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On the precision of noise correlation interferometry
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S U M M A R Y
Long duration noisy-looking waveforms such as those obtained in randomly multiple scatter-
ing and reverberant media are complex; they resist direct interpretation. Nevertheless, such
waveforms are sensitive to small changes in the source of the waves or in the medium in which
they propagate. Monitoring such waveforms, whether obtained directly or obtained indirectly
by noise correlation, is emerging as a technique for detecting changes in media. Interpretation
of changes is in principle problematic; it is not always clear whether a change is due to sources
or to the medium. Of particular interest is the detection of small changes in propagation
speeds. An expression is derived here for the apparent, but illusory, waveform dilation due
to a change of source. The expression permits changes in waveforms due to changes in wave
speed to be distinguished with high precision from changes due to other reasons. The theory
is successfully compared with analysis of a laboratory ultrasonic data set and a seismic data
set from Parkfield California.

Key words: Time series analysis; Coda waves; Theoretical seismology; Wave scattering and
diffraction; Rheology: crusts and lithosphere.

1 I N T RO D U C T I O N

The technique proposed in the 1980s (Poupinet et al. 1984) and later called ‘Coda wave interferometry’ (Snieder et al. 2002) compares coda
waveforms from multiples scattered waves obtained under different circumstances or on different dates and detects changes in a medium. A
multiply scattered wave can resist detailed interpretation, but for purposes of monitoring one may not need to interpret the waveform: it is
sufficient to note changes. Coda wave interferometry was first suggested for seismic waves but has also been applied in laboratory ultrasonics
(Weaver & Lobkis 2000; De Rosny & Roux 2001; Lu & Michaels 2005; Gorin et al. 2006; Lobkis & Weaver 2008). In many such cases the
change is due to a uniform change of temperature, and thus a uniform change in wave velocity. To detect such changes, Weaver & Lobkis
(2000) constructed a dilation correlation coefficient between waveforms φ1 and φ2.

X (ε) =
∫

φ1(t)φ2(t(1 + ε))dt√∫
φ2

1 (t)dt
∫

φ2
2 (t(1 + ε))dt

(1)

X takes on a value of unity at ε = 0 if the two waveforms are identical. It will reach a value of unity at some characteristic value of ε if
the two waveforms differ only by some temporal dilation. The estimated degree of dilation between two waveforms is taken to be the value of
ε at which X is maximum. X reaches a maximum of less than unity if the waveforms differ by more than dilation alone. Therefore, the value
of X at its maximum, if it is less than unity, may be interpreted as a measure of the distortion between the waveforms.

An alternative formulation is Poupinet’s doublet method (Poupinet et al. 1984), which breaks φ1 and φ2 into a series of short time
windows at several distinct times t and determines the apparent shift δt between them by examining conventional cross spectrum. δt as a
function of t, and in particular its slope δt/t reveals a change in the medium. Poupinet developed the doublet method in which seismic signals
from repeated seismic events could be compared to infer changes in the earth (Poupinet et al. 1984). Song & Richards (1996) and Zhang
et al. (2005) used this to show that certain earth crossing rays were shifted and distorted compared to versions some years earlier, indicating
a relative rotation between the earth and its core.

The extensive literature in recent years on correlations of diffuse acoustic noise has reported theory and measurements in support of the
notion that such correlations are essentially equal to the acoustic response that one would have at one receiver were there a source at the other
(Lobkis & Weaver 2001; Derode et al. 2003; Snieder 2004; Weaver & Lobkis 2004; Roux et al. 2005; Gouédard et al. 2008; Tsai 2009). More
technically, what is recovered is the Green’s function as filtered into the frequency band of the noise, whitened and symmetrized in time. Two
different kinds of records can be correlated. Sometimes it is coda that is correlated (Campillo & Paul 2003). Coda waves consist in a long
duration random looking signals that follows the main arrivals from a strong seismic source; coda waves are due to single and/or multiple
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scattering. More commonly the diffuse noise is due to ambient seismic waves from continuously acting sources such as human activity or
ocean storms. Much recent literature reports constructions of the earth’s seismic response between two seismograph stations, without the use
of controlled sources, and without waiting for a seismic event. Tomographic maps of seismic velocity with unprecedented resolution have
been obtained (Sabra et al. 2005; Shapiro et al. 2005). The technique has even been applied on the moon (Larose et al. 2005). Very commonly,
the noise which is correlated is incompletely equipartitioned, such that the resulting correlation waveforms do not precisely correspond to
the Green’s function. A difference between noise correlation and Green’s function can also be observed when one has not averaged enough
raw data; the correlation may not have yet converged. Theoretical and applied work is ongoing in attempts to understand and correct for
systematic errors due to these effects (Weaver et al. 2009; Froment et al. 2010). Nevertheless, Hadziioannou et al. (2009) demonstrated that
it is not necessary to reconstruct the Green’s function to use correlations for monitoring purposes.

These two approaches have been combined into what may be termed noise-correlation interferometry (Sabra et al. 2006; Sens-Schönfelder
& Wegler 2006; Brenguier et al. 2008a; Brenguier et al. 2008b) in which correlations of seismic noise taken in different circumstances are
compared. The correlations may have been obtained from different samples of ambient noise, perhaps on different dates or from the codas
of different events. The correlations are of course never identical; they are often very different. One reason for a difference is that the source
of the noise may be different (yet if the correlation has converged to the local Green’s function, a change of noise source ought to have little
effect). Continuous seismic sources can move and strengthen or weaken as weather changes at sea. It may also be that the correlation has
not fully converged (i.e. insufficient averaging has been done). A third possibility is that the local mechanical or acoustic environment may
have evolved, in particular, the local wave speed(s) may have changed. It is this possibility that is of particular interest, as changes in seismic
velocities are associated with relaxations after major seismic events (Brenguier et al. 2008b). In some cases changes in seismic velocity can
be used to predict volcanic eruptions (Brenguier et al. 2008a). Therefore, it is of great interest to be able to discern whether a change is due
to a change in local environment or to a change in the character of the noise. The latter possibility is of some interest; the former is of great
interest.

Our purpose here is to evaluate the precision with which wave speed changes can be evaluated. To do this, we consider the case in which
the two waveforms φ1(t) and φ2(t) differ only by noise so that the actual relative dilation without noise, is zero. We then ask for the apparent
(non-zero in general) value of ε at which the corresponding X in eq. (1) achieves its maximum. The next section calculates the root mean
square 〈ε2〉 of this apparent, and erroneous, relative dilation. The subsequent sections compare this prediction with experiment.

2 D I L AT I O N C O R R E L AT I O N C O E F F I C I E N T

Here, we examine the apparent waveform-dilation between two nominally identical signals. Theoretically, one ought to infer a relative dilation
ε of zero, however, noise can corrupt the inference. Key to the following analysis is an understanding that the signals being discussed are like
coda, in that they are statistically stationary with durations long compared to an inverse bandwidth. We take the two waveforms to have an
identical part ψ(t), and to differ by noise 2μχ (t). In the limit μ → 0, the waveforms become identical and have no relative dilation. If μ �= 0,
there will be an apparent, but actually meaningless, temporal dilation between them. We wish to estimate this erroneous apparent relative
dilation, and to identify any signatures that could be used to alert to the possibility of error. Note that the common part ψ of the signals need
not be the local Green’s functions.

We split the difference between these two waveforms φ1 and φ2, and define two signals ψ and χ ;

φ1,2 = ψ(t) ± μχ (t). (2)

The waveform dilation-correlation coefficient (11) between them is

X (ε, μ) =

∫
φ1(t(1 + ε/2)) φ2(t(1 − ε/2)) dt√∫

φ2
1 (t(1 + ε/2)) dt

∫
φ2

2 (t(1 − ε/2)) dt

=
√

1 − ε2/4

∫
[ψ(t(1 + ε/2)) + μχ (t(1 + ε/2))] [ψ(t(1 − ε/2)) − μχ (t(1 − ε/2))] dt√[∫

(ψ2 + μ2χ 2) dt

]2

− 4μ2

[∫
χψ dt

]2

=
√

1 − ε2/4
N (ε, μ)

D(μ)
(3)

with N and D defined as, respectively, the numerator and the denominator of X . The integrations are typically taken over a finite time-window
with tapered edges. We make the approximation that the change of variable t(1 + ε/2) → t and t(1 − ε/2) → t in the denominator only
leaves a prefactor

√
1 − ε2/4.

The value of ε at which X achieves its maximum is the practitioner’s estimate of the dilation between the waveforms φ1 and φ2. It occurs
at ε such that ∂ X/∂ε = 0, or,

0 =
√

1 − ε2/4 D(μ)
∂ X (ε, μ)

∂ε
= − ε N (ε, μ)

4
+ (1 − ε2/4)

∂ N (ε, μ)

∂ε
. (4)
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If the phase shift due to time dilation is much less than one oscillation, which implies tωε � 1 for all times t and frequencies ω of
interest, it suffices to expand N (ε, μ) through only the second power of ε

N (ε, μ) =
∫ [

ψ(t) + tε

2
ψ̇(t) + t2ε2

8
ψ̈(t) + μχ (t) + μεt

2
χ̇ (t) + μt2ε2

8
χ̈ (t)

]

×
[
ψ(t) − tε

2
ψ̇(t) + t2ε2

8
ψ̈(t) − μχ (t) + μεt

2
χ̇(t) − μt2ε2

8
χ̈ (t)

]
dt. (5)

On collecting terms in N (ε, μ) that are linear and quadratic in ε obtains

N (ε, μ) ∼
∫ [

ψ(t)2 − μ2χ (t)2
]

dt +
∫ [

tε

2
ψ̇(t) + μεt

2
χ̇ (t)

]
[ψ(t) − μχ (t)] dt

+
∫ [

− tε

2
ψ̇(t) + μεt

2
χ̇(t)

]
[ψ(t) + μχ (t)] dt

+
∫ [

t2ε2

8
ψ̈(t) + t2με2

8
χ̈(t)

]
[ψ(t) − μχ (t)] dt

+
∫ [

t2ε2

8
ψ̈(t) − t2με2

8
χ̈(t)

]
[ψ(t) + μχ (t)] dt

+
∫ [

tε

2
ψ̇(t) + μεt

2
χ̇(t)

] [
− tε

2
ψ̇(t) + μεt

2
χ̇(t)

]
dt (6)

=
∫ [

ψ(t)2 − μ2χ (t)2
]

dt + ε

∫
tμ

[
(χ̇(t)ψ(t) − χ (t)ψ̇(t)

]
dt

+ ε2

4

∫
t2

[
ψ̈(t)ψ(t) − μ2χ̈(t)χ (t)

]
dt

− ε2

4

∫
t2

[
ψ̇(t)2 − μ2χ̇(t)2

]
dt. (7)

The first term in ε2 may be integrated by parts.

N (ε, μ) ∼
∫ [

ψ(t)2 − μ2χ (t)2
]

dt + ε

∫
tμ

[
χ̇(t)ψ(t) − χ (t)ψ̇(t)

]
dt

−1

2
ε2

∫
t2

[
ψ̇(t)2 − μ2χ̇(t)2

]
dt + 1

4
ε2r (8)

where the quantity r is

r =
∫ [

ψ(t)2 − μ2χ (t)2
]

dt − t
[
ψ(t)2 − μ2χ (t)2

] − t2
[
ψ(t)ψ̇(t) − μ2χ (t)χ̇(t)

]
, (9)

whose expectation is zero and whose typical value is much less (by a factor of t2ω2) than the other coefficient of ε2 in eq. (8). For this reason
we henceforth neglect it.

So finally, neglecting high order of ε,

∂ N (ε, μ)/∂ε ∼
∫

μt
[
χ̇(t)ψ(t) − χ (t)ψ̇(t)

]
dt − ε

∫
t2

[
ψ̇(t)2 − μ2χ̇(t)2

]
dt. (10)

Eq. (4) is satisfied for

ε = n/d, (11)

with

n = μ

∫
t
[
χ̇ (t)ψ(t) − χ (t)ψ̇(t)

]
dt,

d =
∫ [

t2(ψ̇(t)2 − μ2χ̇ (t)2)
]

dt + 1

4

∫ [
ψ(t)2 − μ2χ (t)2

]
dt.

Eq. (11) is an expression for the apparent dilation induced by the difference 2μχ between the original waveforms φ1 and φ2. Given
specific ψ and χ , one could evaluate it. It will be more useful, however, to obtain statistical estimates for the apparent dilation given
assumptions about the envelopes and spectra of ψ and χ . The numerator n has expectation zero, as χ and ψ are statistically unrelated. Thus
within the stated limit ωtε << 1, differences φ2 − φ1 do not manifest as an apparent dilation and the expected dilation ε is zero.

3 VA R I A N C E E S T I M AT I O N A N D S TAT I S T I C A L E R RO R

Given 〈n〉 = 0, one then seeks estimates for the root mean square of eq. (11) to judge typical fluctuations around the expected zero. These
will be made based on assumptions that ψ and χ are stationary, noise-like and Gaussian, with similar spectra, having central frequency ωc.
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ψ and χ have the same duration, long compared to the inverse of ωc. Without loss of generality it is also assumed that they have the same
amplitudes 〈ψ2〉 = 〈χ 2〉 = 1. They are taken to extend from a start time t1 to an end time t2. Under these assumptions the denominator of
(11) is estimated as

d ≈ (
1 − μ2

) [
1

3
ω2

c

(
t3
2 − t3

1

) + 1

4
(t2 − t1)

]
≈ (

1 − μ2
) 1

3
ω2

c

(
t3
2 − t3

1

)
. (12)

The square of the numerator of (11) is

n2 ≈ μ2

[∫ ∫
t t ′ {ψ (t) χ̇ (t) − ψ̇ (t) χ (t)

} {
ψ

(
t ′) χ̇

(
t ′) − ψ̇

(
t ′)χ

(
t ′)} dt dt ′

]
. (13)

On changing variables: t + t ′ = 2τ, t − t ′ = ξ and dropping the cross terms as having expectation zero, (13) becomes

〈n2〉 ≈ μ2

∫ (
τ 2 − ξ 2

4

){
ψ

(
τ + ξ

2

)
χ̇

(
τ + ξ

2

)
ψ

(
τ − ξ

2

)
χ̇

(
τ − ξ

2

)

+ ψ̇

(
τ + ξ

2

)
χ

(
τ + ξ

2

)
ψ̇

(
τ − ξ

2

)
χ

(
τ − ξ

2

)}
dτ dξ. (14)

Autocorrelation functions may be defined as

〈ψ
(

τ + ξ

2

)
ψ

(
τ − ξ

2

)
〉 = 〈ψ2(τ )〉Rψ (ξ ) = R(ξ ), (15)

such that

〈ψ̇
(

τ + ξ

2

)
ψ̇

(
τ − ξ

2

)
〉 ≈ ω2

c 〈ψ2(τ )〉Rψ (ξ ) = ω2
c R(ξ ), (16)

with similar expressions for χ . Then the expectation of the square of the numerator of (11) is

〈n2〉 ≈ 2μ2

[∫ (
τ 2 − ξ 2

4

)
ω2

c R2(ξ ) dτ dξ

]
≈ 2 μ2 ω2

c

[∫
τ 2dτ

] [∫
R2(ξ )dξ

]
. (17)

The first integral is merely (t3
2 − t3

1 )/3. The second requires knowing something of the spectra of ψ and χ , so we take these to be
Gaussian and identical: ∼ exp(−(ω − ωc)2T 2) + exp(−(ω + ωc)2T 2). T may be identified by noting that the −10 dB points are at ωc plus
or minus ln 10/T . In this case, R is related to the inverse Fourier transform of the power spectrum R(ξ ) = cos(ωc ξ ) exp(ξ 2/4T 2). Then the
second integral in (17) is identified as T

√
π/2.

Application of eqs (11), (12), (17) requires that we also estimate the μ. The quantity μ is related to the maximum of the waveform
dilation-correlation coefficient

X (0, μ) = N (0, μ)

D(μ)
=

∫
ψ(t)2 − μ2χ (t)2dt√[∫

ψ2 + μ2χ 2dt
]2 − 4μ2

[∫
χ ψ dt

]2
. (18)

As χ and ψ are statistically independent, one estimates the following relation between the maximum of the dilation correlation coefficient
and the parameter μ

X = 1 − μ2

1 + μ2
. (19)

Finally, the root mean square of the practitioner’s (erroneous) estimate for the relative dilation between φ1 and φ2 is

rms ε = 〈n2〉1/2

d
=

√
1 − X 2

2X

√
6
√

π

2 T

ω2
c

(
t3
2 − t3

1

) . (20)

We recall that T is the inverse of the frequency bandwidth, t1 and t2 are begin and end time of the processed time-window in the coda,
respectively and ωc is the central pulsation. This expression scales inversely with the duration of the correlation waveform in units of the
period, and inversely with the square root of the duration in units of the inverse bandwidth. In practice eq. (20) can be very small. The quantity
ω(t2 − t1) represents the available time where coda waves are significantly larger than the noise; the duration of the waveform is in units of
the period. The quantity T is the amount of time for one bit of information to be delivered, and corresponds roughly to the time of the initial
source (Derode et al. 1999). Thus eq. (20) can be recognized as scaling inversely the available time in the coda (this time is related to coda-Q),
and inversely with the square root of the amount of information. It also may be recognized that small X corresponding to waveforms φ1 and
φ2 that are very different, permits the practitioners erroneous estimate of dilation to be large. It may be that lengthening the considered time
interval t2 − t1 would increase the precision, however it could also diminish X : in principle there are trade-offs.

Application of eq. (20) is straightforward. A practitioner’s estimate of the relative dilation ε between two waveforms φ1 and φ2 may be
compared to eq. (20). Values in excess of eq. (20) are consistent with the inference that the observed dilation is real. Changes in waveform
source or other character should not generate apparent dilations in excess of eq. (20). Furthermore, in absence of any actual dilation, estimates
of ε of the order eq. (20) will nevertheless be generated in practice. Such should be regarded as unmeaningful.
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4 C O M PA R I S O N W I T H E X P E R I M E N T

The prediction eq. (20) has been compared to waveform dilation measurements in a laboratory ultrasonic experiment (Hadziioannou et al.
2009). For practical reasons, we mimicked here ambient noise correlation with diffuse waves correlation. Several piezoelectric sensors and
sources were applied to a multiple scattering air-bubble filled gel (see Fig. 1). Sources and receivers were placed on opposite sides, 64 mm
apart. Multiple scattering was strong: received waveforms fsr (t) from sources s to receivers r were coda-like, with envelopes that resembled
the solution of a diffusion equation (Fig. 2). The autocorrelation of each fsr (t) was windowed between lapse times of 12.5–50 µs, to yield the
waveforms which we call gsr (τ ) (see Fig. 3). Details of the experimental set-up are described in Hadziioannou et al. (2009). The details are,
however, unimportant here, as the present theory applies to any pair of coda-like waveforms φ1 and φ2. The typical gsr is stationary over this
interval and has a power spectrum centred on 2.35 MHz with −10 dB points at 1.7–3.0 MHz.

The tables below are formed by maximizing the dilation correlation coefficient X between sums φ = ∑
s gsr over different sets of sources

(s). Note that the φ are not Green’s functions Grr , as the fields fsr (t) used to compose them were not fully equipartitioned. The excellent
impedance match between the gel and the receivers prevented the field to be reflected back to the medium. The noise field thus lacked any
components travelling from receiver to receiver. All tests were conducted at fixed temperature, the actual relative temporal dilation is therefore
zero. Also, to mimic signals acquired at different date, we averaged correlations over different set of sources to eventually compare them. The
addition of different sources results in an additional noise χ (t) in the correlations. The goal of the test is to measure the dilation induced by
the difference in waveform due to a different source distribution.

Autocorrelation waveforms, like that illustrated in Fig. 3, in the interval from 12.5 to 50 µs appear stationary. Thus we take t1 = 12.5 µs,
t2 = 50 µs, ωc = 15 rad µs−1and T = 0.56 µs and conclude from (20),

rms ε = 4 × 10−4

√
1 − X 2

2X
. (21)

Tables 1 and 2 show two case studies. In the first case, autocorrelations calculated from the signals at a receiver r, as produced by 11
distinct sources s, were summed over to generate the reference waveform φ1 = ∑

s gsr . For each of three comparison waveforms φ2, the same
sum was done, keeping the first 10 sources unchanged. To deliberately change the waveform without dilation, the eleventh source is replaced

Figure 1. Experimental setup with ultrasound. An air-gel mixture mimics a multiple scattering medium. Coda waves sensed by the receivers (see Fig. 2) are
processed like ambient seismic noise: they are autocorrelated and compared from one date to another.

Figure 2. A typical signal fsr (t) in the gel resembles noise, under an envelope which is a solution of a diffusion equation.
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Figure 3. A typical autocorrelation gsr , of the signal from one of the sources to one of the receivers. The interval from 12.5 to 50 µs was selected for dilation
coefficient evaluation.

Table 1. Comparison of best-fit waveform dilations ε with the predictions of eq. (21). A maximum value
of X and the ε at which that X is maximum, are constructed for each of seven receivers (the seven columns)
and the three choices for the set of sources described in the text (the three rows). The root mean square of
those ε is compared with the predictions of theory. That X is of order 90 per cent is consistent with one
source in ten having changed.

X for seven receivers and three different choices for the set of sources

Sources 1–11 and 12 0.9312 0.9169 0.8893 0.8458 0.8226 0.8852 0.8683
Sources 1–11 and 13 0.9394 0.8833 0.9083 0.8464 0.8872 0.8631 0.8928
Sources 1–11 and 14 0.9458 0.9009 0.8730 0.7942 0.8322 0.8396 0.7979

The dilation ε (×10−3) as obtained by maximizing X for each of these cases
Sources 1–11 and 12 0.06 0.04 −0.16 0.08 −0.04 −0.10 0.18
Sources 1–11 and 13 −0.04 −0.04 −0.08 0.06 −0.14 −0.08 0.10
Sources 1–11 and 14 −0.16 0.08 −0.12 0.00 −0.14 −0.24 −0.12

Experimental root mean square dilation ε (×10−3)
All sets 0.1013 0.0566 0.1244 0.0577 0.1166 0.1571 0.1376

Theoretical root mean square (×10−3) from eq. (21)
All sets 0.07 0.09 0.09 0.12 0.11 0.10 0.11

Table 2. As in Table 1, but for sources that differ by more: fewer sources are kept fixed (four) and more
sources are changing (two). This results in a smaller values of X and a larger value of error (uncertainty).

X for seven receivers and three different choices for the set of sources

Sources 1–4 and 5,6 0.6181 0.7864 0.7143 0.8400 0.7149 0.8458 0.7863
Sources 1–4 and 7,8 0.6359 0.7340 0.7011 0.8451 0.8020 0.8285 0.8194

Sources 1–4 and 9,10 0.5948 0.7397 0.5837 0.8165 0.8294 0.8451 0.8745

The dilation ε (×10−3) as obtained by maximizing X for each of these cases
Sources 1–4 and 5,6 −0.0800 0.0400 0.4600 −0.0200 0.1400 0.0400 0.1600
Sources 1–4 and 7,8 −0.0200 0.0400 0.0400 −0.3400 −0.0800 −0.1400 0.0800

Sources 1–4 and 9,10 −0.4600 0.1600 0.5600 −0.0400 0.0800 −0.0400 0.0400

Experimental root mean square dilation ε (×10−3)
All sets 0.27 0.098 0.419 0.198 0.104 0.087 0.106

Theoretical root mean square (×10−3) from eq. (21)
All sets 0.19 0.14 0.17 0.12 0.14 0.12 0.11
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Precision of noise correlation interferometry 7

with sources number 12, 13 and 14, respectively. This was repeated for each of seven receivers. In each case, we compare three waveforms
φ2 with the reference φ1 and evaluate X (ε). The table shows the maximum value of X (ε), and the value of ε that did this, for each of the 21
cases. For each of the seven receivers we calculate the rms of these three ε. If the only changes were to the source of the noise field, and not the
medium, one would expect no dilation, or ε = 0. Nevertheless, the differences in sources do generate apparent (feeble but notable) dilations
∼ ε. Theoretical and experimental rms(ε) are of the same order of magnitude. Theory, especially in light of the approximate modelling of the
spectrum, may be said to have done a good job predicting the fluctuations.

In the second study (Table 2), four sources were held constant, and two were varied. Here, the reference waveform was constructed from
a sum over six sources

∑
s gsr ; each of the other three waveforms was constructed by replacing sources number five and six in that sum with

two others. Again theory may be said to have done a good job: the rms theoretical predictions accurately fit the actual experimental errors
within 40 per cent. This means that eq. (20) properly predicts the order of magnitude of the error.

5 C O M PA R I S O N W I T H S E I S M I C DATA F RO M PA R K F I E L D

We also analyse data from seismic measurements near Parkfield, California. Brenguier et al. (2008b) showed that correlation waveforms
obtained from ambient seismic noise over a period of 5 yr from 2002 to 2007 changed in a manner consistent with a decrease of the seismic
velocity after the earthquake of 2004 (Fig. 4). This decreased velocity then relaxed like log(t) after the earthquake. While they used the
doublet technique, we have reanalysed their data using the dilation coefficient (see eq. 11). For each of 78 receiver pairs, we compared
the 1550 d average correlation waveform with the correlation waveforms constructed from each of 1546 overlapping 5 d segments. The
whitening operation before correlation ensures that the spectrum of the correlations is constant. Note that direct arrivals are never processed.
A representative correlation waveform is shown in Fig. 5. Each such waveform was windowed between −50 and −20 s, and again from 20
to 50 s (thus excluding direct Rayleigh arrivals and emphasizing the multiple scattered diffuse part of the signal for which the theory was
developed). As in the previous section, the details of the measurements are available elsewhere (Brenguier et al. 2008b) but are unimportant
for the present purposes. An X and an ε were deduced for each day. Power spectra were centred on 0.5 Hz, with −10 dB shoulders at 0.1–0.9
Hz. These numbers permit the evaluation of (20)

rms ε = 2, 4 × 10−3

√
1 − X 2

2X
(22)

Fig 6 (top and bottom) shows the mean (over the 78 receiver pairs) values of X and ε between each of the 1546 overlapping 5 d correlation
waveforms, φ1 and the correlation waveform φ2 as obtained by averaging over the entire 5 yr period. Except for the two events on days 152
and 437, and the slow relaxation after the latter, the dilation appears constant, with daily random fluctuations of order 10−4. A correlation
coefficient X of 0.8 predicts a rms fluctuation of 10−3 (eq. 22). On averaging over 78 pairs, this prediction is reduced by a factor

√
78, to

Figure 4. Map of the seismic stations used in our study. They are part of the High Resolution Seismic Network operated by the Berkeley Seismological
Laboratory.
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Figure 5. A typical daily correlation waveform from the Parkfield data set. Dilations were constructed by comparing waveforms like this as windowed from
50 to +50 s, with the direct signal from 20 to +20 omitted.

Figure 6. Top-panel: Dilation ε averaged over 78 receiver pairs, using a 5 d sliding window. The grey squares indicate the 70 d reference windows. The best
fit ε varied weakly and stochastically over this period, with two notable jumps, after 2003 December 22 and after the Parkfield earthquake on 2004 September
28. The latter jump was followed by a slow recovery. Fluctuations have an rms strength of about 10−4. Bottom-panel: Dilation coefficient X . the maximum
value of the dilation coefficient X , averaged over 78 receiver pairs.

1.1 × 10−4, consistent with the observed fluctuations in ε. In light of the approximations, in particular that of modelling the spectrum as
Gaussian and the waveform as stationary, we count this as excellent agreement.

The discontinuities in ε at 2003 December 22 and 2004 September 28 are of particular interest. The latter is coincident with the Parkfield
earthquake. Jumps in dilation on those dates by ∼0.8×10−3 were interpreted (Brenguier et al. 2008b) as decrease of local seismic wave speed.
But one might wish to entertain the hypothesis that these jumps are due to a change in the source of the noise. To examine the question, we
evaluated X and ε using correlation waveforms φ1 as averaged over a 70 d period before each event as a reference and correlation waveforms
φ2 obtained over a series of 5 d spans after the events. The relative dilation across the events are the same as seen in Fig. 6 (top), of order
5 × 10−4. The values of X for these pairs of waveforms varied between 60 per cent and 70 per cent. According to eq. (22) divided by

√
78,

the value of X would have had to be below 33 per cent if this large and apparent dilation were to be due to a random function with no
actual dilation. The relative dilation between correlation waveforms before and after the event is therefore due to changes in seismic Green’s
function, and not to changes in the source of the waves.

6 S U M M A RY

Waveforms constructed by noise correlation can be extraordinarily sensitive to changes in material properties. Such waveforms are in principle
affected by both changes in noise sources and changes in the acoustic properties of the medium in which the waves propagate. It has been
shown here that long-duration diffuse waveforms permit changes in the source of the noise to be distinguished with high precision from
changes due to a temporal dilation.

C© 2011 The Authors, GJI
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An expression was derived for the rms of the apparent dilation ε measured on two waveforms, when there is no actual dilation between
the two. This apparent dilation can be an effect of for example, a change in noise sources. The rms value thus allows us to distinguish between
an erroneous dilation measurement due to waveform change, and a physical wave speed change in the medium.

We have tested the validity of the rms value using data from laboratory experiments, and we find that the theory predicts errors well.
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