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Summary 

 

A new formulation for solving the Eikonal equation is investigated using a time-dependent Hamilton-Jacobi 

equation. A discontinuous Galerkin (DG) finite element method is proposed for direct reconstruction of the 

traveltime field as the final stationary solution. Both isotropic and tilted transversely isotropic (TTI) 

implementations are performed in heterogeneous media with stable and accurate results as long as we honor 

the high-frequency approximation. We introduce outgoing conditions at edges able to handle complex 

topography and we deal with singularity at the source through the additive factorization. Expected convergence 

behavior regarding element interpolation is observed when considering factorization. Comparison between DG 

and finite difference solutions in the complex BP TTI model with unstructured and structured meshes illustrates 

the highly accurate traveltime estimation of this DG approach, pointing out perspectives for integrating this 

accurate local Eikonal solver into efficient methods for getting the stationary solution, such as fast sweeping 

methods. 
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Introduction
Traveltime computation is of major interest for a large range of applications in seismic processing and
imaging, among which traveltime tomography for velocity macro-model building before subsequent
Full Waveform Inversion (FWI) / Migration Velocity Analysis (MVA), phase identification and data
windowing. While Lagrangian ray-tracing algorithms remain efficient tools when the velocity field is
sufficiently smooth, they are no longer suitable for heterogeneous media where the regular sampling
of the medium becomes a challenge with triplications and shadow zones, especially when a first-arrival
traveltime is required everywhere in the medium. Since the work of Vidale (1990), many Eikonal solvers
have been developed, most of them in a finite-difference framework (e.g. Podvin and Lecomte (1991);
Noble et al. (2014)). The robustness of such Eulerian schemes for first-arrival traveltime computation
relies on the definition of viscosity solutions given by Crandall and Lions (1983) for Hamilton-Jacobi
equations, a general class to which Eikonal equation belongs. Yet first-arrival traveltime computation in
strongly heterogeneous media is still challenging due to the low-order convergence of finite-difference
schemes in comparison with the high level of precision with which traveltimes and their derivatives
need to be estimated for applications such as beam migration or slope tomography: intense numerical
developments are still undertaken. In addition, anisotropy has become a vital tool for medium description
in the recent developments of inversion strategies, so that recent works focus on building anisotropic
solvers (Waheed et al., 2015; Tavakoli F. et al., 2015). We propose a novel strategy for computing
traveltimes in anisotropic media by introducing a discontinuous Galerkin (DG) scheme from Cheng and
Wang (2014) able to handle a direct Hamiltonian formulation for the Eikonal equation. We exhibit
numerical convergence rates on a simple model and we present an illustrative example on the BP TTI
benchmark model before we conclude on potentialities of this approach.

Theory: Hamiltonian formulation and Eikonal factorization
We focus on 2D geometries, but the equations we present can be directly extended to 3D. We introduce
a pseudo-time t and we solve the time-dependent Hamilton-Jacobi equation

∂u(x, t)
∂ t

+H (x,∇xu(x, t)) = 0 (1)

for u(x, t) where x denotes the spatial coordinates. The steady state of u(x, t) corresponds to the solution
of the Eikonal equation (traveltimes). For a velocity field c(x), one possible Hamiltonian function for
the isotropic case is

HISO(x,∇xu(x, t)) = ‖∇xu(x, t)‖− 1
c(x)

. (2)

Vertical transversely isotropic (VTI) Hamiltonian function, following Slawinski (2003) with the use of
Christoffel’s dispersion relation and Thomsen’s parameters (Thomsen, 1986), is defined by

HVTI(x,∇xu(x, t)) = Au4
,z +Bu4

,x +Cu2
,xu2

,z +Du2
,x +Eu2

,z−1, (3)

with A = −V 2
p V 2

s , B = −(1+2ε)V 2
p V 2

s , C = −(1+2ε)V 4
p −V 4

s +(V 2
p −V 2

s )
[
V 2

p (1+2δ )−V 2
s
]
, D =[

V 2
s +(1+2ε)V 2

p
]
, E = (V 2

p +V 2
s ). Indices ,z and ,x indicate the derivatives with respect to z and x.

From this VTI formulation, the TTI case is obtained by the local rotation

u,x→ u,x cosθ +u,z sinθ , u,z→ u,z cosθ −u,x sinθ , (4)

where the tilt angle θ(x) denotes the local angle made by the symmetry axis with the vertical. We may
simplify the expression (3) by setting Vs = 0. This acoustic approximation does not perturb the numerical
solution when considering only first-arrival traveltimes (Alkhalifah, 2000).
We then use the factorization method in the case of a point source (Fomel et al., 2009), in order to
mitigate the numerical error due to the source singularity by considering the additive decomposition

u(x, t) = u0(x)+ τ(x, t). (5)

The reference solution u0 is known for an homogeneous medium with the velocity value taken at the
source. We obtain a Hamilton-Jacobi equation for the new field τ(x, t) by inserting expression (5) into
equations (1) to (3). The resulting equation is solved by the DG method we introduce in the following.

Numerical approach: Discontinuous Galerkin method
Recently, Cheng and Wang (2014) proposed a DG scheme that simplifies the numerical implementa-
tion for computing the field τ(x, t). The spatial domain Ω is partitioned into n polygonal elements
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denoted by Ki, i = 1, ...,n, using structured or unstructured meshes (h-adaptivity). A local approxima-
tion space Pi of dimension di is chosen for each element Ki together with a basis of shape functions
φ

j
i (x,z), j ∈ {1, ...,di}. The choice of the approximation space may differ from one element to another

(p-adaptivity). Here, we use classical polynomial approximations of degrees from 1 to 3, denoted by P1,
P2 and P3. At the steady state, traveltimes are approached in a weak sense by the numerical solution uh
inside each element. We define nKi to be the outward unit normal to the Ki cell boundary. At cell inter-
faces, traces v±h , jumps [vh] and means vh, of any numerical quantity vh defined inside two neighboring
cells are given respectively by

v±h (x) = lim
ε↓0

vh(x± εnKi), [vh](x) = v+h (x)− v−h (x), vh(x) =
1
2
(
v+h (x)+ v−h (x)

)
. (6)

With these expressions, as well as with their spatial derivatives and their projections on boundaries,
different key quantities F ,G ,K are defined at the boundary between two elements in order to build
a causality consistent flux estimation, which is an essential ingredient of the DG formulation. For the
sake of concision, the expressions for F ,G ,K are not reproduced here: let us mention these quantities
depend nonlinearly on the solution itself and on the local values of the Hamiltonian function (Cheng and
Wang, 2014).
Inside the discretized space where ∆Ki is the Ki element size and ∆S j

i the length of edge j of element Ki,
the weak formulation of the equation (1) can be expressed as

“Find the discrete field uh(., t) ∈ {v : v|Ki ∈Pi,∀i ∈ {1, ...,n}}∀t > 0, such that∫
Ki

(
∂tuh(x, t)+H

(
∇xuh(x, t),x

))
vi(x)dx +

∫
∂Ki

F [uh](x, t)v−i (x)ds

−C∆Ki

(
∑

S j
i ∈∂Ki

1

∆S j
i

∫
S j

i

G [∇xuh ·nKi ](x, t)v
−
i (x)ds + ∑

S̄ j
i ∈∂̄Ki

2

∆S̄ j
i

∫
S̄ j

i

K (∇xu−h (x, t) ·nKi) v−h (x) ds

)
= 0,

(7)

for each i ∈ {1, ...,n} and for any test function vi ∈Pi.”

The set ∂Ki denotes the internal edges which are shared with other cells, and ∂̄Ki the external edges which
are parts of the domain boundary ∂Ω. The test functions vi are shape functions as usual for Galerkin
approaches (Zienkewicz and Morgan, 1983). The three boundary integrals involving F , G and K rule
the interaction between elements. The first term of the scheme (7) embeds the Hamilton-Jacobi equation
for consistency. The second term determines the information flow direction and allows shock capture
when present. The third term treats the so-called rarefaction situation and is balanced by the viscosity
parameter C set to 0.25 as a good empirical value (Cheng and Wang, 2014). We add the last new term
for handling outgoing-flux boundary conditions. The time integration of the equation (7) is performed
by a second-order Runge-Kutta scheme until we reach the steady-state solution. We emphasize that the
scheme (7) holds for isotropic as well as for TTI cases, which highlights the flexibility of this approach.

Numerical examples
We first perform a convergence study on a simple isotropic model which consists of a constant vertical
velocity gradient. An exact analytical solution is known for such a model (Červený, 2001). We consider
a square domain of 4000 m length along x- and z-axes with a point source located at the center. Inside
this domain, we define a linear dependency of the velocity along z-coordinate, which varies from 1000
ms−1 at z = 0 to 3000 ms−1 at z = 4000 m. The domain is firstly discretized in a rectangular Cartesian
way with Nx = Nz = N elements along x- and z-axes so that the total number of elements is N2. Another
discretization is obtained by cutting each rectangular element into two triangles in an alternating diago-
nal direction. The number of elements of this so-called Union-Jack (UJ) pattern is now 2N2. We perform
computation for both settings. Based on theoretical results, we expect at most k+1-convergence of the
solver for traveltimes and k-convergence for spatial derivatives when using a Pk polynomial approxima-
tion space. The residual is defined by the value of H (Eq. 2) at steady state, while the error definition
comes from numerical and analytical solutions (Fig. 1). In practice, we only obtain a first-order con-
vergence of the solver for both error and residual when the standard formulation is involved due to the
source singularity, whatever the approximation space we choose. However, a drastic improvement is
obtained when using the additive factorization formulation (Eq. 5), such that levels of error are much
lower and exhibit the expected second-order convergence of the solver. These results hold for both
Cartesian and UJ discretizations (see results for P1 approximation on Figure 1). While small differences
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are visible between Cartesian and UJ cases without factorization, we clearly notice that results obtained
with factorization are perfectly aligned.
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Figure 1 Vertical velocity gradient case: errors and residuals for P1 approximation for both Cartesian
and Union-Jack discretizations with and without factorization. #dof indicates the number of degrees of
freedom. One can see the dramatic decrease in error and residual estimations with proper convergence
rates when considering factorization.
Next we apply the DG time-marching solver on the 2D BP TTI benchmark model (Shah, 2007) with a
Gaussian smoothing of characteristic lengths of 367 meters in both x and z directions in order to mitigate
the impact of the discretization. The model is described by a highly contrasted P-wave velocity over a
distance of 79 km and a depth of 11 km and corresponding Thomsen’s parameters ε , δ and θ (Fig. 2).
The DG solver proceeds over an unstructured mesh of 55 012 P1 triangular elements. The corresponding
number of degrees of freedom is 165 036. We use a finite-difference TTI solver (Waheed et al., 2015;
Tavakoli F. et al., 2015) for comparison, which proceeds over a 154×1071 grid so that the number of
degrees of freedom is similar (164 934). The source is located at x = 40 km, z = 0 m. Wave fronts
obtained with the two methods exhibit similar shapes (Fig. 3), although small differences of less than
150 m appear at large offsets (above 20 km).

(a)

(b)

(c)

(d)

Figure 2 The smooth BP TTI model: from top to bottom, vertical velocity (a), Thomsen’s epsilon pa-
rameter (b), Thomsen’s delta parameter (c), tilt angle (d).

Conclusions
We have shown that computing directly the traveltime at fixed points is possible for complex anisotropic
media using a recently designed discontinuous finite-element method. Adding outgoing conditions at
the borders of the finite domain including the topography is important for Earth sciences applications.
Factorization for handling the intrinsic singularity at the point source enables us to recover expected
convergence behavior of finite-element schemes. Various applications show that this new approach
provides high-quality solutions when compared with finite-difference methods. Complex topographies
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Figure 3 First-arrival traveltime isochrones in the smooth BP TTI model computed with the DG
time-marching solver (blue plain line) and with the FD fast-sweeping solver (red dashed line).

are handled efficiently by using an unstructured mesh. Time integration is rather a slow procedure and
should be combined with faster methods when one looks for the steady-state solution. Therefore we
shall investigate how to incorporate this local solver inside a fast sweeping technique to take benefit of
the hyperbolic structure of the equation, among other alternatives for using such solver. The quality of
the solution depends on the mesh and on the interpolation order we select in elements. We shall take
full benefit of the so-called hp-adaptivity in the future. We have found that this solver provides accurate
solutions for isotropic and anisotropic media, opening doors to possible integration in tomography and
migration tools. Finally we focus on first arrivals here, but the flexibility of the Hamiltonian formalism
coupled with the extension to higher dimensions should allow for multi-arrival consideration in a phase
space framework, subject to future investigations.
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