/: ?{Bgdqﬁdz, and {B2}” (s) = %LH/TB ?{deqﬁdz,
(13)

with 27 = Va2 —s2, 2p = Vb2 —352, and H = 2z — 2. As a result, the
geostrophic velocity splits up also:

Wy = wgi(s)e¢, at s<b and +2>0. (14)

There is first a weak singularity at (s = b~ ) because the height of the geostrophic
cylinder (27 — zp) changes rapidly as s approaches b from below. However, the
main singularity arises because Eq. (3) changes from one side to the other side
of ¥r. A discontinuity in the geostrophic velocity at Yt cannot be ruled out
because viscosity is neglected in the fluid interior. Then, electrical currents set
up at the cylinder X1 tangent to the inner core (and at the boundary with the
electrically conducting inner core as well)

ob b ~
"(a_j ls=p ‘a—f |s=b—) = —b(wy(b*) —wy(b7))Bs, (15)
ob ob
"(a_j vt = |T=b‘) = —s(wy(s) —wrc)Br, (16)

where wre is the inner core rotation, and = 1/ugo is magnetic diffusivity. The
equation (16) is written assuming equal conductivity o for the solid and liquid
parts of our core model.

The treatment of the inner core in previous studies was quite different from
ours as equatorial symmetry was assumed. Braginsky [1970] argued that the
magnetic coupling between the solid and fluid cores is so strong that wy(s) = wrc
for (s < b). He solved Eq. (6) only for (s > b) with the boundary condition
wy(b) = wre. As Zatman and Bloxham [1997] omitted the inner core in their
model, they studied the propagation of torsional waves only for (s > b) also.
Finally, Buffett [1998] imposed the continuity of w, through s = b and solved
an equation analogous to (6) separately for (s < b) and (s > b) whilst Mound
and Buffett [2003] assumed that, within X7, w, is uniform but not identical
to wrc. The latter authors estimated the evolution of wy(b) from the total
electromagnetic torque acting on the region within ¥ , which was inferred
from dw,/ds | s = bt.

If either the inner core surface or the core-mantle boundary are not perfectly
axisymmetrical, there are fluid lenses void of closed geostrophic contours in the
vicinity of s = b [Herrmann and Busse, 1998]. There, geostrophic motions may
be replaced by Rossby waves, low frequency z-independent inertial waves. They
have a natural frequency comparable to the frequency of the torsional Alfvén
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waves [Jault, 2003]. Their possible role in the course of the propagation of
Alfvén waves within the Earth’s core has not yet been investigated.

In order to give an illustrative example, we set again an initial value problem
restricted, however, to axisymmetrical variables. We build an axisymmetrical
model such that its distribution of {Bf }1/ 2 (Fig. 1, dashed curve) resembles that
calculated in Section 2 from a model of the geomagnetic field at the core surface
(Fig. 1, full curve) outside 7. For (s < b), {B§}+in the Northern Hemisphere

differs from {B2} in the Southern Hemisphere. We assume a model for the
geostrophic velocity w, at ¢ = 0. A zonal toroidal magnetic field by is induced.
In order to study the evolution of the two scalar variables wy and bg, we use a
finite difference code with both spherical and cylindrical grids. The two grids
coincide on X7 so that Eq.(15) can be easily enforced [Jault, 1996]. We calculate
separately w, at s = b~and s = b*. In addition, for s < b, the geostrophic
angular velocity w;t can differ below and above the inner core. Finally, we
reinstate magnetic diffusion because, in the vicinity of the tangent cylinder X4
and of the inner core surface, the large gradients of b, make it important.

We have studied a few initial states for the geostrophic velocity. The ratio
between the Alfvén wave period and the magnetic dissipation time of the solid
inner core depends on the magnetic Ekman number Ey = 1/Qa?, on the cylin-
drical average {B§}+ (s) and {BZ} " (s) for (s < b) and on the spherical average
([ [._, B2dX)/%y of the radial magnetic field at the inner-core boundary of area
. The value of ([ [,_, B2d%)/%)'/? for our model of quasi-static magnetic

field (0.4 mT) is similar to {B?}l/ ?. We have investigated a range of values of
Ey down to 107°, which is the geophysically relevant value according to the
conductivity estimates of Secco and Schloessin [1989]. We have chosen three dif-
ferent epochs (respectively ¢t = 6.7 yr, t = 14.3 yr, and ¢t = 17.7 yr) to illustrate
the propagation of torsional waves in presence of an inner core (Fig. 2). We find
that the discontinuities in wy at X7 are kept small by the Lorentz force coupling
the geostrophic cylinders across ¥7. In our example, the latter are much more
efficient in the Southern Hemisphere because ({B§}+ (b) < {B%} (b)). After
a short transient period, the torsional waves mainly propagate inwards. We at-
tribute that to magnetic dissipation within the inner core. The waves penetrate
within the tangent cylinder and are damped on a distance comparable to the
inner core radius. However, the coupling between the solid inner core and the
geostrophic motions remains strong in our model. There are large oscillations
of the inner core, which are apparent in the time evolution of the geostrophic
motions within X7 .

5 Concluding remarks

We have argued that a preferred direction of propagation, as observed by Hide
et al. [2000] is potentially a useful constraint on the dissipation of the torsional
waves, especially at the inner core boundary. We have attempted a forward
modelling of the torsional Alfvén waves without the often made assumption
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Figure 2: Snapshots of the geostrophic angular velocity at t = 6.7 yr (top figure),
t = 14.3 yr (middle figure) and ¢t = 17.7 yr (bottom figure). For s < b, the full
and dashed curves show respectively the geostrophic velocity in the Northern
and Southern Hemisphere. Ro = 3.1078.
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that they can be represented as standing oscillations. We have been able to
point up sharp velocity gradients at the cylinder ¥ tangent to the inner core
as we have not assumed equatorial symmetry of B in our study of the role of the
inner core. We intend now to undertake an inverse modelling. In order to recover
possible sharp velocity gradients at X, we will determine directly the torsional
oscillations in the Earth’s fluid core from geomagnetic data. Bypassing the
construction of surface flow models is indeed helpful as small scale features, such
as large gradients in a narrow zone, cannot be recovered from the calculation
of general core surface flows. Hopefully, the recording of large geomagnetic
data sets by the @rsted, Champ, and following satellites will promote yet other
theoretical progresses.

Modeling Earth’s nutation, Mathews et al. [2002] estimated that the rms
radial magnetic field at the ICB is 7.2 mT. This finding, which required several
hypothesis, does not agree well with the models of the magnetic field in the core
interior that we have used. It raises a question that we have already touched in
the section on topographic effets. In our models, the strength of the magnetic
field is comparable at the core surface and in the interior whereas we would have
expected it to be larger in the interior from considerations on the speed of core
motions.

We have just sketched a discussion of topographic coupling. We especially
expect from a study of torsional waves propagation in a core model including cor-
rugated boundaries to learn whether pressure effects tend to restore corotation
between core and mantle or whether other mechanisms (viscous, electromag-
netic) have to be taken into account at the CMB.
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