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Schwertmannite formation and transformation, key processes that influence the speciation, mobility, and

environmental fate of associated trace elements in acid mine drainage (AMD), were primarily studied

through Fe2+ oxidation–hydrolysis. Direct Fe3+ hydrolysis is another important schwertmannite formation

pathway, but the effects of geochemical conditions on the mineralogical properties of schwertmannite

formed via such a pathway are poorly known. Here, the formation of schwertmannite through direct Fe3+

hydrolysis enforced by heating or adding OH− and subsequent transformation were systematically

examined under various geochemical conditions. Pure schwertmannite is obtained through Fe3+ hydrolysis

at 25–60 °C for 12 min and subsequent dialysis for 1–15 days, while minor amounts of goethite appear at

higher hydrolysis temperatures. A shorter dialysis time and the presence of K+ or NH4
+ both slightly

increase schwertmannite crystallinity. During Fe3+ hydrolysis by adding OH−, sulfate-bearing ferrihydrite

initially forms and then quickly transforms into schwertmannite. In contrast, pre-formed ferrihydrite does

not transform into schwertmannite under the same solution conditions, despite sulfate adsorption. With

decreasing Fe3+ hydrolysis rate, schwertmannite crystallinity slightly increases and its morphology of

“network” structure becomes larger and less dense. As to schwertmannite transformation, high

temperature, high pH, and the presence of Fe2+ favor its transformation to goethite, while a low Fe3+

hydrolysis rate and a high Cl− concentration hinder the transformation. In contrast, the presence of K+ or

high NH4
+ concentration favors schwertmannite transformation to jarosite with the former occurring more

readily. These new insights into schwertmannite formation and transformation are essential for predicting

the environmental fates of associated trace elements in AMD environments.
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Environmental significance

The formation and transformation of schwertmannite through direct Fe3+ hydrolysis have been systematically investigated under various geochemical
conditions. Direct Fe3+ hydrolysis is an important pathway of schwertmannite formation in AMD-affected areas, with sulfate-incorporated ferrihydrite as an
intermediate product. The Fe3+ hydrolysis rate significantly influences the crystallinity, morphology, and structural stability of schwertmannite. High
temperature, high pH, and the presence of Fe2+ favor its transformation into goethite, while high Cl− concentration hinders this transformation. Moreover,
the presence of K+ or high NH4

+ concentration favors schwertmannite transformation to jarosite. These results greatly improve our understanding of
schwertmannite formation and transformation and are essential for predicting the environmental fate of associated trace elements.
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1. Introduction

Acid mine drainage (AMD, pH < 5) is mainly generated from
mining of coal and metal sulfide minerals and subsequent
waste oxidative weathering, threatening the surrounding
environmental quality and ecosystem equilibrium due to its
low pH conditions and high concentrations of various
metallic contaminants.1–3 AMD is usually rich in ferrous
(Fe2+) and ferric (Fe3+) ions, sulfate (SO4

2−), and many other
cations and anions, resulting in the formation of secondary
iron (Fe) minerals with various ions adsorbed on their
surface and/or incorporated in their structure.4–8

Schwertmannite is one of the most common Fe minerals in
AMD, with an optimal formation pH of 2.8–4.5 and a variable
chemical composition described as Fe8O8ĲOH)8−2xĲSO4)x·nH2O
(1 ≤ x ≤ 1.75).3,9–12 Due to its high specific surface area and
tunnel structure, schwertmannite is considered as an
important sink for trace elements such as As, Se, and Cr, and
its formation and transformation thus affect and control the
speciation, migration, and environmental fate of these trace
elements in AMD environments.13–19

Schwertmannite formation commonly occurs through two
pathways depending on the iron sources, i.e., biotic and
abiotic oxidation of Fe2+ and direct Fe3+ hydrolysis.11,15,20–22

In AMD, it was reported that schwertmannite is mainly
formed from biotic oxidation of Fe2+;7,9,23,24 hence
schwertmannite formation is primarily studied in the
laboratory through Fe2+ oxidation mediated by microbes or
strong chemical oxidants, and subsequent Fe3+ hydrolysis–
precipitation.3,21,23,25,26 However, in AMD-affected areas,
whether schwertmannite forms through Fe2+ oxidation or
direct Fe3+ hydrolysis depends on the specific solution pH
and redox potential of the systems.27,28 Additionally, AMD
often contains a mixture of Fe2+ and Fe3+,29 and the
regeneration of Fe3+ is a key process to promote the oxidation
of sulfide minerals and the formation of secondary iron
oxides.29,30 Therefore, direct Fe3+ hydrolysis can be an
important schwertmannite formation pathway, especially
when AMD solution comes into contact with surface water or
infiltrates soils. However, the formation of schwertmannite
through direct Fe3+ hydrolysis under various geochemical
conditions has not been systematically investigated.

There are two pathways to synthesize schwertmannite
using direct Fe3+ hydrolysis, including heat-enforced Fe3+

hydrolysis and subsequent dialysis (hereafter referred to as
Fe3+ hydrolysis–dialysis), and Fe3+ hydrolysis by adding OH−.
Fe3+ hydrolysis–dialysis is a common pathway for synthesis of
schwertmannite, which enforces Fe3+ hydrolysis at 60 °C
followed by dialysis of the suspension for 30 d.3,6,17 However,
the influence of Fe3+ hydrolysis temperature, dialysis time,
and coexistence of ions on the formation of schwertmannite
is still unclear for the hydrolysis–dialysis pathway. In
addition, Fe3+ hydrolysis by adding OH− has also been
applied for schwertmannite synthesis. Loan et al.31 examined
the formation of schwertmannite by directly mixing acidified
Fe2ĲSO4)3 solutions with NaOH at 85 °C, indicating that the

low degree of Fe3+ supersaturation results in the formation of
schwertmannite that possibly nucleates on two-line
ferrihydrite aggregates. Studies also show that
schwertmannite formation from Fe3+ hydrolysis by adding
OH− can occur at room temperature (RT),32–34 with
ferrihydrite-like molecular clusters as the intermediate
product.34 Overall, it remains elusive how the Fe3+ hydrolysis
rate, sulfate concentration, pH, and types of coexisting ions
affect schwertmannite formation via Fe3+ hydrolysis by
adding OH−.

Schwertmannite can transform into various Fe-bearing
minerals in response to changes in solution conditions. The
transformation of schwertmannite is affected by various
factors, such as temperature, pH, and types and
concentrations of coexisting ions, as well as the formation
conditions of pre-formed schwertmannite.35–42 Under AMD
conditions, schwertmannite gradually transforms into
jarosite and goethite through a dissolution–recrystallization
process.35,36,41 Schwertmannite can also transform into
mackinawite or siderite under reducing conditions43,44 and
into a mixture of lepidocrocite and goethite in the presence
of Fe2+ at pH 6 and under anoxic conditions.22 The
schwertmannite used to study its transformation is mostly
synthesized through Fe2+ oxidation–hydrolysis. However, the
physicochemical properties of schwertmannite formed via
Fe2+ oxidation–hydrolysis and direct Fe3+ hydrolysis exhibit
significant differences, such as crystal-growth time,
morphologies, electro-kinetic properties, etc.45 Such
differences may lead to different behaviors on the
transformation of schwertmannite synthesized using these
two pathways, which, however, remains unknown.

The objectives of this study are, therefore, to reveal the
formation and transformation processes and properties of
schwertmannite formed through direct Fe3+ hydrolysis (i.e.,
Fe3+ hydrolysis–dialysis and Fe3+ hydrolysis by adding OH−)
under various geochemical conditions. For the Fe3+

hydrolysis–dialysis pathway, the effects of hydrolysis
temperature, dialysis time, and coexistence of K+ or NH4

+

on schwertmannite formation were examined. As to the
second pathway of Fe3+ hydrolysis by adding OH−, the
effects of the Fe3+ hydrolysis rate, pH, Fe/S molar ratio, and
coexistence of Cl−, K+, or NH4

+ on schwertmannite
formation were investigated. Additionally, the effects of
these factors, as well as aging temperature and the presence
of Fe2+, were determined on schwertmannite
transformation. The effects of coexisting ions such as Fe2+,
Cl−, K+, and NH4

+ were considered because they might
significantly affect the mineralogical properties of
schwertmannite and they commonly occur in AMD
environments.46–48 The concentrations of dissolved Fe3+ and
SO4

2− during schwertmannite transformation were
determined, and the intermediate and final products were
characterized by conventional or synchrotron-based X-ray
diffraction (SXRD), Fourier transform infrared spectroscopy
(FTIR), high-resolution scanning electron microscopy (SEM),
and acidic dissolution experiments.
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2. Materials and methods
2.1 Effects of hydrolysis temperature, dialysis time, and
coexistence of K+ or NH4

+ on schwertmannite formation
through Fe3+ hydrolysis–dialysis

Synthesis of schwertmannite via Fe3+ hydrolysis–dialysis was
conducted at 60 °C.3 Briefly, 5.4 g FeCl3·6H2O and 1.5 g
Na2SO4 were added into 1 L of deionized water preheated to
60 °C, and the obtained suspension was then stirred at 60 °C
for an additional 12 min. The suspension was subsequently
cooled to RT and dialyzed for 7 d with a final conductivity
<20 μS cm−1. Finally, the suspension was centrifuged, freeze-
dried, ground, and stored at 4 °C before being characterized
by XRD, SEM, and FTIR. To investigate the hydrolysis
temperature effect, similar experiments were performed at 25
°C, 40 °C, 50 °C, 70 °C, and 80 °C. In addition, the influence
of dialysis time (1, 3, 7, 10, and 15 d with hydrolysis
temperatures of 25 °C and 60 °C) and the additional presence
of K+ or NH4

+ (hydrolysis temperature of 60 °C and dialysis
time of 7 d) on schwertmannite formation was also
investigated. The initial molar ratio of Fe/S (Fe/S = 2) was the
same in all experiments. All reaction conditions for the
formation and transformation of schwertmannite are
summarized in Table S1.†

The S and Fe contents in the final dried products were
measured by dissolving 10 mg solids in 10 mL of 0.2 M acidic
ammonium oxalate solution [(NH4)2C2O4, pH 3].49 The
concentrations of Fe and SO4

2− in the solution were determined
using the modified 1,10-phenanthroline colorimetric method50

and ion chromatography (Dionex ICS-1100), respectively.

2.2 Formation and transformation of schwertmannite
through Fe3+ hydrolysis by adding NaOH in simulated AMD
environments

AMD is acidic (usually pH 2–3.5) and rich in ferrous (Fe2+),
ferric (Fe3+), and sulfate (SO4

2−) ions with total Fe and SO4
2−

concentrations, respectively, ranging from 500–4500 mg L−1

and 2000–6000 mg L−1.7 Thus, to simulate AMD
environments, the pH and dissolved Fe3+ and SO4

2−

concentrations used in this study were largely varied in these
ranges.

2.2.1 Initial phase evolution during Fe3+ hydrolysis. To
determine the initial phase evolution during Fe3+ hydrolysis,
2 mL of 0.8 M NaOH was rapidly mixed with an equal volume
of 0.4 M Fe2ĲSO4)3 in a 10 mL tube (OH−/Fe3+ = 1, Fe/S = 0.67,
∼pH 2.5). The mixed solution was hydrolyzed at 25 °C for
different durations (3.2, 8.7, 45, 50, 59, 70, and 140 min) in
different tubes. The obtained suspensions were washed with
deionized water, air dried, ground, stored at 4 °C, and then
analyzed by SXRD and pair distribution function (PDF) at
beamline 11-ID-B at Advanced Photon Source (APS).

To further clarify the effects of SO4
2− distribution on the

transformation of ferrihydrite to schwertmannite, the pre-
formed ferrihydrite suspension was aged in the presence of
SO4

2− under the same solution conditions. Specifically, the
SO4

2− solution was added to 50 mL of freshly synthesized

ferrihydrite suspension, with pH 2.5, an Fe/S molar ratio of
0.67 and a final volume of 200 mL. After that, the ferrihydrite
suspension was aged for the same durations (3.2, 8.7, 45, 50,
59, 70, and 140 min) under stirring.

2.2.2 Effects of the Fe3+ hydrolysis rate on the formation
and long-term aging of schwertmannite. 126 mL of 0.2 M
NaOH was added dropwise to a 74 mL mixed solution
containing FeĲNO3)3 and Na2SO4 with an Fe/S molar ratio of 2
[cĲFe3+) = 48.55 mM, cĲSO4

2−) = 24.275 mM] at addition rates
of 0.5, 0.1, and 0.05 mL min−1, respectively, corresponding
Fe3+ hydrolysis rates of 33.33, 6.67, and 3.33 μM min−1. In
addition, NaOH was once directly added into the mixed
solution of FeĲNO3)3 and Na2SO4, labeled as “mixed directly”,
to approximately represent an infinite Fe3+ hydrolysis rate.
Then, the obtained mineral suspension from different Fe3+

hydrolysis rates was further stirred for ∼30 min with pH kept
at 3. In addition, to determine the effects of Fe2+ on
schwertmannite transformation, an Fe2+ solution [cĲFe3+)/
cĲFe2+) = 10] was added to the fresh schwertmannite
suspension formed from the condition of a NaOH addition
rate of 0.1 mL min−1. Subsequently, all the samples were
sealed and aged at 60 °C for 96 h, during which, the solution
pH was maintained at pH 3 by adding 0.1 M NaOH or HNO3

at regular time intervals. The containers were open to air
during pH adjustment and sampling, allowing entrance of
atmospheric O2 to the reaction systems. At pre-set time
intervals, a 15 mL suspension was sampled and passed
through a 0.22 μm membrane filter mounted on a vacuum
apparatus. The dissolved SO4

2− and Fe concentrations in the
filtrates were measured as described above, whereas the wet
solids on the membrane were rinsed with 30 mL deionized
water, air dried, ground, and analyzed by XRD, FTIR, SEM,
and acidic dissolution.

2.2.3 Effects of pH, Fe/S molar ratio, and temperature on
the long-term aging of schwertmannite. Solutions containing
FeĲNO3)3 and Na2SO4 with Fe/S molar ratios of 1.5, 2.0, 2.5,
5.0, 8.0 or 10.0 [cĲFe3+) = 48.55 mM] were directly mixed with
different amounts of 0.2 M NaOH solution, leading to final
pH values of pH 2.0, 2.5, 3.0 and 3.5 with a total suspension
volume of 200 mL. The suspensions with different pH values
and an Fe/S molar ratio of 2.0 were aged at 80 °C for 96 h,
while the suspensions with different Fe/S molar ratios were
aged at 60 °C and pH 3 for 96 h. The pH effects were
measured at 80 °C because a relatively high temperature
favors the hydrolysis and precipitation of Fe3+ at low pH (i.e.,
pH 2 and 2.5). Subsequent experimental details are the same
as those in section 2.2.2.

2.2.4 Effects of co-existing Cl−, K+, or NH4
+ on the long-

term aging of schwertmannite. 0.2 M NaOH solution was
directly added into the mixed solutions containing FeĲNO3)3,
Na2SO4, and NaCl [cĲFe3+) = 48.55 mM, Fe/S = 2, Fe/Cl = 2,
0.2] to obtain schwertmannite suspensions with a total
volume of 200 mL. The schwertmannite suspensions were
then aged at 60 °C and pH 3 for 96 h. In addition, solutions
containing FeĲNO3)3, K2SO4 or (NH4)2SO4 [cĲFe

3+) = 48.55 mM,
Fe/S = 2 and 0.2, Fe/K+ or NH4

+ = 1 and 0.1] were directly

Environmental Science: Nano Paper
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mixed with 0.2 M NaOH solution to obtain schwertmannite
suspensions. The suspensions were subsequently aged at 80
°C and pH 2 for 96 h. Subsequent experimental details are
the same as those in section 2.2.2.

2.2.5 Acidic dissolution experiments. To explore the
transformation rate of schwertmannite, formed through Fe3+

hydrolysis by adding NaOH, under different aging conditions,
10 mg of dried intermediate sample during schwertmannite
transformation was dissolved in 10 mL of 0.2 M acidic
ammonium oxalate solution (pH 3, Feo) or 4 M HCl solution
(Fet) at RT on a rotator for 2 h. The resulting solution was
then immediately filtered through a 0.22 μm membrane. The
Fe concentration in the solution was measured using a
modified 1,10-phenanthroline colorimetric method.50 The
ratio of Feo/Fet can reflect the transformation rate of
schwertmannite, with a lower ratio indicating a faster
transformation, and vice versa.

2.3 Solid characterization

Conventional XRD patterns for phase identification were
recorded from 10 to 70° at a scan speed of 1° min−1 on a
Bruker D8 Advance X-ray diffractometer equipped with a
LynxEye detector using Ni-filtered Cu Kα radiation (λ =
0.15418 nm). To identify mineral phases with poor
crystallinity, synchrotron-based XRD data of some samples
were collected at beamline BL14B1 (λ = 0.6895 Å, scanning
from 0.5 to 30° and exposure time of 30 s) at the Shanghai
Synchrotron Radiation Facility (SSRF)51 or at beamline 11-ID-
B at Advanced Photon Source (APS), Argonne National
Laboratory (X-ray energy of 58.86 keV, λ = 0.2112 Å).49

The morphology and particle size of the samples were
observed by SEM (SU8000) at an accelerating voltage of 10 or
20 kV. Specifically, a small amount of sample was pasted on
conductive glue, and then plated using a sputtering
apparatus. In addition, the FTIR spectra of the samples were
recorded on a Bruker VERTEX 70 spectrophotometer. The
samples were mixed gently with KBr (∼1% sample weight) in
an agate mortar and pelletized. 128 scans with a resolution

of 4 cm−1 in the range of 4000–400 cm−1 were collected for
each sample against the air background.

3. Results and discussion
3.1 Formation of schwertmannite through Fe3+ hydrolysis–
dialysis

The XRD patterns of the products obtained from different Fe3+

hydrolysis temperatures are shown in Fig. 1a. With increasing
hydrolysis temperature from 25–60 °C, pure schwertmannite is
obtained, and its crystallinity gradually increases, which is
evidenced by the enhanced peak intensity at 2.55 Å (Fig. 1a).
The chemical compositions of the products show that a higher
hydrolysis temperature (25–60 °C) leads to a higher SO4

2−

content and a lower Fe/S ratio (Table 1), suggesting that the
schwertmannite crystallinity might be related to the sulfate
content,3 i.e., a higher sulfate content leads to an increased
crystallinity. At 25 °C, schwertmannite is flower-shaped and
composed of small thin plates (Fig. 2a). With increasing
hydrolysis temperature, the thin plates transform into long
strips, connecting into a “sea-urchin”-like structure (Fig. 2a–d).
When the hydrolysis temperature increases to 70 °C and above,
minor amounts of goethite impurities form, evidenced by its
characteristic peaks at 4.18 Å and 1.72 Å (Fig. 1a), while the

Fig. 1 XRD patterns of the products obtained from Fe3+ hydrolysis–dialysis at different Fe3+ hydrolysis temperatures followed by dialysis for 7 d
(a), from Fe3+ hydrolysis at 25 or 60 °C followed by dialysis for 1 d or 15 d (b), and from Fe3+ hydrolysis at 60 °C in the presence of K+ or NH4

+

followed by dialysis for 7 d (c) (Gt = goethite; Sch = schwertmannite).

Table 1 The Fe and S contents in the schwertmannite samples formed
at different hydrolysis temperatures, dialysis times, and in the presence of
K+ or NH4

+

Sample

Fe SO4 Molar ratio
of Fe/S(mmol g−1)

25 °C – 7 d 10.69 1.71 6.25
40 °C – 7 d 10.27 1.78 5.77
50 °C – 7 d 10.65 1.86 5.73
60 °C – 7 d 10.52 2.03 5.18
70 °C – 7 d 10.28 1.73 5.94
25 °C – 15 d 11.55 1.67 6.92
60 °C – 15 d 11.69 1.79 6.53
60 °C – 7 d – K+ 9.83 1.66 5.92
60 °C – 7d – NH4

+ 11.63 2.13 5.46
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crystallinity of schwertmannite slightly decreases (Fig. 1a). In
addition, the SO4

2− content decreases and the Fe/S ratio
increases (Table 1), and the long strips of schwertmannite
become more clustered (Fig. 2e and f).

The FTIR spectra of these samples are similar and consistent
with a typical schwertmannite IR fingerprint.49,52 These spectra
consist of a broad triply degenerate asymmetric stretching (ν3)
band at ∼1125 cm−1 with two shoulder bands at ∼1050 and
∼1205 cm−1, a ν1 fundamental of the symmetric sulfate
stretching at 980 cm−1, a ν4 bending band at ∼610 cm−1, and an
Fe–O stretching band at ∼698 cm−1 (Fig. S1a†). Additional weak
IR vibration bands at 885 cm−1 and 792 cm−1 are shown for the
samples hydrolyzed at 70 °C and 80 °C, indicating the
formation of minor amounts of goethite (Fig. S1a†), consistent
with XRD results (Fig. 1a).

With increasing dialysis time, the diffraction peak intensities
of schwertmannite slightly decrease, especially for the peak at
2.55 Å (Fig. 1b), consistent with the decrease of SO4

2− content
and sulfate IR band intensities (Table 1 and Fig. S1b†). In
addition, schwertmannite particles aggregate more closely
(Fig. 2g–i), leading to a “hedgehog” morphology.53 Furthermore,
compared to the Na+ system, the presence of K+ or NH4

+ slightly
increases the crystallinity of schwertmannite (Fig. 1c) but
decreases the SO4

2− content in schwertmannite (Table 1).

3.2 Mineral evolution during Fe3+ hydrolysis by adding NaOH

During Fe3+ hydrolysis in the presence of SO4
2−, the XRD

patterns of the intermediate products indicate that

ferrihydrite is the initial product and schwertmannite is
observed later but within 45 min (Fig. 3a). Consistently, the
PDF data of the initial sample (∼3.2 min) are similar to those
of the ferrihydrite reference. With increasing aging time, the
intensity of the Fe–Fe peak at 5.42 Å increases, and the Fe–Fe
peaks at 7.40 Å and 11.06 Å and the Fe–O peak at 6.08 Å
gradually appear and increase, indicative of schwertmannite
formation (Fig. 3b). In contrast, the pre-formed two-line
ferrihydrite aged at the same sulfate concentration and
solution pH does not transform into schwertmannite
(Fig. 3c).

Sulfate-bearing ferrihydrite thus appears as an
intermediate phase during the formation of schwertmannite
(Fig. 3), similar to the observation of Zhu et al.34

Transformation from ferrihydrite to schwertmannite is most
likely because of the higher thermodynamic stability of
schwertmannite than that of ferrihydrite.31,53 However, the
contrast between the transformation from the intermediate
ferrihydrite-like mineral (Fig. 3a) and from the pre-formed
ferrihydrite (Fig. 3c) suggests that sulfate is closely associated
with ferrihydrite in a way that differs from simple surface
adsorption.54 This is not unexpected because sulfate and
ferrihydrite co-precipitate during Fe3+ hydrolysis in the
presence of sulfate. The sulfate may be incorporated into the
structural defects of ferrihydrite. Such a structure may have
some similarity to that of schwertmannite3,49 and thus the
formed ferrihydrite readily transforms into schwertmannite.
In addition, the ferrihydrite formed in the presence of sulfate
may have a smaller particle size and more structural defects

Fig. 2 SEM images of schwertmannite obtained from Fe3+ hydrolysis–dialysis at different hydrolysis temperatures followed by dialysis for 7 d (a-25
°C, b-40 °C, c-50 °C, d-60 °C, e-70 °C, and f-80 °C) and for different dialysis times at 25 °C (g-1 d; h-15 d) or 60 °C (i-15 d).
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than the ferrihydrite synthesized in the absence of sulfate,
which further enhances its transformation to
schwertmannite.55

Schwertmannite can be formed at 25 °C through both Fe3+

hydrolysis–dialysis (Fig. 1) and Fe3+ hydrolysis by adding
NaOH (Fig. 3, 4a, S2 and S3†). However, a theoretical
calculation indicates that schwertmannite formation through
direct Fe3+ hydrolysis is not thermodynamically spontaneous
under ambient conditions (∼25 °C), due to the reaction free
energy ΔG°298 of 6.275 kJ mol−1 as shown in the following
equation.7

Fe3+(aq) + 7/4H2O(l) + 1/8SO4
2−(aq)

= 1/8Fe8O8(OH)6SO4(s) (Sch) + 11/4H+(aq)

This apparent discrepancy could be explained by the
migration of protons (H+) through the dialysis membrane
into distilled water during the dialysis process. As a result,
the solution pH in the dialysis bag, initially very low and

unfavorable to Fe3+ hydrolysis, gradually increases and then
induces schwertmannite formation. On the other hand,
schwertmannite readily forms from Fe3+ hydrolysis in the
presence of sulfate by adding NaOH at 25 °C (Fig. 3 and 4),
consistent with previous reports.32–34 Consequently, direct
Fe3+ hydrolysis should be considered as an important
pathway of schwertmannite formation in watersheds or soils
surrounded by AMD with a relatively high pH.

3.3 Effects of geochemical conditions on schwertmannite
formation through Fe3+ hydrolysis by adding NaOH

3.3.1 Effect of the Fe3+ hydrolysis rate. The XRD patterns
indicate that pure schwertmannite forms at different Fe3+

hydrolysis rates, with a lower hydrolysis rate leading to an
improved crystallinity (Fig. 4a). When the Fe3+ hydrolysis rate
increases to approximate infinity (i.e., “mixed directly”), the
crystallinity of the product becomes very poor, but the
mineral phase is indeed schwertmannite rather than

Fig. 3 Synchrotron-based XRD patterns (a) and pair distribution functions [G(r)s] (b) of the intermediate products after quickly mixing 0.8 M NaOH
solution with an equal volume of 0.4 M Fe2ĲSO4)3, and XRD patterns of the intermediate products for SO4

2− adsorption on pre-formed ferrihydrite
(c) (Sch = schwertmannite, Fhy = ferrihydrite).

Fig. 4 XRD patterns (a) and SEM images (b) of the initial products obtained from different Fe3+ hydrolysis rates (mixed directly, 33.33, 6.67, and
3.33 μM min−1) and pH 3. The XRD pattern of the product of “mixed directly” was enlarged and compared with that of ferrihydrite in Fig. S2.†
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ferrihydrite (Fig. S2†). In addition, schwertmannite
morphology varies substantially with the Fe3+ hydrolysis rate,
exhibiting longer strips and resulting in larger and looser
aggregates at a lower Fe3+ hydrolysis rate, similar to the sea
urchin-like aggregates that form from Fe2+ oxidation.45

However, the morphology obtained from the mixed directly
system is a block agglomerate (Fig. 4b). These
schwertmannite samples, obtained from different Fe3+

hydrolysis rates, should have distinct surface reactivity and
geochemical behaviors, which need to be further studied.

3.3.2 Effects of pH, Fe/S molar ratio and co-existing ions.
Schwertmannite can be formed through Fe3+ hydrolysis over
a pH range of 2.0–3.5 (Fig. 4a and S3†) that is slightly wider
than that of Fe2+ oxidation (i.e., pH 2.4–3.245). In addition,
schwertmannite can be obtained only at low initial Fe/S
molar ratios (Fe/S ≤ 5) (Fig. 3 and S3a†), i.e., high sulfate
concentration, while ferrihydrite forms when the Fe/S molar
ratio exceeds 8, suggesting that sulfate must be present in
excess, relative to the ideal mineral composition, to induce
schwertmannite formation.

The XRD patterns indicate that the presence of Cl− does
not affect schwertmannite formation (Fig. S3b†), suggesting
that although Cl− can promote akaganéite (FeOĲOH)1−xClx)
formation under acidic conditions,34 the presence of
abundant sulfate probably inhibits the formation of
akaganéite.47,56 Pure schwertmannite could thus be
synthesized through FeCl3 hydrolysis–dialysis if sufficient
sulfate is present.3 Additionally, the presence of K+ or NH4

+

slightly increases schwertmannite crystallinity (Fig. S3c†),
similar to the results of the Fe3+ hydrolysis–dialysis pathway
(Fig. 1c), probably because K+ or NH4

+ ions can enter the
schwertmannite tunnel structure during Fe3+ hydrolysis, thus
enhancing schwertmannite crystal growth.

3.4 Effects of geochemical conditions on the transformation
of schwertmannite formed through Fe3+ hydrolysis by adding
NaOH

3.4.1 Effect of the Fe3+ hydrolysis rate. During the
transformation of schwertmannite formed at different Fe3+

Fig. 5 Synchrotron-based XRD patterns and FTIR spectra of the products obtained from different Fe3+ hydrolysis rates after aging for 3 h (a and c)
and 24 h (b and d) at 60 °C and pH 3 (Gt = goethite; Sch = schwertmannite).
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hydrolysis rates, minor amounts of goethite form only in the
mixed directly sample after aging for 3 h (Fig. 5a). With

increasing aging time to 24 h, goethite is present in all the
samples, with more goethite occurring at a higher Fe3+

Fig. 6 XRD patterns of the aging products of schwertmannite, obtained from the Fe3+ hydrolysis rate of 6.67 μM min−1, in the presence of Fe2+ at
pH 3 and 60 °C (a) and the concentrations of dissolved Fe2+ and SO4

2− (mM) during the transformation (b) (Fe3+/Fe2+ = 10; Gt = goethite; Sch =
schwertmannite).

Fig. 7 Concentration of dissolved Fe3+ (mM) during the transformation of schwertmannite, obtained from Fe3+ hydrolysis by adding OH−, over a
pH range of 2.0–3.5 (a), Fe/S molar ratios of 1.5–10 (b), a temperature range of 25–80 °C (c) and in the presence of Cl−, K+ or NH4

+ (d).
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hydrolysis rate (Fig. 5b), suggesting that the schwertmannite
obtained at a higher Fe3+ hydrolysis rate is less stable,
possibly due to its lower crystallinity. The FTIR spectra of the
samples aged for 3 h (Fig. 5c) and 24 h (Fig. 5d) show that
the characteristic Fe–O stretching band of schwertmannite at
∼698 cm−1 decreases with aging time, whereas the
characteristic OH bending vibration bands of goethite at 885
cm−1 and 792 cm−1 increase with increasing Fe3+ hydrolysis
rate and aging time, confirming the XRD results
(Fig. 5a and b). Thus, a lower Fe3+ hydrolysis rate leads to a
larger crystallite size and a higher structural stability of
schwertmannite, thereby disfavoring its transformation to
other phases, such as goethite. This observation is consistent
with the transformation of schwertmannite formed from Fe2+

oxidation.15,20,57

3.4.2 Effect of the presence of Fe2+. After the
schwertmannite suspension was aged for 24 h, the XRD
patterns indicate that goethite diffraction peaks are stronger
in the presence of Fe2+ (Fig. 6a), compared to the Fe2+-free
system (Fig. 5b), suggesting that Fe2+ significantly accelerates
schwertmannite transformation to goethite. In addition, the

concentration of dissolved SO4
2− is higher in the presence of

Fe2+ than that in the Fe2+-free system (Fig. 6b), indicating
that Fe2+ promotes the dissolution of schwertmannite and
the release of sulfate. With increasing aging time, the
concentration of dissolved Fe2+ decreases, while that of
dissolved SO4

2− increases (Fig. 6b), suggesting that
schwertmannite transforms into goethite through a
dissolution–recrystallization mechanism by consuming Fe2+

and releasing SO4
2−. The enhancement of schwertmannite

transformation in the presence of Fe2+ can be explained by
two possible reasons. On the one hand, aqueous FeĲII) species
can exchange structural FeĲIII), thus enhancing the mineral
phase reorganization, as evidenced by stable Fe isotope
tracers.58–60 On the other hand, electron transfer between
adsorbed FeĲII) and structural FeĲIII) promotes the reductive
dissolution of schwertmannite and its subsequent
recrystallization.59,61,62

3.4.3 Effects of pH, temperature, and Fe/S molar ratio. At
80 °C and Fe/S = 2, the concentration of dissolved Fe3+

decreases with increasing pH from 2.0 to 3.5 (Fig. 7a), while that
of dissolved SO4

2− increases (Fig. 8a), indicating that a higher

Fig. 8 Concentration of dissolved SO4
2− (mM) during the transformation of schwertmannite, obtained from Fe3+ hydrolysis by adding OH−, at

different pH values (a), different aging temperatures (b), and in the presence of Cl− (c) and K+ or NH4
+ (d).
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pH enhances SO4
2− release and thus the transformation of

schwertmannite to goethite. This transformation is supported
by XRD patterns (Fig. 9a) and the lower ratio of Feo/Fet at a
higher pH (Fig. S5b†). Additionally, the FTIR spectra indicate
that the characteristic Fe–O stretching band of schwertmannite
at ∼701 cm−1 gradually decreases, whereas the OH bending
vibration bands of goethite at 885 cm−1 and 792 cm−1 increase
with increasing pH (Fig. S4a†), further confirming the above
analysis. The faster transformation rate of schwertmannite to
goethite can be partially ascribed to the easier sulfate release at
a higher pH.35

For a given pH and Fe/S molar ratio, the concentration of
dissolved Fe3+ substantially decreases with increasing aging
temperature from 25 to 80 °C and aging time (Fig. 7c). As to
dissolved SO4

2−, it increases slightly at 25 °C and more
significantly at high temperatures with increasing aging time
(Fig. 8b), suggesting that SO4

2− release is enhanced at a
higher temperature during schwertmannite transformation.
Additionally, the XRD patterns (Fig. 9c), FTIR spectra (Fig.

S4c†), and acidic dissolution results (Fig. S5a†) all indicate
that goethite formation is favored at higher aging
temperatures and longer aging times, consistent with lower
concentration of dissolved Fe3+ (Fig. 7c) and higher
concentration of dissolved SO4

2− (Fig. 8b). Moreover, the
mineral phases formed at different Fe/S molar ratios exhibit
different stabilities at 60 °C and pH 3 (Fig. 9b and S4b†), with
a lower Fe/S molar ratio resulting in a higher concentration
of dissolved Fe3+ (Fig. 7b). As a consequence, the
schwertmannite obtained from a lower Fe/S molar ratio (Fe/S
≤ 5) transforms more readily into goethite than the
ferrihydrite formed at higher Fe/S ratios (Fe/S > 5) (Fig. 9b
and S4b†).

3.4.4 Effects of co-existing Cl−, K+, or NH4
+. Compared to

the system without Cl−, the presence of Cl− (Fe/Cl− = 2)
accelerates the release of SO4

2− (Fig. 8c), possibly because Cl−

promotes SO4
2− release by ligand exchange, enhancing goethite

formation (Fig. 9d). In contrast, a high concentration of Cl− (Fe/
Cl− = 0.2) inhibits SO4

2− release and schwertmannite

Fig. 9 XRD patterns of the schwertmannite suspension, obtained from Fe3+ hydrolysis by adding OH−, aged for 3 h at different pH values (a),
different Fe/S molar ratios (b), different aging temperatures (c) and in the presence of Cl−, K+, or NH4

+ (d) (Gt = goethite; Sch = schwertmannite;
Fhy = ferrihydrite; Jt = jarosite).
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transformation to goethite (Fig. 8c, 9d and S5c†), possibly
because massive Cl− adsorption on the schwertmannite surface
impedes structural SO4

2− release and thus the dissolution–
recrystallization process. As reported previously, adsorption of
ions on the schwertmannite surface could stabilize its
structure.39,63

The presence of K+ promotes hydrolysis and precipitation
of dissolved Fe3+ (Fig. 7d) and inhibits SO4

2− release (Fig. 8d),
thus facilitating the formation of K+-bearing jarosite with a
aggregated spherical morphology (Fig. 9d and 10d). K+-
bearing jarosite formation is also confirmed by the FTIR
spectrum with characteristic bands at around 1080–1200
cm−1, 1008 cm−1, and 628 cm−1 (Fig. S4d†), respectively,
assigned to the vibrational modes of v3ĲSO4

2−), v1ĲSO4
2−), and

v4ĲSO4
2−).64 Similarly, a high NH4

+ concentration (Fe/NH4
+ =

0.1) also favors jarosite formation with a very low
concentration of dissolved SO4

2− (Fig. 8d), leading to the
coexistence of goethite and NH4

+-bearing jarosite in the final
aging products (Fig. S6†), similar to the results observed in
the Fe2+ bio-oxidation system.65,66 More lath-like particles
and looser aggregates are observed at a higher concentration
of NH4

+ (Fig. 10b). However, the presence of low NH4
+

concentration (Fe/NH4
+ = 1) increases the release of SO4

2−

(Fig. 8d), thus inducing the transformation of
schwertmannite to goethite (Fig. S5c and S6†). Compared to
NH4

+, the presence of K+ is more easily to induce jarosite
formation, consistent with a previous study indicating that
the ability of K+ to promote jarosite formation is ~ 75×
greater than that of NH4

+,67 probably because the ionic radius
of hydrated K+ (1.32 Å) fits better in the jarosite structure
than that of NH4

+ (1.44 Å).

4. Conclusion and implications

In the present study, schwertmannite formation through
direct Fe3+ hydrolysis and its subsequent transformation have

been systematically investigated under various geochemical
conditions. Schwertmannite can be formed through Fe3+

hydrolysis over a temperature range of 25–60 °C, a pH range
of 2.0–3.5, molar ratios of Fe/S lower than 5, Fe3+ hydrolysis
rates higher than 3.33 μM min−1, and in the presence of Cl−,
K+ or NH4

+ (Fig. 11). Such an extended range of conditions
suggests that direct Fe3+ hydrolysis is an important pathway
for schwertmannite formation in natural AMD-affected
environments, and that the chemical composition, micro-
structure, and reactivity of schwertmannite vary with these
geochemical conditions. In fact, schwertmannite formed
through Fe2+ oxidation–hydrolysis also includes a process of
Fe3+ hydrolysis–precipitation, so these new insights into
schwertmannite formation through direct Fe3+ hydrolysis are
also essential to understand the mineralization process
during Fe2+ oxidation in AMD environments.

During schwertmannite formation through direct Fe3+

hydrolysis, sulfate-bearing ferrihydrite is an intermediate
product and sulfate is likely incorporated into the structural
defects of ferrihydrite particles, rather than being simply
adsorbed on their surfaces, to induce schwertmannite
formation. Due to the abundance of sulfate in AMD
environments, these anions readily co-precipitate with
ferrihydrite through Fe3+ hydrolysis, allowing for the
subsequent transformation to schwertmannite and
accounting for the greater occurrence of schwertmannite
than ferrihydrite in AMD-affected areas.

Schwertmannite readily transforms into more stable
goethite and jarosite. High temperature, high pH, and the
presence of Fe2+ all enhance the transformation to goethite
by promoting the release of structural sulfate, whereas a low
Fe3+ hydrolysis rate and a high Cl− concentration hinder this
transformation. Moreover, the presence of K+ or a high NH4

+

concentration favors schwertmannite transformation to K+-
or NH4

+-bearing jarosite (Fig. 11). These new insights into
schwertmannite formation and transformation under various
geochemical conditions are vital to understand the

Fig. 10 SEM images of the schwertmannite suspension, obtained from
Fe3+ hydrolysis by adding OH−, aged for 96 h in the presence of Cl− at
60 °C or in the presence of K+ or NH4

+ at 80 °C (a: Fe/NH4
+ = 1; b: Fe/

NH4
+ = 0.1; c: Fe/Cl− = 0.2; d: Fe/K+ = 0.1).

Fig. 11 Schematic diagram of schwertmannite formation and
transformation through direct Fe3+ hydrolysis under various
geochemical conditions.
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mineralogical properties of schwertmannite and predict the
environmental behavior and fate of trace elements associated
with schwertmannite in AMD-affected environments.
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Table S1. Experimental conditions on formation and transformation of schwertmannite 

through direct Fe3+ hydrolysis

Sample Fe3+ 
(mM)

SO4
2- 

(mM) pH Temperature Co-existing 
ions (mM)

Dialysis 
time

(a) Schwertmannite formation though Fe3+ hydrolysis-dialysis pathway

Hydrolysis 
temperature 19.98 10.56 - 25, 40, 50, 60, 

70, 80 oC - 7d

Dialysis time 19.98 10.56 - 25, 60 oC - 1, 3, 7, 
15 d

Coexistence 
of K+ or NH4

+ 19.98 10.56 - 60 oC K+, NH4
+

(21.12 mM) 7d

(b) Mineral evolution during Fe3+ hydrolysis by adding NaOH

OH-/Fe3+ = 1 400 600 2.5 25 oC - -

Fhy + SO4
2- 48.55 72.825 2.5 25 oC - -

(c) Fe3+ hydrolysis rate on the formation and long-term aging of schwertmannite

33.33 
µM/min 48.55 24.275 3.0 Formed:25 °C

Aging: 60 °C - -

6.67 µM/min 48.55 24.275 3.0 Formed:25 °C
Aging: 60 °C - -

3.33 µM/min 48.55 24.275 3.0 Formed:25 °C
Aging: 60 °C - -

(d) Schwertmannite transformation under various geochemical conditions

pH effects 48.55 24.275

2.0, 
2.5, 
3.0,
3.5

Aging: 80 °C - -

Fe/S molar 
ratios 48.55

32.37, 
24.275, 
19.42, 

9.71, 6.07, 
4.855 

3.0 Aging: 60 °C - -



Aging 
temperature 48.55 24.275 3.0 25, 60, 80 °C - -

Co-existing 
Fe2+ 48.55 24.275 3.0 Aging: 60 °C Fe2+

(4.855 mM) -

Co-existing 
Cl- 48.55 24.274 3.0 Aging: 60 °C Cl- (24.275, 

242.75 mM) -

Co-existing 
K+ or NH4

+ 48.55 24.275, 
247.25 2.0 Aging: 80 °C

K+, NH4
+

(48.55, 485.5 
mM)

-
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Fig. S1. FTIR spectra of the products obtained from Fe3+ hydrolysis-dialysis at different 

Fe3+ hydrolysis temperatures followed by dialysis for 7 d (a), from Fe3+ hydrolysis at 25 

oC or 60 oC followed by dialysis for 1 d or 15 d (b), and from Fe3+ hydrolysis at 60 oC in 

the presence of K+ or NH4
+ followed by dialysis for 7 d (c). 
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Fig. S2. XRD patterns of the product of “mixed directly” formed through Fe3+ hydrolysis 



by adding OH- and of ferrihydrite reference (Sch = schwertmannite, Fhy = Ferrihydrite).
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Fig. S3. XRD patterns of the products obtained from Fe3+ hydrolysis by adding OH- over 

Fe/S molar ratios of 2 – 10 (a), in the presence of Cl- (b) and K+ or NH4
+ (c) (Sch = 

schwertmannite, Fhy = Ferrihydrite).
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Fig. S4. FTIR spectra of the schwertmannite suspension, obtained from Fe3+ hydrolysis 

by adding OH-, aged for 3 h at different pHs (a), different Fe/S molar ratios (b), different 

aging temperatures (c) and in the presence of Cl-, K+ or NH4
+ (d).
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Fig. S5. The transformation rate described as Feo/Fet of schwertmannite during aging at 

different temperatures (a), at different pHs (b) and in the presence of Cl- or K+ (c) (Feo: 

weak crystalline iron, dissolved by 0.2 M acidic ammonium oxalate; Fet: total iron, 

dissolved by 4 M HCl).
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Fig. S6. XRD patterns of the products aged for 96 h in the presence of NH4
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