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2 COUPLE EXERCE PAR LA PRESSION ASSOCIEE AUX MOUVEMENTS
DANS LE NOYAU SUR LE MANTEAU

Si 1a surface du noyau n’est pas exactement sphérique, les forces de pression
peuvent exercer un couple sur le manteau. Imaginons une bosse de la surface

du noyau,

Figure 1: bosse de la surface du noyau

La pression p, 4 la surface du noyau, exerce une force pn ( n normale

sortante) sur le manteau. Le noyau n’étant pas exactement sphérique,
n#a,

La composante de pn suivant e, (représentée en gras sur la figure 1) exerce un
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couple axial sur le manteau, Seules les variations latérales de la pression doivent
atre prises en compte; elles sont représentées ici par les symboles @ et © (noter
effet du changement de signe sur ((pn.e,)e,). Suivant la position relative du
champ de pression pet de la topographie du noyau h, les forces pnexercées par
la pression en différents endroits de la surface du noyau se renforcent ou se
détruisent mutuellement. Hide (1969) a étudié Pordre de grandeur de ce couple
en supposant que la force de pression -V p a une amplitude comparable 2
1'accélération de Coriolis. La méme idée (équilibre entre les composantes tan-
gentielles de I’accélération de Coriolis et du gradient de pression) sert de point
de départ au calcul de mouvements tangentiellement géostrophiques a la surface
du noyau (1.2.3.3). Ces derniers peuvent s’exprimer comme fonction de la seule
pression. Mais réciproquement, les formules (27) et (28) de (1.2) permettent de
calculer Ia pression, une fois un mouvement tangentiellement géostrophique a
la surface du noyau déterminé par I'inversion de la variation séculaire du champ
magnétique. L’hypothése de mouvements tangentiellement géostrophiques est
indispensable a tout calcul de pression et donc de couple exercé par les forces

de pression,

2.1 Couple de pression associé 3 un mouvement tangentiellement géostrophi-

que

Nous étudions ce couple dans un article "The topographic torque associated
with a tangentially geostrophic motion at the core surface and inferences on the
flow inside the core" reproduit dans ce mémoire (IL3) et auquel je me référe

comme a Particle 1. Le calcul du couple de pression

rp=—E.fffhfip="}2.ffp5/\?=ffpj—%ds (1)
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ne présente aucune difficulté, une fois la topographie x et le champ de pression
o connus, L’équilibre tangentiellement géostrophique 4 la surface du noyau se
prolonge a Iintérieur par une équation du type (équation (11) de Particle I):

2p(ﬁAE)=-§p+GEr+f" (2)

u.e =0
J.(pu)=0

ol Ge, principal terme de gravité; F = 0 a Ia surface du noyau; rien n’interdit de
supposer que les forces F n’exercent aucun couple sur les cylindres C(s) centrés
sur I'axe de rotation de la Terre ou simplement qu'il existe un rayon s, (s rayon

cylindrigue) tel que:
z. f f FAFdS=0

Mais nous avons remarqué en (1.2.5) que I'accélération de Coriolis ne donne lieu
3 aucune variation du moment cinétique des cylindres C(s) . Dans le second
membre de (2), seule la force de pression -¥ p exerce un couple sur le manteau
et sur les différents cylindres C(s) ; aucun terme dans le premier membre ne

vient équilibrer ce couple: il y a I3 une contradiction,

Notre article (paragraphe 3.2) montre gu’en fait un couple de Coriolis fictif
provenant de ((&.7) # 0) (puisque nous avons imposé (ii.e,) = 0) vient compenser
le couple de pression. Dans une seconde étape (paragraphe 3.3), nous calculons
le mouvement satisfaisant 4 la condition u.n = 0: comme les couples de volume
étudiés en 1.2.5, le couple de pression se traduit par une accélération 2v/3t de
la rotation en bloc des cylindres C(s). Nous avons ainsi vérifié que nous pouvions
utiliser la pression calculée en géométrie sphérique pour calculer le couple de

pression s’exercant sur une frontiére non sphérique.




113

2.2 Couple de gravité

Dans notre article (1), nous introduisons un second couple lié¢ également 2
la topographie du noyau: le couple de gravité. Si la frontiére noyau-manteau
n'est pas axisymétrique, les surfaces équipotentielles du champ de gravité et les
surfaces d'égale densité ne le sont pas non plus: les écarts & I'axisymétrie sont
décrits par 'équation d’équilibre hydrostatique (paragraphe (2.3) de P'article 1);
nous pouvons traiter les écarts a I'axisymétrie comme des écarts a la sphéricité,
Les termes hydrostatiques (U, (r)+ U’ (r,0,9),p.(r)+p’«(r,0,¢)) sont tres
grands devant Ihétérogénéité de densité p,(r,0,4) (et le potentiel U,(r.8,¢})
liés aux mouvements dans le noyau. La force de gravité intervenant dans I’équation

du mouvement s'écrit
P (U, + U )+ (p, %9 IVU, =
(0, VU,-U,p,)+p, VU ~U, Vo’ + V(U p,+U1p’,)
Nous remarquons au passage que la pression calculée avec I'approximation
tangentiellement géostrophique, n'est pas la pression fluide p, mais ps~Uip..

Nous appelons couple de gravité de volume, le couple (équation (14) de Particle

(1
r0b=ié.fff}'A(pﬁU's—Uﬁp's)
L’amplitude de ce couple peut se comparer 4 celle du couple de pression

LY

T, |hi

ol h,, valeur typique de I’écart d'une équipotentielle du champ de gravité a une

surface axisymétrique.
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2.3 Calculs numériques du couple de pression

Dans un second article "Core-mantle boundary shape: constraints inferred
from the pressure torque acting between the core and the mantle", nous nous
intéressons aux calculs numériques du couple de pression. Le premier article
nous a appris que les forces de pression accélérent chaque anneau de fagon
indépendante: au lieu de considérer tout de suite le couple total sur le noyau,
nous pouvons étudier les couples exercés sur chaque cylindre et les comparer 4
I’accélération des mouvements toroidaux zonaux (¢'est 4 dire, dans le cadre de
notre théorie, 4 Paccélération des rotations rigides des cylindres C(s)) calculée

a partir des modéles de variation séculaire du champ magnétique.

Nous avons utilisé pour cette application numérique la topographie de
Morelli et Dziewonski (1987). Que I'on considére le couple total sur le manteau
(et donc sur le noyau) ou le couple sur chaque anneau cylindrique, les valeurs
obtenues sont cent Vf'ois plus importantes que les observations (couple nécessaire
pour produire les irrégularités de la longueur du jour, variation des mouvements
toroidaux zonaux). Nous nous sommes alors attachés 4 comprendre 'origine de
cette dif férence d’ordre de grandeur. La figure (1) montre clairement que certaines
positions relatives du champ de pression & la surface du noyau par rapport 4 la
frontidre noyau manteau correspondent 4 des couples de pression nuls. Certaines
de ces configurations sont stables: aprés un petit écart du champ de pression a
une situation d*équilibre, les forces de pression exercent un couple de rappel.
Nous avons montré que les oscillations des anneaux ¢ylindriques C(s)dont seraient
ainsi responsables les forces de pression ont des constantes de temps telies qu’elles

pourraient participer a la variation séculaire du champ magnétique observée.

Le champ de pression a la surface du noyau est mieux déterminé que la

topographie de la frontiére noyau-manteau. Connaissant ce champ de pression,
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il est possible de calculer une topographie de la frontiére noyau-manteau proche
d’une topographie connue et telle que le couple de pression s'exergant sur chaque
cylindre C(s) est nul. Nous avons calculé une telle topographie a partir du modéle
de Morelli et Dziewonski (1987). Enfin, nous proposons une technique de calcul
pour évaluer une "distance" entre une topographie donnée et I'ensemble des
topographies satisfaisantes (c’est 4 dire associées & un couple nul sur chaque

cylindre).

Dans ce modéle, les forces de pression associées a la partie principale du
champ de vitesse, stationnaire, n’exercent aucun couple sur le manteau. Ainsi il
permet de rendre compte de la différence entre les temps caractéristiques du
couple a l'origine des irrégularités décennales de la longueur du jour d’une part
et de la variation séculaire du champ magnétique {c’est a4 dire grosso-modo des

mouvements dans le noyau, mais voir 1.2.2) d’autre part.

2.4 Excitation de Poscillation de Chandler

Hinderer et al.(1987) proposent deux mécanismes d’excitation de I'osciltation
libre de Chandler (voir la description de ce mouvement propre de la Terre en
1.1) basés I'un comme 'autre sur I'action de la pression associée aux mouvements
dans le noyau sur le manteau. En effet cette excitation n'a toujours pas trouvé
d’explication définitive. Plusieurs mécanismes ont été envisagés. L'effet des
tremblements de terre est trop faible (Chao et Gross, 1987; Souriau et Cazenave,
1985). Les mouvements dans l'atmosphére sont responsables d’une oscillation
forcée annuelle (et semestrielle) de P'axe de rotation de la Terre. La période de
'oscillation de Chandler (435j.) n'étant pas trés différente d'un an, on doit
s’attendre a un role important de "atmosphére (et des océans) dans le processus

d’excitation de cette oscillation. Pourtant, Wahr (1983) ne peut expliquer que 20
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4 25% de l'excitation observée par des mouvements dans les parties fluides
externes de la Terre. Il fallait donc envisager le role des mouvements dans le
noyau, susceptibles eux aussi de varier sur des temps caractéristiques proches
de la période de résonance; la figure (11) de Gavoret et al. (1986) montre un
exemple de variations rapides (quelques années) du champ magnétique d’origine
interne; il est raisonnable de penser que les importantes variations du champ
magnétique d’origine externe (et les filtrages destinés 4 en débarrasser les données)
cachent des variations d’origine interne qui seraient associées 4 des mouvements

a la surface du noyau variant en quelques mois.

La pression & la surface du noyau peut d’une part déformer le manteau -et
par suite modifier son produit d'inertie- et d’autre part exercer un couple
équatorial sur le manteau. Hinderer et al. (1987) considérent I'effet des termes
tesseraux (pif, pi¥) dans un développement en harmoniques de la pression,
Seuls ces termes peuvent modifier le moment d'inertie de telle fagon que 1’os-
cillation de Chandler soit excitée; de plus, cette pression peut exercer un couple
en agissant sur la frontiére elliptique du noyau. L’expression (1.8) d’Hinderer et
al. (1990) illustre ’effet d’une variation brutale de la pression & la surface du
noyau; la pression est modélisée comme une fonction de Heaviside

p=P H()
11 v a alors excitation de P'oscillation chandlerienne
Siat=0 m(0)=0

AL =" =YK PoH (1)
ARpceiQo,,

1>0 mi)=

ou le vecteur rotation de Ia Terre s’écrit (voir 1.1)

m,(t)
ﬁ(f)=ﬂ m,(t) m{t)=m,(t)+m,(l)
P +mg(t)
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A, et 4, momentsd'inertie équatoriaux de la Terre et du manteau, ¢, fréquence
de T'oscillation chandlerienne, et p.densité moyenne du noyau; le coefficient K
g’écrit comme la somme d’un terme de déformation et d’un terme de couple. Ces

deux mécanismes ont tendance a s'opposer. Hinderer et al. (1990) proposent
K=210"
alors P, = 200Pa correspond & une variation m de I"amplitude de I'oscillation
m=0.310"7rd

Je discute plus loin la signification de ces valeurs numériques

Hinderer et al. (1990) examinent les termes de pression (différents de p3)

qui peuvent eux aussi exercer un couple équatorial en agissant sur la topographie
du noyau; I’ ellipticité du noyau et la déformation du manteau ne jouent plus
aucun role ici. Cette étude est particuliérement importante si, comme le proposent
Gire et Le Mouél {1990), le mouvement est symétrique par rapport au centre de
la Terre car alors pi= 0. L’expression (3.5) d'Hinderer et al. {1990) donne le
couple équatorial C(¢) en fonction de la pression p(?) et de la topographie 4.
Hinderer et al.(1990) montrent que si 'amplitude de la topographie est aussi
élevée que le proposent Morelli et Dziewonski (1987), le saut de pression (dif-
férente de pl=0) nécessaire pour produire un déplacement donné du pole de

rotation instantané est comparable au saut de p}= 0qui aurait le méme effet.

Evaluons maintenant 'efficacité de ce mécanisme. La pression & la surface
du noyau (voir fig.4 dans 1.2), associée aux mouvements tangentiellement
géostrophiques ne dépasse pas 103 Pa. Le mouvement semble stable sur plusieurs
dizaines d'années et il est difficile d’envisager un saut brutal de pression de plus
de 100 pascals; il correspondrait a un déplacement du pole instantané de rotation
d’environ 2 10-8 rad. En 20 ans, de 1940 4 1960, 'amplitude de 'oscillation de

Chandler a augmenté de 10-6 rad. (Guinot, 1982) (voir 1.1}, Si 'on suppose N
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percussions distribuées au hasard, 'amplitude de Poscillation croit typiquement
comme N ("marche au hasard"). L’excitation observée entre 1940 et 1960
correspond ainsi a plus de 2000 percussions. Ce chiffre doit nous paraitre d*autant
plus irréaliste que les fluctuations trés rapides (quelques semaines 4 quelques
mois) et temporaires (modélisées comme une fonction créneau) de Ia pression
sont d’autant moins efficaces qu’elles sont plus courtes. Soit
p=(H()-H(t- 1)) P,
alors  0<t<{, m(t)=m(] - o'"*~")

to <t m(t)=m(eium(lwlo)_emmt)

or m déplacement du pole instantané produit par un saut de pression P, . S8i

toccw <1

ot
m{i)=~imag ,t,o Se

Il y a une relation linéaire entre la durée du créneau et I'amplitude de I'ac-
croissement de PPoscillation.

Les fluctuations de la pression associées aux mouvements tangentiellement
géostrophiques 4 Ia surface du novau, tels que Pon peut les déduire de I'étude
de la variation séculaire du champ magnétique, ne semblent pas pouvoir étre
tenues responsables de Pexcitation de 'oscillation de Chandler, Cependant I'étude
de la variation séculaire du champ magnétique n’est pas trés appropriée a ce
travail sur l'oscillation de Chandler car elie ne nous donne accés qu’'aux mou-

vements de temps caractéristiques lfongs devant la période de Chandler.
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3. ETUDE DU COUPLE TOPOGRAPHIQUE ASSOCIE A DES MOUVE-
MENTS TANGENTIELLEMENT GEOSTROPHIQUES A LA SURFACE DU
NOYAU; CONSEQUENCES SUR L’'ORGANISATION DU MOUVEMENT A

L'INTERIEUR DU NOYAU
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Tn the last few years scismologists have proposed core-mantle topographies. A1 the same time much
elort has been devoted by geomagneticians to calculate the fluid flow (and the related pressure field) at
the top of the core, based on the observation of the secular variation of the geomagnetic field. A
“topographic torque”, which resuls from the action of the pressure field at the core surface, has Jong
been invoked (o allow for exchanges of angular momentum between the core and the mantle. In this
paper, we show that this torque can be computed if forces at the top of the core are in geostrophic
balance. The deep nature of this topographic torque can be understood only if one goes beyond the
case of a pseudo-static equilibrium and considers explicitly the acceleration term in the equation of
motion. We show that the pressure field acts in such a way as to accelerate a zonal flow consisting of
“gylindrical annuli. These annuli rotate like rigid bodies, with an angular velocity which depends on the
distance to the rotation axis. Furthermore, we show that a gravity torque may also act on these same
cylinders.

KEY WORDS: Earth's rotation, Earth's core, core-mantle boundary, topographic effects, differential
rotation.

INTRODUCTION

The decade variations of the length of the day (Lo.d.) have been since long
attributed to exchanges of angular momentum between the mantle and the fluid
- core. Some knowledge of the flow inside this fluid core is required to evaluate the
' time changes of its angular momentum. The secular variation of the geomagnetic
field is generally thought to be due to the advection of the lines of force of the
main field by the fluid motion at the top of the core. Secular variation (S.Y.) data
allow one to compute this flow provided that some additional assumption is made;
the most likely one is that the flow is tangentially geostrophic at the core suiface,
Dynamical considerations lead to suppose that the part of the flow which carries
the angular momentum of the core (with respect to the rotation axis) is organized
in cylindrical shells, which rotate iike rigid bodies about the axis of rotation. Tt is
. then possible to compute the angular momentum of the core, knowing the {low
only at the core surface (Jault et al., 1988). We showed that the time changes of

273
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the angular momentum of the core do balance the time changes of the angular
momentum of the mantle which are inferred from lLo.d. data. More specifically, we
showed that this balance holds over the last twenty years, for which reasonably
good S.V. models exist. In the present paper we analyse the mechanism which
allows the transfer of angular momentum from the core to the mantle. The
pressure field at the core surface may be estimated if it is assumed to be associated
with a tangentially geostrophic motion. It exerts a torque on the core-mantle
boundary (CMB) as soon as this surface presents departures from axisymmetry. In
that case the equipotential surfaces of the gravity field also present departures
from axisymmetry, and the buoyancy force itself exerts a torque on the core. We
show, extending the work of Anufriyev and Braginsky (1977), who dealt with the
effect of the pressure torque associated with zonal flows, that the effect of both the
pressure torque and the torque exerted by the buoyancy forces, except for the
particular case studied by Anufriyev and Braginski, is indeed to accelerate a zonal
flow consisting of rigidly rotating cylindrical annuli. In order to derive this result,
it is necessary to resolve the geostrophic degeneracy, ie. to reintroduce the
acceleration term in the momentum equation. In other words, the true torque
budget, which is hidden when one uses the tangentially geostrophic approxima-
tion, must be made explicit. The torques which are exerted by the buoyancy and
pressure forces on the mantle can account for both the exchange of angular
momentum between the core and the mantle and the time varying differential
annular rotation inside the core on a decade timescale; the Lorentz force opposes
the relative motion of the mantle with respect to the core on one hand and of the
different cylindrical shells inside the core on the other hand (Braginsky, 1970).

1. TORQUE BUDGET IN THE EARTH’S CORE

Let us first review the different accelerations and forces which can contribute to
the axial torque budget. We neglect the influence of the inner-core and suppose
that the core-mantle boundary is rigid.

The torque budget (with respect to the axis of rotation of the mantle, supposed
to be fixed in an inertial space) may be written as

do
e,
i (1
with
%:k-ﬂ:[rx[%(pu)%—‘?'(puu)-npﬂx u+p§xr+pﬂx(ﬂxr)]dv,

and

F=k[{fex[F,+F +F,—Vp/ldv;
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r denotes the position vector, u is the velocity in a coordinate system rotating with
the mantle at the angular velocity Q (Qk), p, the fluid pressure, p the density, o,
the core angular momentum. ¥, F, and F, are the gravity, electromagnetic and
viscous forces.

The density heterogeneity p,, responsible for the buoyancy force and changing
with time with the time constant T of the secular variation, is very small when
compared with the mean density p, which is constant in time {(p,/p~10"7). (See
Section 2.2.) Then

(8,/6t«V-pu),  py+p=p.
The equation for conservation of mass then reduces to

V{pu}=0,

1.1. The moments of the different accelerations

We express the moment of the Coriolis acceleration, I',,, in a cylindrical
coordinate system (s, ¢, z):

Ueor. ={[{ 2 x p(Q x u) -k dv

—20f ({j Ju- dS) sds, @)

where %, is the lateral surface (inside the core) of the cylinder of radius s (Figure 1).
But

[fpu-dS= —[{ pu-nds,
% 5

where X. consists of the two caps which close the cylinder of radius s at the core
surface, There u-n=90, and I', =0 (n being the outward unit vector normal to the
core surface). This expresses the absence of any flow across the core-mantle
boundary: the total moment of the convective acceleration is zero too. It is readily
checked that the moment of the centrifugal acceleration is zero; from now on, we
omif the centrifugal acceleration and the pressure term is modified to include it.
Then, only two acceleration terms contribute to the final budget:

where I, is the moment of inertia of the core, and
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A Q=0%

R S

Figure 1 Sketch of the various surfaces and parameters used in the text,

ﬁ — do-rcl.
k H‘.{r b 5I(pU) dv————dt .

do dQ  do
___c:I nae rel.-
dt  “dt + dt

Therefore

Exchanges of angular momentum between the core and the mantle are
expressed through the identity (J,, being the moment of inertia of the mantle):

do, dQd
ek (] I1Yy—.
dt (o1 dt

If we suppose that &{pu)/ct=0, then do,/dt=0 and dJdQ/di=0. In order to




124

TORQUE FROM GEOSTROPHIC CORE MOTIONS m

evaluate the torques between the core and the mantle, it is necessary to take into
account the inertial acceleration term &(pu)/ét. This conclusion, already made clear
in the work of Anufriyev and Braginsky (1977), seems obvious here because we
consider the core as a closed body. It can be forgotten in studies based on the
computation of a mean stress between two infinite media (Moffatt, 1978). Moffatt
calculated the effect of bumps at the core-mantle interface by perturbing a basic
state characterized by tangential and uniform velocity and magnetic fields and
obtained a non-zero mean tangential stress although using steady-state equations.
However, his expression (54) for this mean stress can be shown to be proportional
to the electromagnetic stress, while the mantle is supposed, in his model, to be
insulating. So, the physical meaning of such a computation is doubtful; considering
the more usual situation where the toroidal ficld is zero in the insulating mantle
leads to a zero stress. We find it important to check that the intervening forces,
leading to non-zero torques, are actually balanced by the inertial term.

1.2, The Torques

The present work is mostly concerned with the right hand side of Eq. (1), ie. the
torques acting on the core. Viscous coupling is generally supposed to be negligible
on the decade timescale and a recent. estimation of the core viscosity (Poirier,
1988) supports this point of view.

The electromagnetic coupling has been widely discussed (Rochester, 1960;
Roberts, 1972; Stix and Roberts, 1984). It relies on the conductivity of the deep
mantle of which we have a very poor knowledge; (a recent experiment by Li and
Jeanloz (1987) would even suggests that the deep mantle may be almost
insulating). Qualitative considerations lead us to believe that the electromagnetic
coupling cannot account for the exchanges of angular momentum between the
core and the mantle over the past twenty years.

The varying part, on the decade timescale, of the electromagnetic torque I',
tends to oppose any relative motion between the core and the mantle, especially

_ the toroidal zonal motions (Stix and Roberts, 1984). More precisely, the changes in

the torque I, acting on the mantle, are proportional to the changes in the
latitude-dependent angular rotation of the core surface relative to the mantle and
predominantly to the mean westward rotation £ (Stix and Roberts, 1984);

T, ,=—Adf, (4>0),

17 being counted positively westward.
Now, the westward drift 9 of the core relative to the mantle is believed to have
increased since 1970 (Gire et al., 1984}

dt9/dt >0, sothat df, . /dt <0,

Since

Feom=1,(dY/d1),,
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(e standing for electromagnetic), one would expect:
(dzﬂ/a‘_tf)E <0,

But Earth rotation data (see e.g. the figure 3 of Jault et al,, 1988) clearly suggest (o
standing for observed):

(d*Q/dt?), >0, since 1970.

Therefore it seems difficult to associate the decade changes in the length of the day
with the electromagnetic torque induced by the motions of the core surface
responsible for the geomagnetic secular variation. It stimulates us to investigate
other kinds of coupling.

There are two other forces capable of producing a coupling between the core
and the mantle. The pressure force is responsible for the so-called “topographic
torque” acting at the core surface X:

I‘W:~—k-j_[[rxfodv=k-[3:[pfnxrd5‘. (3)

The buoyancy force is responsible for the gravity torque:

I,=k-[[[rxpVUd. (4)

core

If the core-mantle boundary (CMB) presents departures from axisymmetry (bumps
about 100m high) the pressure torque may account for the observed variations in
the length of the day (Hide, 1977; Hide, 1969) and thus it deserves our attention.

2. THE DATA AVAILABLE TO COMPUTE THE PRESSURE AND
GRAVITY TORQUES

Equation (3) can be used to compute the ‘topographic torque’ {e.g. Speith et al,
1986); two sets of data are needed, namely topographies of the CMB and surface
pressure ficlds. However, the data necessary to compute the gravity torque are out
of reach,

2.1. CMB topographies

Seismic tomography using body waves (e.g. Morelli and Dziewonski, 1987; Creager
and Jordan, 1986), free oscillations (Giardini et al, 1987), geoid anomalies (Hager
et al, 1985), Earth’s nutation dats (Gwinn et al, 1986}, as well as the Earth's
gravity coefficients C} and S} (Wahr, 1987a) have all been used to try. and
constrain the core-mantle boundary shape. Although these different techniques
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have not yet yielded a coherent picture of the topography at the core-mantle
boundary, they give rise to the hope of a better accuracy in the coming years.
Currently, they suggest to envision in our models large horizontal scale departures
of the CMB from a hydrostatic ellipsoid with altitudes h in the range
100 m—10km.

2.2. Tangential geostrophy, the pressure at the CMB

The geomagnetic sccular variation data allow us to compute, assuming a
tangentially geostrophic balance, the pressure p at the top of the core. As the
motion responsible for the secular variation changes with a time constant T of the
order of a few decades, the ratio of the inertial acceleration to the Coriolis
acceleration is of the order of 107% the hypothesis of a tangentially geostrophic
motion at the CMB then requires principally neglecting the Lorentz force at the
CMB. This latter assumption, which has already been thoroughly discussed (L¢
Mouél et al, 1985; Backus and Le Mouél, 1936} requires that the gradient of the
unknown toroidal field Q is not too large at the top of the core (the ratio of the
Lorentz force to the Coriolis acceleration is of the order of 10® 8Q/0r (expressed in
Tesla.m™ 1)), :

We approximate the CMB with a sphere and suppose the buoyancy force to be
radial; the tangentially geostrophic balance is written, at the core surface:

2p(Qxuy)y= - VyuPos

where po and ug are the pressure and the velocity;, H is the horizontal component.
Then, in the neighbourhood of the core surface:

2p(Qx ug)= —Vpy+ Age,, V+{pug)=0, ug-€,=0; {6)

Ao is the buoyancy term; e, is the unit radial vector. By crossing e, with vector
equation {6), we obtain (0 is the colatitude) (Le Mouél er al., 1987):

1 1
= — Y kl
Ply COSG (293,)( p0+pur,o ) (7)

Writing V-(pug) =0, it follows that

Po _ 426050 ;‘z{pu, o) dp—rsin?d | pu, o dé+n(r,0),
20 dz

n being an unknown function. At the core surface (r=a,u, ¢=0)
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Po=2Qcos*¢a’ J‘;;lr(p“" oy dg +2Qn{a, 0). (8)

In the same way puy o, piis,o and Ay can be expressed as functionals of pu, o
and its radial derivatives only. The scalars pu, o, Po. Plig 0, PUg,0 and Ay can be
expanded in surface harmonics (zonal terms of pu, ¢ are forbidden); the coefficients
of the expansions of pg, piis, o, Pg,o and A, are derived from the coefficients of the
expansion of pu, o. We obtain in this way a set of tangentially geostrophic flows
up. Zonal toroidal motions which are associated with a zonal pressure appear as
an integration constant in the problem (see (8)).

Coming back to the data, it can be shown that the tangentially geostrophic flow
at the CMB which generates the observed secular variation from the observed
main field—neglecting diffusion (Roberts and Scott, 1965)—is determined in a
reasonably unique way (Backus and Le Mouél, 1986). Such an inversion provides
the first terms {i.c. low degree or large scale) of the expansion of d(pu, o)/ér and of
the pressure p, at the core surface {Le Mouél et al, 1985; Gire and Le Mouél,
1989). From the data it is not possible to compute the buoyancy term A4, but the
hypothesis 4,=0 in the neighbourhood of the core surface would imply that the
motion u, is toroidal zonal at the core surface and such an assumption is not
consistent with s.v. data (Gire and Le Mouél, 1989). If there is a tangentially
geostrophic balance at the core surface, the buoyancy force has to be comparable
with the Coriolis acceleration. Let us then consider the form of this buoyancy
term. The spherical quantities U, and p, are the main parts of the gravity potential
U and of the density p; we have neglected the non-spherical parts to write the
tangentially geostrophic balance {6). Then, in the neighbourhood of the core
surface:

2p(Q % ug)=—Vpso+p,YU +p, VU )

p, is the heterogeneity of density linked to the motion (of the order of 107 %p;
since the buoyancy force is comparable to the Coriolis force), and U, the

corresponding gravity potential p,, is the fluid pressure, Equatlon (6) is obtained
from Eq. (9) through the transformations:

Po=Pro—pUr, Ao=p 8UJEr—U, Spfir.

The pressure po computed {rom s.v. data is then different from the fluid pressure
Pro

Using the pressure po and a model of the topography of the core surface, we can
compute a non-zero pressure torque (3). This pressure torque includes some
gravity lerms, since p, is different from the fluid pressure pro; we will come back
(Section 3} on this intricate situation. Another important observation is the
following: in order to obtain the pressure field at the top of the core, the inertial
acceleration has been neglected since a tangentially geostrophic balance has been
considered. But we have seen {Section 1} that the torque budget then reduces to
zero; we will resolve this inconsistency in the following (Section 3.2).
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2.3. The Data Available to Compute the Gravity Torque

Bumps at the core-mantle boundary (and possible density heterogeneities in the
lower mantle) induce departures of the equipotential and equidensity surfaces
inside the fluid core from axisymmetry {The reference state in an hydrostatic
Earth). The non-axisymmetrical gravity field and density act on the density
anomalies p, and the gravity potential U, linked to the motion. A non-zero
gravity torque results (4). To compute this torque, we have to know the deviations
U, and pj, of the gravity potential and of the density from the axisymmetrical
gquantities U, p. The equations describing the hydrostatic equilibrium in the core
are;

V(T + ) = (s + o V(U + UR), V?Uj= —4nGpp, ph=f).  (10)

The dependence f of pj on [T} can be inferred from the dependence of p, on IT;. it
comes out that bumps with an altitude of the order of 1km are associated with
density heterogeneities pj, of the order of 10™% p,: these density heterogeneities are
actually the main cause for possible lateral variations of seismic velocities in the
fluid core (Wahr, 1987b) {Conversely, knowing these lateral variations and the
corresponding density anomalies might allow us to infer the non-axisymmetrical
potential Uj through (10).) The hydrostatic equations allow us to describe the
decrease, from the core surface to the interior of the core, of the deviation from an
ellipsoid of the gravity field level surfaces; but the deviation at the core surface is
far from being known. The buoyancy term A, cannot cither be computed, at the
core surface, knowing only (&(pu, o)/0r),-, obtained through inversion of the
geomagnetic secular variation. It can be shown that Ag,=, depends also on
(6*(pu, o)/0%r), = Moreover, in order to compute the gravity torque, we have to
know p, and U, not only at the core surface but also in the whole volume of the
core. Therefore, we are not able to compute the gravity torque, but we will
observe that the order of magnitude of this torque may be comparable to the
order of magnitude of the pressure torque {Section 4).

3. RESPONSE OF THE CORE TO THE GRAVITY AND PRESSURE
TORQUES

As said in Section 2.2, the main part ug of the large scale motion at the core
surface can be inferred, in a spherical approximation, from secular variation data;
it obeys the following equations in the core (9):

&,
cr

& -
e,—U, ef:er+b» Pro=prot oy,

2p(Q2 x up}=—V¥py-+p,
{11)

ug-e,=0 at the core surface, V-{pug)=0;
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F represents the Lorentz force which we neglect in the neighbourhood of the core
surface. We have scen in Section { that the moment of the Coriolis force on any
cylinder of radius s is zero. In the spherical (or axisymmetrical, see Remark)
approximation, the buoyancy and pressure forces exert no torques, Hence the
Lorentz force F satisfics the Taylor constraint (Taylor, 1963):

kef frxFdS=0 (12)
I

., is the lateral surface of the cylinder of radius s (see Figure 1).

We will study separately different departures from the equilibrium {11, 12) which
induce non-zero torques on each cylinder of radius s associated with non-zero
acceleration terms p fu/ét and pdQ/di xv. A number of papers have been devoted
to the restoring and dissipative parts played by the electromagnetic torque acting
on cach cylinder of radius s. In particular, it has been shown that Alfvén waves
(Braginsky, 1970} propagate through the core as soon as the Taylor constraint (12)
is not exactly obeyed for each cylinder, However, we have argued in Section 1 that
the gravity and pressure torques could be predominant on the decade timescale;
we will then first concentrate on the departures from the equilibrium (11) which
give rise to these torgues.

We have pointed out (Section 2.2) that the expression I, for the pressure torque
{using the pressure p, computed within the tangentially geostrophic hypothesis)
includes gravity terms:

I,=k- j‘_(hponxrdS=k-j=j' polt X1 dS, (13)

r=a+t+

in the first order.
Since po=pro—p;U1,

I, =k- ‘U (pro—p U )nxrdS
=T ,,~k- [| pUnxrds.

But the gravity torque I', may be written as
o=k §{irx[p,V(U,+ U +(p,+p)VU 1dv,
and then
U+ 0=+ g,
where

o=k {[{rx{p,VU,+p¥U,)dy; (14)
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I', originates from the deviations of the outward normal n to the CMB from e,
and will be reforred to as the pressure torque; Iy, originates from the deviations of
the gravity potential and of the density distribution from spherical symmetry in
the whole volume of the core. It can be called the gravity body torque, or simply
the gravity torque. We will consider separately the action on the core and on the
mantle of these two torques, then we will come back on the role of the Lorentz
forces at the end of our discussion (Section 35).

Remark We assumed spherical symmetry in Section 2.2 to compute the large
scale and zeroth-order motion t, as well as the pressure p, at the core surface. On
the other hand, we considered in Sections 2.1 and 2.3 departures from axisym-
metry of CMB topography, equipotential surfaces, and equidensity surfaces. In a
hydrostatic model of the Earth, these surfaces are actually ellipsoids, described by
the Clairaut equations. In particular, in a hydrostatic Earth, the ellipsoidal core-
mantle boundary is also an equipotential surface of the gravity field: the buoyancy
force is orthogonal to the tangent plane to the core surface and the tangentially
geostrophic balance is not moditied.

Equations (i3) and (14) for the pressure and gravity torques can be transformed
into

ry=a* {f pe%sinﬂdadtﬁ, (15)

rgb=JAJAJ(PL%%—Utg—$)dU» (16)

These expressions make it clear that the axisymmetrical parts of the deviations h,
U’, and p, from the spherical quantities a, U, and p, induce neither pressure
torque nor gravity torque. We are thus entitled to use indifferently departures
from axisymmetry or from spherical symmetry to compute pressure and gravity
torques.

3.1. Response of the Core to the Gravity Body Torque

The part of this torque acting on the interior of the bumps is negligible when
compared to the whole torque. We can then assume that the core surface is
spherical’ and that only the level surfaces of the gravity field and the equidensity
surfaces are distorted. In other words, we add the perturbations U and pf to the
spherical potential U, and density p,. We are looking for a motion u; which obeys
the full set of equations:

éu s &u, . ép, ,
P+ 200X u1+p—a;f><r= =Vpi+p ety VU Ul%%e,—Ule'F,
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pfl=pl+PsU1s u,-e,=0, V'{Pul)=05 (17)
F =0, in the neighbourhood of the core surface

k-{frxFds=0.
Iy

The gravity torque is

Tp=k-§[frx(p, VU~ U,¥p)) dv

=E(k-”rx(pl‘VU;—Uin;) dS)ds, (18)
s}

i
Tgb=_[r, dS;
L]
T, ds is the torque exerted on the cylinder of radius s and width ds. Then
k-{frx [po—;—‘u{-pig—‘xr]dS:k-ﬂrx (p,VU.—-U Vp}dS=T,. (19)
I d Ly

And since, at this step, the gravity torque alone acts on the mantle:

—Im%mrgﬁ Jr.ds. 20)

The Coriolis acceleration is much larger than the inertial one (see Section 2.2)
and the only motions u, for which the corresponding Coriolis force 2p(S2 x uy) can
be balanced by a gradient, the pressure force, are rotations f, organized in
quasi-rigid cylindrical annuli (&(pt)/0z=0). The growth of these motions is not
prevented by an unbalanced increase of the corresponding Coriolis force. Then, in
(17), péu,/ét reduces to pdt,/dt, where t; is a rotation organized in quasi-rigid
cylindrical annuli.

Let

it, &0
F,=p=—t+p—2xr=F
=Pt 19

and

I(s)=k- {[(xrxF,)dS
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Then the system

é

ol
200 xu, = -vp1+p1%—’e.+plvuz—Ul—g;—’e,—ul\?p;—m+F.

Vifpu)=0, pp=p,+pU,, u;-e=0, (21
is of the kind

20(Qxu)=—Vp+F, V{pu)=0, k-f{rxFdS=0, u.e=0.
I, (22)

Taylor (1963) studied this kind of system (22) (with p uniform) and showed that it
admits a ‘quasi-stationary’ solution {Smylie et al. (1984) studied the case of a non-
uniform p). Again annuiar rotations t (&(pt)/éz=0) appear as a degree of {reedom
of the solution: if u is a solution if the system (22), u+t is also a solution (p being
replaced by p+p(t). Let v, be a particular-solution of (21). Equation (21) governs
the steady solution v, whereas (19) together with (20) determine the time changes
of the annular rotation t,, and u, =v, +t, is a solution of the whole system (17).
Since U« U, and p.<p,,

Pi—Po<pPo and vy —ug|<«<iugl.

The first order perturbation, induced by the gravity torque, reduces to the time
changing annular solution t,, p(t;) and u;=ug+t;.

The gravity torque is an itlustration of the more general case of a body torque.
We will now check that the pressure torque is equivalent to a body torque.

3.2, The Fictitious Coriolis Torgue, Balancing the Pressure Torque

Let us now consider a topography on the core-mantle boundary (r=a+h). All the
equations which govern the fluid motion, except for the non-penetration condition
pu-n=0, are satisfied by the solution u, calculated in the spherical geometry. In
the bumps u,=(r—a) &u, o/0r|,=.. We can compute independently the motion
induced by the pressure acting on the CMB topography and the zonal motion t,
induced by the gravity torgue since the zonal motions will be shown to generate
no pressure torques. We can compute the pressure torque from the formula (15)
and, substituting (8) into (15), we obtain

r,=—200* f C(Pé‘r'-t‘) hcos? 0sin 0 d6 do.

r=a

We emphasized earlier that there is no net Coriolis torque, because there is no
flow through the core boundary. But here we have artificially introduced such a
flow and we will see that, as a consequence, a Coriolis torque appears, which
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balances the pressure torque. Let us recall an expression of the Coriolis torque (see

(2h:
Lo = —20 js(jj puo-ndS) ds. 23
I

Only the zonal terms of the scalar function pug-n contribute to the torque and,
among them, only those which arc symmetrical about the equator. The flux @(s)
through each couple of caps Z; is calculated using (7):

(er X VPO}'B'

1
P“o'“—P”r.o'*"——"*chos g

We obtain

O(s) = ij’puo ndS

1 1 oh 6pg  €py Ch d 2
== —— — — e — —_— d —
20 ] ;[ (cos 0) (E;-‘f) 8¢ 0 64)) d0de¢ + '[rj 5 (pu, o) ha’sin6d0dp,  (24)

where
1={0,020=50,}v{0n—~8,=0=n},
and
by =sin " 1(s/a).

The first term of the right-hand side of (24) may be written

L 2po(8o, ¢) dpo(n— 0o, ¢)
5 £ {COS G [}:(90,¢)—°T@%—-+h(n—60,¢) T ¢° ]

—[of+ j ]’”ﬂf Spo(0. ¢) dﬂ} de.

> noe, | cOS?8 8¢

Substituting (8) in the second term finally gives

b4 -~ -
=55 1 oo [hwo,¢)——-”’°g;f’¢’+ir(n—90,¢)mfp°‘”"9°"f”]dqs, 25)

o lCOS 0; il




134

TORQUE FROM GEOSTROPHIC CORE MOTIONS 287
T =—a ”h%ﬂsin 040 de, (26)

see (15).

. The fictitious flow through the caps X, is fed by a flow through the lateral
surfaces of the internal cylinders, which implies changes of angular momentum of
the cylinder and of the core as a whole. This phenomenon is reminiscent of the
Ekman succion phenomenon. But here the flow through the core boundary is
artificial,

3.3. Response of the Coare to the Pressure Torque
We have to “close” the problem by finding a solution u, such that

Wy n=—ug-n, atthe CMB,
%(pu2)+2pﬂxuz+p%xr‘—“ ~Vpa, @)

V+(puy)=0.

(1, being continued inside the bumps; see Section 3.2). We can solve this last
problem supposing a spherical configuration {because u,-n=>u;-e}.

We extend in this section the work of Anufriyev and Braginsky (1977), keeping
most of their notations and using the same way of reasoning, These authors
showed that, when the velocity u, is zonal and toroidal (along the paralleis), a
solution of the simplified system

uyee,= —ugen, 2p(Qxuy)=—Vp,, Y- (pu;) =0, (28)

can be found.

In this particular case u, has no contribution to the angular momentum budget;
the exchanges of angular momentum between the core and the mantle appear only
as a second order effect, when the Lorentz forces are taken into account. Indeed,
when the primary velocity ug is zonal, ug-n has no zonal part and there is no
associated pressure torque (formulae 23 and 26} (Anufrivev and Braginsky also
visualized the perturbation of the zonal flow induced by the bumps; they stressed
that the phenomena encountered in rotating annuli such as Proudman-Taylor
columns for example are modified in rotating spheres: a column of fluid can
change its length by changing its distance from the rotation axis)

Let us first review the difizrent primary velocity ficlds g that, like the zonal
toroidal ones considered by Anufriyev and Braginsky, give rise to perturbations u,

which verify the system (28): the pressure associated with such a velocity field u,
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exerts no torque on the CMB topography since there is no change of angular
momentum associated with its counterpart u,.
We use cylindrical coordinates (s, ¢, z) and write

z,=(a*—sH"? and —ug-n=g(s ¢, £).

The sign + indicates which hemisphere is being considered (+ for North and —
for South). With these notations, the boundary condition is written

izlu:.2+sus.2=ag(s! d)s i) . (29)

Following Anufriyev and Braginsky, we notice that the solutions of (27) (and in
particular of (28) and (29)) can be parted into two classes: one symmetrical and the
other antisymmetrical about the equator. If g is symmetrical, u; 5, p, and u, , are
symmetrical, and u,_, is antisymmetrical. If g is antisymmetrical, u, 5, P, and u, ,
are antisymmetrical, and u, , is symmetrical. Let us examine the different possible

cases (the problem is linear):

a) g is antisymmetrical
A solution of the Eqs (28) and (29) is

“¢.22us.2=P2=0! Z]l4='2(5,¢)=ﬂg(3,¢, +)'

b) g is symmetrical and non-zonal.
We get

&pu, 5)/0z=0, (30)
and then u, ,=0,
i, (s, ¢) =(a/s)gls, d), at the core surface,
and since 8(pu,, ;)/0z=0
o (s, @) =(a/s)p(s, 2,)g(s, ), inside the core,
Then, from {28), p, is given by
—2pQu, 5 =(1/5) Op2/0¢. (31)

As [3"gd¢=0 (no zonal term in g)

&
i
paAs, 2=~ 2p(s,2)Qa [ gde,  and  wy 3= E0p,y/0s.
0 2p8)
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¢) g is symmetrical and zonal (g=g(s))

The system (28) and (29) has no solution since the two constraints (30} and (31)
are no longer compatible when {3* g d¢ #0. Since they both rely on the hypothesis
pduy, 2/0t=0, we must give up this condition, re-introduce the inertial term, and
study the full system (27). The equations of motion and boundary conditions being
now axisymmetrical, we assume

d(puy)/o¢=0,  Opy/o¢=0.

The former constraints (30) and (31) are now replaced by the equations

o d0y, , 0y 0f10 _oqdee)
R L e A i (32
(which is the z component of the vorticity equation)

ps%+p%%~i+ngus_z=o, (33)

(which is the ¢ component of the Navier-Stokes equation).

The time constant 7 of the motion is very large when compared to one day
(Section 2.2), Then, from (32), u., 2 <ty 2 (the constant part of u, ; is zero because
it is antisymmetrical) and from (33) u,,, <, 55 We can neglect du, ,/0t and du, /0t
when compared to 2(X2 x u,, ,).

The ¢-component of the vorticity equation reduces (o

d(pug, /0z=0, (34)

which allows to reduce its s-component to

40, dp 0 0 0 oo
s dz+2ilaz(pus.z)—-0,
dQ
ity 2 =Pt 2> — e 2 (p—<PD)s (35)

2Q dt

where, for example

21

{pu,.2> 2(27-’1)—1 f ps 2 dz.

-

The flux —®(s) of (pu;) throvzh the lower and upper caps closing cach coaxial
cylinders, makes up for the flux (s} of (pug) through these caps:
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2z 8

O(s)=—2 | [pls,z)g(s)a’sin0dOd;
00

— @ is balanced by a flux through the lateral surface of the cylinder:

@(s)=[{ pu, ,sdz d¢.
T,

Identifying these two expressions for @, we obtain

1 S pls,z,)gasds
s{pug, 2> = —(02"32)1’2 g paz __l,}sgz)uz . (36)

From (25) (with 0, ==/2) and (8}, we infer

®(a)= {[ puo+ndS=0.

r=

Hence the expression (36) for (pu, > is regular at s=a. We can reduce the
expression for {pu, ,» to the simple form (from {(25) and (8})

LT 12 (ou,.0) d(6)
2nsing 5 ér Pllr.0 )

(pug, 20(5) =
This expression can be transformed to take into account all the terms in the
expansions of it and d(pu, o)/ér, including those leading to a function g which is
not symmetrical and zonal;

4rsinf | 5

(ot As)y = [ijiza(”a“r'-°)d¢(e)+2§ laﬂ%ﬂd¢(nme)]. 37)

Knowing {pu;, ,>, the acceleration terms Ju, »/0r and dQ,/dt are obtained through
(33) and (35)

psig_z"'pé?—&: —2pQu, 5,
dt ét
dQ ¢
<p>s~fn+p—’;%m — 20 puig. ). (38)

A change in the core angular momentum o, is associated with these terms:

do 51f¢,2 sz
e} = e 24
() ([ et
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= —2QIIISPII,,2dU= —Fcor..zs

T.,.: being the Coriolis torque associated with the perturbation u,. Since
(ug+uy) n=0

rcor.. 1+ Fcor..z =0,

I",,.., being the fictitious Coriolis torque computed in Section 3.3, Then

do
(Eg)z =l 1= rp!

which means that the Coriolis torque introduced in Section 3.3 is to be related to
a real change of angular momentum of the core (ie. an exchange of angular
momentum with the mantle). Together with (38), the angular momentum budget of
the mantle determines acceleration terms:

o1 &y _fdo)
" ode dt /,
We can obtain u, , from u, , through the continuity equation. Finally
p2 ﬁjzpnlf@,'z dS.
0

This zonal pressure is not small when compared to the zeroth order pressure but it
does not exert any torque on the mantle.

The pressure torque has been shown to have the same effect on the core as a
body torque. The resulting first order perturbation is made of annular motions
t, +uy, 29(t, being induced by the gravity torque and wuy , by the pressure torque),

4, COMMENTS ABOUT POSSIBLE NUMERICAL STUDIES OF THE
PRESSURE TORQUE

We have argued above that the gravity and the pressure torques could be the
acting torques on the decade :imescale (Section 1), generating accelerations of the
coaxial cylindrical annuli {Seciion 3). We may hope to be soon provided with the
data necessary to compute the pressure torque on the core (Section 2). Moreover,
formulae (37) and (38) allow to compute the corresponding inertial acceleration of
each cylindrical annulus. Setting 8=sin" (s/a), sw,(f) =uy and
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Q T Bpu, o) = &pu,.o) B
znpsinlg{g h ar d¢5(9)+£ }detﬁ(ﬂ B) .

we obtain, at the core surface

Gw(8)  {p(s)) dQ, _
ot +p(s,zl) dt =F(O). 9

We have thus got a tool to examine whether the pressure torque is responsible for
the exchanges of angular momentum between the core and he mantle by
comparing the excitation function F with the observed time changes of the angular
rotation w{f) on short time spans. Numerical studies of the pressure torque acting
on the core cannot be limited to computing the global change of the core angular
momentum, but must include a detailed analysis of the effects of the pressure on
cach c¢ylindrical annulus.

It appears that models of the flow computed in the geostrophic approximation
(Gire, 1939) acting on the topographics calculated by Morelli and Dziewonski
(1987) induce pressure torques (I',~210'° Nm) 50 times larger than the torgue
necessary to explain the changes in the length of the day. Although the knowledge
of the topography is so poor that we cannot even asser! the sign of the torque, its
magnitude challenges us. Three explanations can be suggested:

-~ The seismologists may have overestimated the altitude of the bumps.

— The gravity torque may oppose the main part of the pressure torque. From the
z-component of the balance (9) at the top of the core and the formulae (3) and
(4) for the pressure and gravily torques, we can compare the typical magnitudes
IT,/| and |Fg|-0f the pressure and gravity torques:

|Tol = Aol ADIT,A

where |hy| is a typical value for the deviations of the level surfaces of the gravity
field from an ellipsoid and |h| a typical altitude of the topography on the CMB.
Tgnoring the gravity torque may be the cause of large miscalculations.

— The core may have got jammed in a stable position, where the topographic
torque is minimum. This last hypothesis is altractive, since it would allow to
constrain the core-mantle topography knowing the flow at the top of the core
and would indicate a long term stability of the flow upwellings and downwell-
ings with respect to the mantle. If this hypothesis is the good one, small changes
in the flow at the top of the core would be associated with large variations of
the pressure torque. It would explain the sudden changes in dQ/dt which occur
in a few years,

5. THE LORENTZ FCRCES

Nothing new has been brought, in this paper, about the part played by the




140

TORQUE FROM GEOSTROPHIC CORE MOTIONS 293

Lorentz forces in the exchanges of angular momentum between the core and the
mantle and between the cylindrical annuli inside the core. But we have to
mention them since the differential rotation of the cylinders of radius s induced
. by the gravity and pressure torques generates magnetic fields opposing the
differential rotation itsell. This mechanism takes place even if the mantle is
supposed to be perfectly insulating; when the weak conductivity of the mantle is
taken into account, Lorentz forces appear which tend to oppose the motions of
t the core refative to the mantle.

Braginsky (1970) discussed the role of the restoring Lorentz torque inside the
core. The Lorentz torque is a body torque, as well as the gravity torque, the
former discussion of the gravity torque then applies and the differential rotation
of the cylindrical annuli plays again the main part. Actually, the Lorentz torque
can be considered as another perturbation of the zeroth-order equations {11-12}
since it takes place when the Taylor condition (12) is not exactly obeyed. Using
Braginsky's work the differential angular rotation w(s) is shown to be governed
by the system:

1(s) Beo{s)/@t = T(s) + T (8) + T (5), (40)
r=2 1 2 %8Bz, (41)
# iy Gs

(which is his equation 2-13), where

1

2
BB, =-— B,d
< s qb) 271 _£Bs & ¢e

¢B,/0t=5B,0w/0s. (42)

(See his equation 2.9) The mantle is supposed to be insulating, I(s)ds is the

moment of inertia of the cylindrical annulus of radius s and width ds. T(s)ds is

the total electromagnetic torque exerted on the cylinder. We have introduced in

Eq. (40) the exciting gravity and pressure torques I'; and '), discussed in this

P paper. Equations (40) to (42) describe the evolution of a forced oscillator; The

time constant t of the oscillation 7 is on the order of 107!l/b, where [ is a

typical length scale of w(f) and b a typical value of the cylindrical radial

i component of the magnetic field. Knowing the time changes w(8,1) of the zonal

! ' motions would allow to study the respective parts played by te topographic

torque (see Section 4.2) and the Lorentz torque, and then to infer the time
constant T and the characteristic value of the cylindrical radial field b.

We have preferred the gravity and pressure mechanisms to the electromagnetic

core-mantle coupling as the leading mechanisin for the decade changes in length

of day. However the electromagnetic torque provides us with the dissipative
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mechanism necessary to make the model complete, explaining why the rotation
of the core relative to the mantle does not grow indefinitely.

CONCLUSION

Topographic coupling appears to be a good candidate that allows exchanges of
angular momentum between the core and the mantle and the related changes in
the length of the day to take place on the decade timescale. Unfortunately it may
be difficult to compute {or at least two reasons. First, given a model of the
topography of the CMB inferred from seismic tomography and a model of the
pressure field at the top of the core derived from 8.V. data, the topographic torgue
appears to be the sum of a rather large number of terms; the uncertainty on each
of these terms is such that even the sign of the sum is difficult to assert. Second,
this “topographic torque” is probably not acting alone; a gravity torque may also
exist which cannot be calculated but which could be on the same order of
magnitude as the topographic torque. These difficulties of course do not reduce the
need for better models of topography and pressure field at the CMB.

Such improved models are expected in the coming years, The main objective of
the present study has been to check that the tangentially geostrophic hypothesis,
which is required to compute the surface flow from geomagnetic S.V. data and to
derive theoretically the pressure field from the surface flow, is consisteni with
changes in the core angular momentum of the core, If a time varying non-zonal
flow exists at the core surface and if the CMB presents departures from
axisymmetry, then a secondary flow, organized in cylindrical annuli, arises under
the action of the pressure field associated with the primary flow (and also the
buoyancy forces). The resulting time varying annular motion deserves further
attention. More detailed studies of the latitude dependence of the zonal toroidal
flow at the top of the core should be undertaken as soon as more precise 8.V, data
are available. Such studies would allow to estimate the contribution of the
pressure torque to the exchanges of angular momentum between the core and the
mantle; they coud also provide upper bounds on the torques exerted by the
Lorentz force on the cylindrical annuli, and as a consequence, on the radial
component B, of the magnetic field inside the core.
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Summary

In the last few years models of the flow at the top of the Earth's core and
of the related pressure field have been calculated from the secular variation of
the geomagnetic field, and core-mantle topographies have been computed by
seismologists. A pressure torque results from the action of the pressure field on
the core topography which can theoretically be computed from models of both
the pressure field and the core mantle interface. Small scale features of the flow
and of the topography are shown to be capable of contributing strongly to the
pressure torque; it is thus impossible to calculate the exact value of the torque
from the knowledge of only the long wavelength components of the models, But
the interaction between the large scale components generates by itself torques
two orders of magnitude larger than the torques inferred from the irregularities
of the length of the day. It is nevertheless possible to reconcile the topographic
coupling mechanism with the length of the day observations, keeping the
amplitude of the core topography proposed by seismologists, if an orthogonality
relation between the geometry of the fiuid upwellings and downwellings at the
top of the core and the topography is satisfied. It is shown how to compute such
a topography, for a given flow, and close to an original topography provided
by seismic tomography. Some consequences of the so-inferred link between the
fluid flow at the top of the core and the core-mantle boundary topography are

discussed.

Key words: Coré-mantle boundary, Earth’s rotation, Pressure torque, Core

surface motions
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1 Introduction

The description and analysis of the geophysical phenomena affecting the
Earth rotation have been deeply improved during the past five years. Seasonal
changes (Rosen and Salstein,1983) as well as irregular changes in the atmospheric
angular momentum -related to El-Nino signals (Rosen et al.,1984)-, and the
quasi-biennal oscillation of the stratosphere (Chao,1989) have been shown to be
responsible for the changes in the length of the day (1.o.d.) up to periods of
about 4 years. Tidal braking (Stephenson and Morrison,1984; Christodoulis et
al,1988) and non-tidal acceleration related to the viscous rebound of the solid
Earth after the last deglaciation (Yoder et al.,1983) have also been quantitatively
discussed. As for the "decade" changes in the length of the day, they are attributed
to core-mantle coupling (e.g. Lambeck,1980) but are not yet well understood.
The amplitude and time constants of these variations are however known more
accurately; the time constants vary from five to a few hundred years (see e.g.
Stephenson and Morrison,1984), the maximal amplitude of the torque acting on
the mantle for the past 100 years is about 10!8 N.m while the amplitude of this

torque since 1970 is about 2 1017 N.m.

Motions at the core surface may be inferred from the secular variation (s.v)
of the Earth’s magnetic field (Roberts and Scott,1965). The motions inside the
core and in particular the toroidal zonal motions which carry the core angular
momentum cannot be inferred from magnetic data. However the changes of this
zonal toroidal flow, with time constants of the order of 10 years, may consist
of changes in motions organized in cylindrical annuli rotating rigidly about the
Earth’s axis of rotation (Jault, Gire and Le Mouél ,1988). Hence, changes in the
core angular momentum can be inferred from changes in the zonal toroidal part

of surface core motions. It has been verified that the changes in the mantle
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angular momentum, as observed during the past twenty years, may be balanced
by the changes in-the core angular momentum computed this way (Jault et

al,,1988 but see also Jackson,1989).

The forces responsible for the exchange of angular momentum between the
core and the mantle need now be elucidated. In a former paper {(Jault and Le
Mouél, 1989) we undertook a theoretical study of the pressure torque. If, at the
core surface, the Lorentz force is small compared to the Coriolis acceleration,
there is an equilibrium between the tangential components of the pressure force
and of the Coriolis acceleration. This hypothesis which requires (Le Mouél, Gire

and Madden ,1985)

2 . .
—Q « ~10"%esla.m
or

3

is unfortunately difficult to test since the radial gradient of the toroidal field
Q, at the top of the core, is unknown. The tangentially geostrophic hypothesis
allows computation of the pressure at the top of the core from the surface motions
(e.g. Hide,1989) and strongly reduces the ambiguity pointed out by Backus (1968)
when deriving the surface motions from the radial component of the induction
equation (Backus and Le Mou&l,1986). In our previous paper, we showed how
to reconcile the tangentially geostrophic hypothesis and the existence of a
non-zero pressure torque (related to a non-zero inertial acceleration) acting on
the mantle; the pressure torque {and a possible counteracting gravity torque)
induces a time-varying flow, organised in cylindrical annuli, The latitude

dependence of the acceleration of the zonal toroidal flow can be in principle
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derived from a model of the topography of the core surface h and a model of
the motions « at the surface of the core. Each annulus (as depicted in figure 1)

experiments the angular acceleration dw(0,t)/9t such as:

auo(e.t)+c_12

Y] TR

where p the core density is taken uniform for the sake of simplicity, Q is the

Earth's rate of rotation, and F is given by;

o(ur)

F(oy=- or

Q ( z“ha(u,)
0

2n
————— add(o)+ h
2nasin?(0) or S 0

d*b(ﬂ—ﬂ)) (1)

0is colatitude, ¢ longitude, a the core radius, and u, is the radial component of
. F can be referred to as the angular acceleration in an inertial frame, It is then
possible to compare the theoretical distribution with latitude of the acceleration

induced by the topographic torque with the distribution inferred from s.v. data.
2 Computation of the pressure torque

Morelli and Dziewonski have calculated a spherical harmonic expansion of
the topography h of the core-mantle boundary (CMB) to degree 4 (Morelli and
Dziewonski, 1987) from travel times of body waves; their model disagrees to
some extent with a previous model constructed from the same kind of data
(Creager and Jordan, 1986). Free oscillations (Giardini et al,1987), Earth’s nutation
data (Gwinn et al,1986), geoid anomalies (Hager et al.,1985) and the Earth’s
gravity coefficients Cjand S} (Wahr,1987) should also be used to constrain the
core-mantle boundary shape. The model proposed by Morelli and Dziewonski

will be used , in this paper, as an example of a possible topography of the CMB.
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The models of the flow at the core surface (Le Mouél et al.,1985; Voorhies,1986;
Whaler and Clarke,1988; Gire and Le Mouél, 1989; Lloyd and Gubbins, 1989 ;
Jackson,1989) have been computed with different assumptions but are perhaps

more constrained than the topography models.

To compute the acceleration induced by the pressure torque (1), we shall
use, together with the model of the CMB topography of Maorelli and Dziewonski,
the motions calculated by Gire and Le Mouél {1989) in the tangentially geostrophic
assumption which is necessary to derive the surface pressure from the surface
flow. To ensure geostrophy, a tangentially geostrophic basis has been used, It is
worth noting that there is no zonal part in the poloidal component of a tangentially
geostrophic flow, The quantity a{u,)/dr is directly derived from the poloidal
component of the flow, Gire and Le Mouél also advocated symmetry properties
in the flow: the non-zonal velocities are identical at two antipodal points and
the zonal velocities are symmetrical about the equator plane. These symmetries
have been imposed on the computed flow. As a consequence, only the components
of the CMB topography that are symmetrical (h(8,¢) = h(x -0, ¢+ 1)) about the
center of the Earth and non-zonal do contribute to the torque (see formula 1);
they constitute the efficient part of the topography. Then, only eight terms
(non-zonal terms of degree n=1 and n=3) in the expansion of the topography
calculated by Morelli and Dziewonski can generate a torque acting between core
and mantle and accelerations of the zonal annular flow, when interacting with
the flow calculated by Gire and Le Mouél. Figures 2 and 3 illustrate the toroidal
zonal accelerations F(6 calculated from formula 1. The pressure torque acting
between core and mantle would be on the order of 2 101% N.m, two orders of
magnitude larger than the torque acting on the mantle that is responsible for
the fluctuations in the length of the day for the past twenty years. The different
models of flow (for the epochs 1970,1980,1985) lead to similar accelerations of
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the zonal annular flow when acting on the topography h. On the other hand, as
illustrated by fig.4, large changes in the resulting acceleration occur when random
perturbations 6% are added to the CMB topography (these perturbations 81 are
inside the incertitudes affecting the expansion proposed by Morelli and Dzie-
wonski). The largest incertitudes in the computation of the torgue come then

from the topography.

The acceleration F(& depends also strongly on the truncation level of the flow

{(compare figures 2 and 3) and topography expansions. Let these expansions be:

A

R(B.9)=) ) AtCTYTOi(0,4) (2)

a=lm=0

s(0,4)= ). le:‘“}f:‘“(e.qa)

r=l m=
nodd

y&e* is the fully normalized surface harmonic of degree n and order m. s is the
scalar whose the poloidal part of the flow is the gradient; its expansion takes
into account the symmetry of the non-zonal flow claimed by Gire and Le Mouél.
The coefficients of the expansion of a(u,)/dr are then n(n+1)s7°% In order to
illustrate the non-convergence of F (O with respect to the truncation level, let
us suppose the coefficients of the models of topography and flow statistically

independent and introduce the related quantity G (a global weighted torque):

n

:
2
= —?f sin®(8)F(8)d8
0

then:
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n
2

g 25 a(lt )
G= f h—"2ds
ar
_n 0
and:

o n
G=4n ) Y n(n+1)(hT°sht+ pMesme)
=1 m=l
nodd

We do not know the core surface topography spectrum. Let us represent it

tentatively by the Earth’s surface topography spectrum;
h=n

As for the spectrum of s, we derive from figure 8 of Gire and Le Mouéi (1989),
taking into account the change in the normalization of the surface harmonics

me, s,
y e

s$=n
then

G~ ) n®°

rodd

This estimate is certainly a rough one, but is enough to show that it is impossible
to derive the topographic torgue from the long-wavelength components of the

motion and of the topography alone,
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3 The amplitude of the topographic torque

We have pointed out that the calculated topographic torque is two orders
of magnitude larger that the torque responsible for the fluctuations in the length
of the day for the past twenty vears. This is not a distinctive feature of the
torque generated by the surface pressure obtained from the flow of Gire and
Le Moué! acting on the CMB topography computed by Morelli and Dziewonski.
We have got similar values of the topographic torque with a set of random
topographies with similar amplitude, Indeed, the simple examination of the
interaction of one term in the expansion of the topography with one term in the
expansion of the pressure makes clear that the potential torque is too large
(Hinderer et al.,1989). Also, the unknown short-wavelength components of the
flow and of the topography are likely to induce larger torgues. Different
explanations can be advanced to account for the discrepancy between the cal-
culated and the observed values of the torque:

-The CMB topography may be overestimated. The amplitude of the topography
which can be dynamically supported by the large~scale mantle convection depends
upon the poorly known viscosity of the lower mantle (Ricard, Fleitout and
Froidevaux,1984; Hager et al.,1985). Hager and his coauthors obtained a model
of the dynamically supported topography about a factor four smaller than the
model of the CMB topography proposed by Morelli and Dziewonski. This
motivated Creager and Jordan (1986) to propose the alternative hypothesis that
the differences in travel times of body waves are due to chemical boundary
layers at the CMB. Recently, Doornbos and Hilton (1989) have included bot-
tomside reflections (PKKP) of body waves in the inversion and they have found
that most of the large scale structure producing differences in travel times is

located above the CMB. As a consequence, their model of CMB topography {on
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the same order of magnitude as the dynamic model of Hager et al.) is smoother
than the previous model of Morelli and Dziewonski and yet it would lead to a
pressure torque acting on the mantle (5 1018 N.m) still far too large when
compared with the fluctuations in the length of the day.

-It is tempting to introduce the idea of an ad hoc "effective" topography
(Hide,1989), which could be different from the topography associated with delays
in travel times of body waves. Hide has noticed, for example, that a stable layer
of low-viscosity liquid may separate the metailic core from the solid mantle; the
horizontal gradients of the pressure field acting on the solid mantle would be
weakened and the effective topographic height would be lower than the actual
height. However we are aware of no quantitative physical model describing such
a mechanism.

~-The gravity torque is likely to oppose an important part of the pressure
torque (Jault and Le Mouél, 1989).
-In order to compute the topographic torque, we have used different hypothesis,

among which geostrophy, that may prove false.

Instead of considering either one of these explanations, we choose in the
present paper to look for the ultimate consequences of our model. In particular,
we keep the order of magnitude of the topography used so far. Then the
topographic torque actually acting on the CMB is two orders of magnitude smaller
than the potentially available torque. Now, the CMB topography is not likely to
change on the range of periods 10-100 years since it is associated with slow
process such as lower mantle convection (Hager et al.,1985) or chemical diffe-
renciation (Ruff and Anderson,1980). As for the motions 1 at the core surface,
the different geostrophic flows derived by inverting the 1970, 1980, 1985 s.v.
models present the same morphological features (Gire and Le Mouél,1989); an

extrapolation of the changes calculated from 1970 to 1985 leads to time constants
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of about 100 years. On the other hand, the torque responsible for the so-called
"decade" fluctuations in the length of the day changes quickly and a few years
only can separate t&o peaks of the torque, proportional to d Q. /dt. The discrepancy
between the time constants of the flow and the time constants of the torque
responsible for l.o.d, fluctuations suggests that only a small part, quickly varying,
of the flow contributes to the torque acting on the mantle. Stix and Roberts
(1984) proposed previously a similar view when interpreting the L.o.d. fluctuations
as the result of an electromagnetic core-mantle coupling whose time variations
originate in the changes of the fluid flow at the surface of the core. In order to
obtain a torque varying rapidly enough, they had to remove from the calculated
torgue an average torque attributed to flux leakage from the core into the mantle.
In the same way we propose to interpret the changes in the length of the day
as resulting from small fluctuations of the topographic torque around an equi-

librium position.

In other words, the toroidal zonal acceleration of each annulus induced by
the pressure force acting on the non-axisymmetrical core-mantle interface is

near zero, Or (see formula 1}

o a(u,) zx a(u,)
Yo j; h—ar—d¢(9)+ . h ar

d¢(n—-0)=0 (3

4 A constraint on the CMB topography models.

The CMB models seem to be at the present day less well determined than
the flow models. We will then try to compute a CMB model close to the model

of Morelli and Dziewonski and such that the pressure associated with the flow




156

model of Gire and Le Mouél acting on this boundary induces a topographic
torque of the same order of magnitude (i.e. almost zero) as the torque inferred

from the Lo.d. observations.

We noticed above that a computation of the topographic torque limited to
a low truncation level has little sense. However, a strong topographic torque
generated by the low degree terms in the spherical harmonic expansions of the
CMB topography and of the pressure is unlikely to be balanced, for a long time,
by an opposite torque induced by higher degree terms, Moreover, we are interested
here in the existence part of the problem: Can we find a low degree topography
with a large amplitude {(h ~ Skm) such that a given pressure induces almost no

torque when acting on it?

4.1 Dimension of the space T of the topographies satisfying identity
(3).

We suppose the core surface motions, with the symmety properties claimed
by Gire and Le Mouél, known up to degree N (N=2p+1)} and we look for a
topography with the same truncation level. The pressure associated with the
motion acts on the topography and generates an acceleration F of the annular
toroidal zonal motions inside the core. Geostrophy and symmetry properties of
the motion make the zonal and even degree terms of the CMB topography
ineffective, Then only the non-zonal and odd degree terms, which form the

"afficient" topography, generate torques on the mantle, Identity (3) can be written:
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Vo F(o)= a,cos?(8)=0
0LiEN-}

or

Vi a,=0 (4)

The «, are linear forms on the set of coefficients h¢* (formula 2) of the

expansion of the efficient topography, They span a 2{p+1)? dimensional space
Tesr. Then the dimension of the space of topographies which give a zero acce-

leration F when interacting with a motion u (The a, depend on w) is:
dim(TonT ;)2 2(p+1)°=-(2p+1)=2p(p+1)+1>0

Then topographies exist in Ty which satisfy identically equation (3), If we ask
for F(0) to be zero for different flows (relative to different epochs),

dim(T o NT ;) is reduced.

4.2 An example; A CMB topography close to the model of Morelli and

Dziewonski and giving a small amplitude topographic torque.

Let us consider the case p=2 and use simultaneously three models of the
core surface motions {for the epochs 1970, 1980, 1985) to constrain the CMB
topography. We have I8 unknown parameters and 15 equations and the non-
uniqueness remains. As we need additional constraints to build a particular

topography, we chose to look for a topography as close as possible to the model
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h, of Morelli and Dziewonski (we can keep unchanged the zonal and the even
degree parts of the Morelli and Dziewonski model as they generate no torques).

Furthermore we replace the linear identity (F=0) by the identify:

F=-0,02sin?(0)(°/yr)/10yrs

It roughly accounts for the changes, inferred from s,v. inversion, of the toroidal
zonal motions which have been showed to balance the changes in mantle angular
momentum from 1970 to 1980 (Jault et al.,1988). The results do not depend
heavily upon the exact value of F and the choice (F=0) leads to similar results.
The model h, close to the original topography is obtained using the Newton
method. Table (1) summarizes the new coefficients which can be compared with
the original ones, The fit to the acceleration data has been made excellent while
the amplitude of the topography is only slightly reduced after the inversion. The
map (figure 5) of the so-calculated efficient topography looks similar to the map
of the efficient part of the Morelli and Dziewonski topography (figure 6). The
similarity is of course far more striking when looking at the maps (figures 7 and
8) of the total topographies. This model h, is our preferred example among the
various models we have calculated for different p (p=1,2,3) and different models
of the core surface motions. Table (2) gives an example h, of a large amplitude
topography with the same truncation level as for the model h, of Morelli and
Dziewonski {p=1); but only the model of the core surface motion for the epoch
1980 has been used. The correlation ratic between the coefficients of either h,
or h; with hg are larger than the correlation ratio between the coefficients of &,
and h, This is not surprising since we cannot hope to get any indication of

convergence with so low truncation levels.
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4.3 A criterium to decide the closeness of a given topography to the

space Ty of the topographies generating no torque on the mantle

We carried the same kind of inversion for other models of CMB topography
which have approximately the same amplitude; the results are not so good and
the topography of Morelli and Dziewonski seems close to a satisfying topography,
from the topographic torque point of view. We have tried to quantify this
property. We can define, for each topography #, its distance d{(k) from the linear
space Ty of the topographies generating no torques on the mantle. The space T,
is defined by the linear forms {a;) on the set of coefficients 7% *and depends
on the truncation level (p=2) and on the models of the core surface motions (for
the epochs 1970,1980,1985) we have used. Each linear form is the equation of
an hyperplane of the space of the topographies, and T, is the intersection of
these hyperplanes. We transform the set of linear forms (a)) into a set of orthogonal
linear forms (b;). Again T, is the intersection of the hyperplanes defined by
each linear form by, Then the distance d(#) between a given topography # and
the space Ty can be calculated from the distances (d(4,b))) between the topography
and the orthogonal hyperplanes defined by the linear forms (by):

d(h)?=) d(h,b,)?
!

We have calculated the distance d in the case of the model 4y of Morelli and
Dziewonski (d=1.18km) and in the case of the topography Ay calculated above
(d=0.17km). Then we have compared these distances with the distances to Ty of
a set of 300 random topographies, the coefficients of which follow a centered
gaussian law with variance (¢ = 0.66) (the variance of the coefficients of the

effective part of the Morelli and Dziewonski model is 0.66). The distribution of
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the so-calculated distances is represented by the histogram of fig.5; the model
of Morelli and Dziewonski is, possibly by chance, among the 60 out of 300
closest topographies to the space Ty No topography among the 300 random
topographies is as close to the linear space Ty as our calculated topography ;.
It illustrates again how it is unlikely that a given topography generates by chance

a weak torque on the mantle,

5 A stabilizing mechanism responsible for the small amplitude of the topo-

graphic torque.

Let us forget for the moment the differential rotation of the core annuli
induced by the pressure torque and consider only the average torque on the core
(and the opposite on the mantle). It makes the whole core rotate with respect to
the mantle and, as a consequence, the torque itself changes. The amplitude I'($)
of the average topographic torque can be represented as a function of the phase
shift ¢ between the flow pattern and the CMB topography. Taking as an example
the motion calculated by Gire and Le Mouél for the epoch 1980 and the CMB
model of Morelli and Dziewonski I'(¢) has been computed for 0<¢<2n . The
results are illustrated by fig.10. Some points (¢ = ¢.) of the curve of fig.10 -such
as the point marked 1- are stable points: the flow pattern is drawn back by the
topographic torque after it has drifted by 6¢from ¢.. (¢ = 0) is such a point for
the topography h, computed in the former paragraph (fig.11), Now the curve
I (¢)of fig.10 looks like a sine curve sin{md) ((¢=0) is supposed to be a stable

point):

F{$)=-T,sin(m¢) )

Then:
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dz
Icajcgﬁ—l"osin(mda) (6)

I . being the axial moment of inertia of the core; for mé <« 71, equation (6) can

be linearized

dz
Icﬁﬂurom¢ (7>

it governs an oscillating system with angular frequency A and period T.

ml,

2ﬂ-—
A 3

With the values m=3 and I'=2 1019N.m corresponding to fig.10, this becomes:

A=3 107%:7, T=60 wyears

Hence these oscillations have indeed periods comparable with those of the l.0.d,
fluctuations, This 60 years figure is only an order of magnitude and should not
be compared with a 60 years oscillation of the geomagnetic field as for example
the one proposed by Braginsky(1984)., The amplitude of the maximal torque
observed during the past 100 years, 1018 N.m corresponds to a shift ¢ of only
2.9° from the equilibrium position (thus linearizing is justified) and the cor-
responding maximal angular rotation w=d¢/dt amounts to 0.03°/year; these
values are reasonable. A dissipative mechanism such as the electromagnetic torque
can attenuate the oscillations around stable points and make the description
complete, This locking mechanism of the flow pattern with respect to the mantle
is capable of playing an important part in the history of the core surface motions.

Other mechanisms, such as lateral variations of temperature at the bottom of
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the mantle (Bloxham and Gubbins, 1987), are capable of making physical
quantities at the core-mantle boundary driﬂ'e the surface flow, As a matter of
fact, the above mechanism demands that the flow pattern is not directly
determined, on the decade timescale, by the topography or by lateral variations
of temperature; thermal coupling is a slow process and Anufriyev and Braginsky
(1977) have showed than the slope of the spherical boundary of the core allows

the flow to accomodate to large scale bumps.

Actually in our theory each annulus is accelerated independently from the
others by the topographic torque and we could extend to each annulus the locking
mechanism described in the case of a rigid core if the flow upwellings and
downwellings were carried by the cylindrical annuli. To decide this question,
we have to examine which forces could make the pattern of the flow change at
the core surface. The Lorentz forces certainly tend to make the core rigid on
long periods of time. On the other hand, short term changes in the pattern of
the flow may result from changes in the density heterogeneities p inside the core,
As the symmetry of the flow, as detected by Gire and Le Mouél, supposes density
heterogeneities (driving the non zonal flow) antisymmetrical with respect to the

center of the Earth.

u(r, n-0,n+o)=u(r,0,¢)

plron—0,1t+¢)=-p(r,0,¢) (8)

the convection term —u.Vp induces density heterogeneities dp/3f changes with
the opposite symmetry, Only the toroidal zonal motions keep symmetry (8). Thus

the rotations of cylindrical annuli, which can be associated with the toroidal
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zonal motions at the core surface, may play a preponderant part in the density
heterogeneities changes inside the Earth’s core and, as a consequence, in the

changes of the pattern of the flow at the core surface.

6 Concluding remarks

The topographic coupling remains a good candidate for exchanges of angular
momentum between the core and the mantle, But, if the core topography
amplitude is as big as proposed by seismologists, the integrated product, along
a parallel of the core surface, of the topography and of the radial derivative of
the radial component of the flow at the top of the core must be nearly zero.
Then the topographic torque can both have the required order of magnitude and
present the rapid changes -achieved in a few years- which are needed to explain
the observed variations in the length of the day. Computing the torque associated
with different topographies could then provide a tool to discriminate between
them (Voorhies,1988), An important and rather puzzling consequence of the
ideas developed above is -which was actually suggested many years ago on
different lines- that the flow should tend to be stationary with respect to the
mantle; the locking mechanism could be provided by the topographic torque

itself.
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Table caption:

Table 1: Spherical harmonic coefficients of both the calculated topography #,
of the CMB and the topography model of Morelli and Dziewonsk: (km),

Table 2: Spherical harmonic coefficients of the calculated topography A, (km).
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Figure captions:

Fig.1: Sketch of various surfaces and parameters used in the text,

Fig.2: Angular acceleration of the cylindrical annuli (degree yr-! 10 yr-1) for
truncation level n=4 and different epochs: dotted line, 1970 ; dashed line,
1980 ; solid line, 19835.

Fig.3: Same as for Fig.2, but for n=35,

Fig.4: Changes in the angular acceleration with random perturbations of the
Morelli and Dziewonski model.

Fig.5: Part of the calculated topography h; capable of generating a pressure
torque on the mantle.

Fig.6: Effective part of the Morelli and Dziewonski model
Fig.7: Calculated topography i,
Fig.8: Morelli and Dziewonski topography model.

Fig.9: Histogram of the distances of a set of random topographies from the space
T of the topographies generating no torques on the mantle,

Fig.10: Changes in the torque acting on the core with an imaginary rotation of
the pattern of the flow with respect to models of the CMB: Morelli and
Dziewonski model.

Fig.11: Changes in the torque acting on the core with an imaginary rotation of
the pattern of the flow with respect to models of the CMB: calculated
topography h,.
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Calculated topogra- | Model of Morelli
phy I and Dziewonski

n m e sy ey sy
1 1 0.09 -0.25 0.07 -0.03
3 1 -0.03 0.09 0.30 -0.04
3 2 0.56 -0.19 1.15 -0.31
3 3 -0.25 ~0.95 -0.11 -1.25
5 1 0.01 -0.01 - -
5 2 -0.17 0.06 - -
5 3 -0.24 -0.08 - -
5 4 0.45 -0.17 - -
5 5 -0.03 -0.44 - -
Table 2 :

Calcuiated topogra-

phy hy

n m cp s
i I -0.11 -0.21
3 1 0.17 0.27
3 2 1.16 -0.31
3 3 0.40 -0.87
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Figure 2
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Figure 3
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Figure 4
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Figure 8
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Figure 9
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TORQRUE ACTING ON THE CORE(N.M)
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TORQUE ACTING ON THE CORE (NM)

Figure 11
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