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The mode splitting due to rotation splits the nS l multiplet’s original spectral peak into
m singlet’s peaks on both sides (corresponding to +m and −m). When the fluid angular
velocity Ω(r, θ) is unknown, it is not obvious to identify the correct |m| of each peak. For
that reason, it was decided to replace the sphere of ZoRo1 by a spheroid for ZoRo2. The
spheroid remains symmetric around the rotation axis, but is flattened at the poles. The
meridional cross-section is elliptical. This geometric deviation from sphericity splits the
reference spherical multiplets.

In my Notes acoustic pipeline document, I left aside the treatment of the ellipticity of
the container, which is essential for the ZoRo2 experiment. The reason is that the article of
Dahlen (1968) I used for first-order ellipticity contained errors, and that I have coded the
second-order effects, following Mehl (2007), which require a good deal of explanations.
In parallel, David (with COMSOL) and Jeremie (with XXX) have computed exact mode
frequencies for spheroids, which have been essential for correcting typos in the literature2

and bugs in my programs. I present here the theory and the routines I have written and
tested.

1. Mode splitting due to ellipticity: Dahlen’s theory

Since the shape of the Earth is also spheroidal because of the centrifugal acceleration
in its rotating frame, the effect of ’ellipticity’ has been studied by seismologists. I orig-
inally followed the derivation performed by Dahlen (1968). However, the Appendix D
of the book by Dahlen and Tromp (1998) points out a series of errors in the treatment
of corrections to normal modes for the Earth. In particular, the formulation of Dahlen
(1968) suffers from errors that have been corrected in Dahlen (1976). It turns out that
in our case, the error ‘only’ changes the sign of the frequency perturbation, although the
formulas look terribly different!

I first recall Dahlen (1968)’s derivation, and only indicate at the end the corrected
expression derived from Dahlen (1976).

1.1. Dahlen’s ellipticity
Dahlen defines the ellipticity ε of a boundary at radius around ro as follows:

r(θ)
[
1 −

2
3
εP0

2(cos θ)
]

= ro. (1)

1email: Henri-Claude.Nataf@univ-grenoble-alpes.fr
2I have added correction tags to my sample of Mehl (2007)’s pdf.
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Figure 1: Comparison between the shape of ZoRo2 and that given by Dahlen’s spheroid. Also shown
Mehl’s oblate spheroid.

Given the equatorial radius req (for θ = π/2) and the polar radius rpol (for θ = 0), one gets:

ro =
3

1
rpol

+ 2
req

(2)

ε = 3
1 − req

rpol

2 +
req

rpol

. (3)

For ZoRo2, we have: req = 200 mm, rpol = 190 mm, which yields: ro = 196.55 mm and
ε = −0.0517.

Figure 1 compares the shapes of ZoRo2 and Dahlen’s spheroid.

1.2. Dahlen (1968)’s treatment
Dahlen develops the ellipticity perturbation at the first order, and obtains that the fre-

quency shift nδ
m
l = n f m

l − n fl of the nS m
l singlet with respect to the spherical multiplet’s

degenerate frequency n fl varies as (Dahlen, 1968, Appendix A):

nδ
m
l

n fl
=

(
−

1
3

l(l + 1) + m2
)

nγl ε. (4)

Note that the frequency of the m = 0 singlet nS m
l of the spheroid is displaced with respect

to the frequency of the nS l multiplet of the corresponding r = ro sphere. Also note that,
for given n and l values, the splitting due to ellipticity varies as the square of the azimuthal
order m.

The expression of the nγl is derived in the Appendix A of Dahlen (1968), for the
case of the Earth, which includes the effect of self-gravitation and of shear waves. I took
Dahlen’s expression and chopped off all terms that are not relevant in our case... Let me
copy his original expression:

n(δω)m
l [nLl + l(l + 1) nMl] =

b ε(b)
3 nωl

[
κ nKl(r) + µ nMl(r) + ρ0 nR̃l(r)

]+

−
, (5)
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with:

nKl(r) = Am
l (U′ + F)2 with F =

1
r

[2U − l(l + 1)V] , (6)

and where κ is the bulk modulus, µ the shear modulus, and []+
− represents the jump of

the quantity inside the bracket at the elliptical boundary. Translating into my notations:
b ≡ ro, ε(b) ≡ ε, U ≡ ξr, V ≡ ξh (compare equations 7-8 of Notes acoustic pipelines with
Dahlen’s expressions p.342), n(δω)m

l ≡ 2π nδ
m
l , and nωl ≡ 2π n fl. The bracket on the left

hand side is our normalization integral nIl times ρ f . Removing the terms related to the
gravity potential that appear in nR̃l(r), it remains for that term:

nR̃l(r) = −nωl
2(Am

l ξ
2
r + Bm

l ξ
2
h), (7)

where

Am
l =

l(l + 1) − 3m2

(2l − 1)(2l + 3)
(8)

Bm
l = (l(l + 1) − 3) Am

l . (9)

Hence, removing the µ-term on the right hand side of equation 5, I get:

nγl =
ro

(2l − 1)(2l + 3) nIl

 1

nk2
l

[
dξr

dr
+

1
ro

(2ξr − l(l + 1)ξh)
]2

− ξ2
r − (l(l + 1) − 3) ξ2

h

 ,
(10)

where all quantities within the brace {} are evaluated at r = ro (i.e., r = 1 in dimensionless
radius) since ξr = ξh = 0 within the rigid outer shell, and where I used nkl = nωl/c and
κ = ρ f c2, where κ is the bulk modulus of the fluid.

1.3. Dahlen (1976)’s correction
As noted earlier, Dahlen and Tromp (1998) recall a long history of bugs in the liter-

ature on this topic. In particular, the treatment of ellipticity by Dahlen (1968), which I
described above, contained errors that were corrected by Dahlen (1976). Equation 5 re-
mains unchanged except that the expression of nKl(r) is completely different from that of
equation 6, which becomes:

nKl(r) = Am
l

[
F2 − (U′)2 +

6
r

V(U′ + F)
]
, (11)

where the latter term only comes in at a fluid-solid interface (such as in our case).
Surprisingly, the corrected formulation only results in changing the sign of nγl in our case.

2. Mode splitting due to ellipticity: Mehl’s theory

Jim Mehl is a theoretician of the school of scientists who use ‘quasi-spherical res-
onators’ to determine with high precision the Boltzmann constant from the frequency of
acoustic modes. That school has developed tools to take into account all sorts of pertur-
bations that can affect these modes. In particular, Mehl (now 79 years old) developed
over the years the theory for taking into account the shape of the container, considered as
deviations from a perfect sphere.

I have been using the method that Jim Mehl published in 2007, which extends to the
second-order perturbations in ellipticity. There are two remarkable elements of his theory:
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1. He uses the formalism proposed by Morse and Feshbach (1953) to compute the
eigenfrequencies of an acoustic cavity resonator enclosed within an unperturbed
cavity.

2. He evaluates explicitly the sum on n (radial mode number) that enters these expres-
sions, using a residue technique.

As often done by this community, he computes the relative perturbation to apply to
the square of the k wavenumber (or f frequency), with respect to that of a perfect sphere
whose volume is the same as that of the deformed container. This separates the effect of
volume change from that of shape. The shape F is a function of θ and ϕ, and will be
projected on spherical harmonics. Equation (2) of Mehl (2007) expresses the bounding
surface of the resonator as:

rs = a[1 − εF (θ, ϕ)], (12)

where ε is a small positive parameter, and F is a smooth positive function.
Equation (21) of Mehl (2007) further decomposes F into two terms as:

F = F0 + εF1 + O(ε2). (13)

The fundamental result of Mehl (2007) is given in his equation (32), which I reproduce
here:

(ka′)2 − nξ
2
l

nξ
2
l

=
Anlmnlm

nk2
l Nnlm

+
4ε2

nξ
2
l − l(l + 1)

∑
l′m′
|B(n)

lml′m′ |
2S lnl′

+
2ε2|B(n)

lm00|
2

nξ
2
l

[
nξ

2
l − l(l + 1)

] − 2ε〈F0〉 + ε2
[
−〈F0〉

2 + 2〈F 2
0 〉 − 2〈F1〉

]
− 2ε〈F0〉

Anlmnlm

nk2
l Nnlm

+ O(ε3),

(14)

where 〈〉 denotes the average over solid angle. See Mehl (2007)’s article for a complete
description of the terms. Although I have been troubled by many typos in this article, I
don’t think there is any problem with his equation (32).

To go further, one needs the expressions of Anlmnlm

nk2
l Nnlm

, |B(n)
lml′m′ | and S lnl′ , respectively given

by equations (22), (24), and (25) of Mehl (2007).
Let me reproduce his equation (22):

Anlmnlm

nk2
l Nnlm

= 2ε

∫ [
nξ

2
l |Y

m
l |

2
(
F0 + εF1 − εF

2
0

)
− |r∇Ym

l |
2 (F0 + εF1)

]
dΩ

nξ
2
l − l(l + 1) − 2ε

∫
nξ

2
l |Y

m
l |

2 F0 dΩ
+ O(ε3), (15)

where Ym
l is a fully normalized spherical harmonic of degree l and order m.

His equation (24) is:

B(n)
lml′m′ =

∫ [
nξ

2
l

(
Ym′

l′

)∗
Ylm −

(
r∇Ym′

l′

)∗
r∇Ylm

]
F0 dΩ. (16)

The S lnl′ sums are the only elements that are linked to the radial functions, and they
are evaluated explicitly by Mehl (2007). They are given by his equations (26) and (27)
but they contain some typos. I correct them below:
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For l′ , 0:

S lnl′ = −
jl′(nξl)

2 nξl j′l′(nξl)
for l′ , l

S lnl =
nξ

2
l − 3l(l + 1)

4
[

nξ
2
l − l(l + 1)

]2 for l′ = l
(17)

For l′ = 0:

S ln0 = −
1

2 nξ
2
l

−
j0(nξl)

2 nξl j′0(nξl)
for l , 0

S 0n0 = −
1

4 nξ
2
0

for l = 0
(18)

2.1. Decomposition of F in spherical harmonics
The next step is to decompose the functions F0, F1, and F 2

0 in spherical harmonics,
such as:

F =
∑
λ µ

Fµ
λYµ

λ . (19)

For an ’oblate spheroid’ as defined by Mehl, the usual ellipse equation:(
x

requ

)2

+

(
y

rpol

)2

= 1 (20)

can be written as (equation (53) of Mehl (2007)):

rs =
requ√

1 +
(
2ε + ε2) cos2 θ

= requ(1 − ε F ) = requ[1 − ε (F0 + ε F1)], (21)

where the small parameter ε is the ellipticity defined by:

rpol =
requ

1 + ε
. (22)

One deduces Mehl’s equation (54) and the following (fully normalized) spherical har-
monic coefficients for F0, F1 and F 2

0 :

F0 =
2
3
√
πY0

0 +
4
3

√
π

5
Y0

2

F1 = −
4
15
√
πY0

0 −
22
21

√
π

5
Y0

2 −
8

35
√
πY0

4

F 2
0 =

2
5
√
πY0

0 +
8
7

√
π

5
Y0

2 +
16
105
√
πY0

4 .

(23)

The averages over angle 〈F 〉 = 1
2
√
π
F0

0 are given by equation (55) of Mehl (2007), after
correcting his value for 〈F1〉:

〈F0〉 =
1
3
, 〈F1〉 = −

2
15
, 〈F 2

0 〉 =
1
5
. (24)
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Figure 2: Ellipticity coefficients nγl (times (l + 1)2) of degenerate nS l multiplets as a function of angular
degree l and radial degree n in the ZoRo2 experiment filled with air, assuming a rigid outer wall, from Mehl
(2007)’s first-order theory.

2.2. Gaunt integrals
Once the shape functions are decomposed in spherical harmonics, all integrals in equa-

tions 15 and 16 become sums (over λ and µ) of Gaunt type integrals.
Gaunt integrals are integrals of the product of three spherical harmonics such as∫ (

Ym1
l1

)∗
Ym2

l2
Ym3

l3
dΩ. The integrals involving r∇Ylm terms can be linked to Gaunt inte-

grals. I call them ’alt Gaunt’ in my programs. The relation is given by equation (35) of
Mehl (2007), but a factor −1 is missing.

At this stage, I diverge a bit from Mehl (2007)’s strategy. Instead of figuring out what
are the non-vanishing terms in the summations, and using symbolic algebra to express
them, I let Wigner 3j symbols do the job (see Dahlen and Tromp (1998) p. 197). Note
that all ’Gaunt terms’ are multiplied by nξ

2
l , while ’alt Gaunt’ terms do not depend on nξl,

and therefore are the same for all n.
Let’s now isolate the ε- and ε2-terms in equation 14.

2.3. first-order terms
The first-order term A1Mehl is rather simple: it only comes from the linear part of the

Anlmnlm term, with the corrective term −2 〈F0〉 due to the choice of reference sphere, where
the triangle brackets 〈〉 indicate an average over solid angle. Thus:

ndk1m
l = 2

∫ [
nξ

2
l |Y

m
l |

2 F0 − |r∇Ym
l |

2 F0

]
dΩ

nξ
2
l − l(l + 1)

− 2 〈F0〉. (25)
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I define Akm
l (F ) and A0m

l (F ), where F can be F0, F1, etc:

Akm
l (F ) = 2

∫
|Ym

l |
2 F dΩ = 2

∫ ∑
λ

|Ym
l |

2F0
λ Y0

λ dΩ

A0m
l (F ) = −2

∫
|r∇Ym

l |
2 F dΩ = −2

∫ ∑
λ

|r∇Ym
l |

2F0
λ Y0

λ dΩ,

(26)

Then:

ndk1m
l =

nξ
2
l Akm

l (F0) + A0m
l (F0)

nξ
2
l − l(l + 1)

− 2 〈F0〉. (27)

We compute ndk1m
l for m = 0 only3, and get the relative frequency shift as in Dahlen

by:
nδ

m
l

n fl
=

(
−

1
3

l(l + 1) + m2
)

nγl ε, (28)

with:

nγl = −
3

2 l(l + 1) ndk10
l , (29)

where the division by 2 comes from transforming the k2-perturbation to a k- or f -perturbation.

Figure 2 shows the ellipticity coefficients nγl thus computed for the ZoRo2 experi-
ment. We retrieve the same values as with Dahlen’s theory.

2.4. second-order terms
We get back to equation 14 to retrieve the second order terms. The B(n)

lml′m′ terms are
obviously second-order, as well as the

[
−〈F0〉

2 + 2〈F 2
0 〉 − 2〈F1〉

]
term. But we also need

the second order part of the Anlmnlm

nk2
l Nnlm

term, and its first order part multiplied by −2ε〈F0〉.
All these terms involve Gaunt or ’alt Gaunt’ integrals. Using the Ak and A0 functions

introduced in equation 26, I write the Anlmnlm

nk2
l Nnlm

term of equation 15 as:

Anlmnlm

nk2
l Nnlm

= ε
nξ

2
l Akm

l (F0) + A0m
l (F0)

nξ
2
l − l(l + 1)

+ ε2
[

nξ
2
l Akm

l (F1 − F
2

0 ) + A0m
l (F1)

nξ
2
l − l(l + 1)

+
nξ

2
l Akm

l (F0) + A0m
l (F0)

nξ
2
l − l(l + 1)

×
nξ

2
l Akm

l (F0)

nξ
2
l − l(l + 1)

]
+ O(ε3).

(30)

This provides the two second-order terms due to Anlmnlm

nk2
l Nnlm

. The B(n)
lml′m′ terms involve a

sum over l′ and m′. For an axisymmetric container, only modes for which m′ = m will
contribute, because of rule m′ = µ + m (equation (37) of Mehl (2007)). The sum on l′ is
carried out from l′ = 0 up to l′ = l + max(λ) (note that l′ = 0 must be included in the
sum, even though the B(n)

lm00 term is added next). The Wigner 3j symbols used to compute
Gaunt’s integrals take care of cancelling terms with l′ that do not obey to the triangular
rule (equations (36) and (38) of Mehl (2007)).

3Here we loose a bit in generality. We could instead compute the first order term for all m irrespective
of the m-variation.
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Figure 3: Second-order frequency shift γ2 computed by David (open symbols joined by thick lines) are
compared to those computed with my programs (filled symbols). Dotted lines and open circles give the
results of Mehl (2007). I had to correct the exponent at the denominator of the second order term of his
equation (57) from 2 to 3 to get the right fit.

2.5. Comparison with David’s results
I could compare the second-order terms computed by my programs with the equivalent

terms computed by David with COMSOL. David fitted a degree 3 polynomial to the
frequency-ellipticity curve of each acoustic mode. He then expresses the mode frequency
f at a given ellipticity εM (using here Mehl’s definition for ellipticity) as:

f = f0 + γ1εM + γ2ε
2
M + γ3ε

3
M. (31)

The reference mode frequency f0 is the frequency of the degenerate multiplet in a
sphere of unchanged radius requ. For that reason, some conversion is needed to go from
my ndk2m

l to γ2. Conversion tools are described in Appendix A.2. Figure 3 compares
my results with those of David. The agreement is very good. Note that the second-order
terms are large and positive for all nS 0 modes, while they are large and negative for nS 0

2
modes. The latter explains why the frequency of the 2S 0

2 mode is smaller than that of the
2S 1

2 mode in ZoRo2.
We can plot the ndk2m

l fractional difference of Mehl (2007) as a function of degree l
for various n and m. This is shown in Figure 4 (left) for n = 2 and all m and in Figure 4
(right) for m = 2 and all n. In both cases, I multiplied ndk2m

l by l+1
(m+1)(n+1)2 , which tends to

collapse all curves in a narrow range.
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Figure 4: ndk2m
l multiplied by l+1

(m+1)(n+1)2 as a function of l : (left) for n = 2 and all m. (right) for m = 2 and
all n.

3. Application to ZoRo2

Let’s see how second-order perturbations in ellipticity improve our prediction of mode
frequencies in ZoRo2. Figure 5 compares our new synthetic spectrum to an actual ZoRo2
spectrum. In this zoom, note that the frequency of the 2S 0

2 is clearly smaller than that of
the 2S 1

2 mode. This is only possible thanks to the second-order effect. Unfortunately, the
m = 0 peaks seem to be absent from the experimental spectrum...

4. matlab programs

The matlab scripts ’compute modes menu.m’ and ’draw elliptic rotation spectra.m’
are described in the ’Notes acoustic pipeline’ document. Most relevant functions are
placed in the ’ellipticity library’ folder.

4.1. matlab functions
• ellipticity coefficient 1976.m: computes the first-order coefficient nγl needed to cal-

culate the splitting of degenerate nS l modes due to ellipticity, according to Dahlen
(1976), adapted to acoustic modes. Can be used for shells with an inner sphere and
an elliptical outer shell, with ellipticity defined as in Dahlen (1968), which differs
slightly from the ellipticity of ZoRo2.

• ellipticity coefficient Mehl.m: computes the first-order coefficient nγl needed to
calculate the splitting of degenerate nS l modes due to ellipticity, according to Mehl
(2007), adapted to acoustic modes. Not coded yet for the presence of an inner
sphere. To be used with ellipticity defined as in Mehl (2007) for an oblate spheroid,
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Figure 5: Comparison between a synthetic spectrum for ZoRo2 using the second-order perturbation theory
of Mehl (2007) with an actual spectrum obtained by averaging over the 7 longitudes of the microphones
(for that reason, I cancelled the longitudinal factor for the synthetic amplitudes).

which is the shape of ZoRo2. Note that this term describes the relative perturba-
tion of k with respect to the degenerate mode in a sphere of identical volume as the
spheroid.

• ellipticity coefficient Mehl second order: computes the second-order coefficient
ndk2m

l needed to calculate the splitting of degenerate nS l modes due to elliptic-
ity, according to Mehl (2007), adapted to acoustic modes. Not coded yet for the
presence of an inner sphere. To be used with ellipticity defined as in Mehl (2007)
for an oblate spheroid, which is the shape of ZoRo2. Note that this term describes
the relative perturbation of the square of k with respect to the degenerate mode in a
sphere of identical volume as the spheroid.

• Mehl apply second order.m: combines the first-order nγl coefficient and the second-
order ndk2m

l coefficient to produce the total relative frequency shift of mode nS m
l

from the frequency of the degenerate mode nS l computed for a sphere of identical
volume as the spheroid (Mehl (2007)’s choice).

4.2. Drawing functions
• draw ellipticity coefficients.m: plots the ellipticity coefficients nγl of the nS l modes

as a function of angular degree l for all available n.

• draw ellipticity coefficients compens.m: same as above, with nγl multiplied by fac-
tor (l + 1)2.
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• draw ellipticity second order given m.m: plots the ellipticity coefficients ndk2m
l of

the nS l modes as a function of angular degree l for all available n, for a given m.
The coefficients are multiplied by (l + 1)/(m + 1)/(n + 1)2.

• draw ellipticity second order given n.m: plots the ellipticity coefficients ndk2m
l of

the nS l modes as a function of angular degree l for all available m, for a given n.
The coefficients are multiplied by (l + 1)/(m + 1)/(n + 1)2.

4.3. Lower level functions
• get ellipticity: returns the reference radius ro and ellipticity for various types of

ellipticity definitions, given requ and rpol.

• get ellipticity F coefficients: returns the fully normalized spherical harmonics co-
efficients of the F functions needed in Mehl’s theory, which depend on the ellipticity
of the outer boundary.

• Mehl ANN term first.m: computes the linear part of the ANN term of Mehl (2007)
from his equations (22) applied to an oblate or prolate spheroid.

• Mehl ANN term second.m: computes the second order part of the ANN term of
Mehl (2007) from his equations (22) applied to an oblate or prolate spheroid.

• Mehl Snllp.m: computes the S lnl′ coefficients of Mehl (2007), from his equations
(26) and (27) (ie, the sum over the ν of his equation (25)). I changed the sign of the
second term of S nl0, as corrected in Mehl (2010).

• Mehl Blmlpmp term.m: computes the Blml′m′ term of Mehl (2007) from his equa-
tions (24) applied to an oblate (or prolate) spheroid.

• Gaunt integral.m: computes the integral of the product of 3 fully normalized spheri-
cal harmonics Ym1

l1
Ym2

l2
Ym3

l3
using Wigner 3j symbols. See Dahlen and Tromp (1998)

p.917.

• alt Gaunt integral.m: computes the integral of the product of spherical harmonics
angular derivatives that appear in equation (24) of Mehl (2007), which provides the
Blml′m′ coefficients. It is the integral of: Ym1

l1
(r∇Ym2

l2
) (r∇Ym3

l3
) which is related to

Gaunt’s integral in equation (35) of Mehl (2007), in which I had to change the sign
to get the right integral.

• Wigner3j.m: computes the Wigner 3j symbol using the Racah formula, written by
Kobi Kraus, Technion, 2008, 2013.

4.4. Common lowest level routines
• spherical bessel j.m: jl(x) spherical Bessel function of degree l of the first kind.

• d spherical bessel j.m: analytical derivative d jl(x)/dx of the spherical Bessel func-
tion of the first kind.

11



5. Conclusion

I am happy we could come up with correct first-order and second-order coefficients
that provide the frequencies of singlets nS m

l in our ZoRo2 experiment. There are several
additional developments that would be interesting:

• extend Mehl’s theory to a shell with a spherical inner sphere. It should not be
difficult: simply replace the j-spherical Bessel functions by the appropriate j- and
y- combination.

• extend Mehl’s theory to an elastic shell.

• allow for non-axisymmetric container shape. It is possible with Mehl’s formalism,
but it requires an additional matrix diagonalisation and summing over m′.

Appendices
Appendix A. A few complements to better understand Mehl (2007)

Appendix A.1. from the enclosing sphere to the same volume sphere
Mehl (2007) and collaborators like referencing perturbations due to the shape of the

container to the acoustic modes of a sphere of the same volume. The reason is that
the first-order perturbation of the multiplet vanishes in that case, while the formalism
of Morse and Feshbach (1953) they use requires that the deformed container is totaling
enclosed in the reference sphere (this is also the reference David and Jeremie use). One
therefore needs to go from one reference to the other.

Defining k the (dimensional) radial eigenvalue of the perturbed nS m
l mode, kN that

of the degenerate nS l mode in the enclosing sphere of radius a, k′N that of that mode in
the same-volume sphere of radius a′, and nξl the dimensionless eigenvalue of that same
degenerate mode, one wishes to relate the ’desired fractional difference’ k2−(k′N )2

(k′N )2 to the

original ratio k2−k2
N

k2
N

.
One has:

kNa = k′Na′ = nξl. (A.1)

We thus get equation (29) of Mehl (2007):

k2 − (k′N)2

(k′N)2 =
(ka′)2 − nξ

2
l

nξ
2
l

. (A.2)

WritingA =
k2−k2

N
k2

N
, we have:

(ka)2 = An ξ
2
l + nξ

2
l , (A.3)

while

(ka′)2 − nξ
2
l

nξ
2
l

=

(
a′
a

)2
(ka)2 − nξ

2
l

nξ
2
l

=

(
a′
a

)2 [
A nξ

2
l + nξ

2
l

]
− nξ

2
l

nξ
2
l

=

(
a′

a

)2

[A + 1] − 1. (A.4)
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We therefore need to relate
(

a′
a

)2
to the shape parameters F0 and F1, to order ε2. We

first evaluate the volume ratio, which is equal to
(

a′
a

)3
. Since the bounding surface of

the quasi-spherical container is defined by rs = a
[
1 − ε F (θ, ϕ)

]
(equation (3) of Mehl

(2007)), this volume ratio is: (
a′

a

)3

=
1

4π

∫
(1 − ε F )3dΩ. (A.5)

We get by developing and retaining up to order 2:(
a′

a

)3

=
1

4π

∫ [
1 − 3ε F + 3ε2F 2 + O(ε3)

]
dΩ = 1 − 3ε 〈F 〉 + 3ε2〈F 2〉 + O(ε3), (A.6)

where 〈〉 denotes the average over solid angle.
Recalling equation (21) of Mehl (2007), which defines F0 and F1:

F = F0 + ε F1 + O(ε2), (A.7)

we get:
〈F 〉 = 〈F0〉 + ε〈F1〉, (A.8)

and
〈F 2〉 = 〈F 2

0 〉 + O(ε). (A.9)

Thus: (
a′

a

)3

= 1 − 3ε 〈F0〉 − 3ε2〈F1〉 + 3ε2〈F 2
0 〉 + O(ε3), (A.10)

which is equation (30) of Mehl (2007).

We then write
(

a′
a

)2
=

[(
a′
a

)3
]2/3

and use Taylor’s expansion to obtain:

(
a′

a

)2

= 1 − 2ε〈F0〉 + ε2
[
−〈F0〉

2 + 2〈F 2
0 − F1〉

]
+ O(ε3), (A.11)

in agreement with equation (31) of Mehl (2007).
It then only remains to combine equations (29) and (31) with equations (22) and (28),

which give the two pieces of equation (16), to obtain equation (32), which is the base of
the programs I wrote.

Appendix A.2. A few conversion tools
Based on the previous appendix, we can derive a few useful tools to convert first-

order and second-order elliptic perturbations from Mehl’s formalism to David or Jeremie
computations.

First-order term:
FirstMehl = FirstDavid − 2〈F0〉. (A.12)

Second-order term:

S econdMehl = S econdDavid − 2〈F0〉FirstDavid − 〈F0〉
2 + 2〈F 2

0 〉 − 2〈F1〉. (A.13)
13



These relations are for ε- and ε2- perturbations of
(

nkm
l

nkl

)2
− 1. One can convert into ε-

and ε2- perturbations of n f m
l

n fl
− 1 by:

n f m
l

n fl
− 1 =

First
2

ε +
1
2

(S econd −
First2

4
) ε2, (A.14)

using Taylor’s expansion to order 2.

Finally, the ellipticity is not defined exactly the same in Mehl (2007) and by David.
Mehl defines εMehl by rpol = requ/(1 + εMehl), while David has: rpol = requ(1 − εDavid). The
relation between the two is thus:

εMehl =
εDavid

1 − εDavid
and εDavid =

εMehl

1 + εMehl
. (A.15)

Appendix A.2.1. matlab functions
These conversions are coded in functions placed in the ’checking scripts’ folder, to-

gether with a lot of scripts I have used to check the validity of my routines.

• df David from Mehl dk2.m: provides the first-order and second-order fractional
frequency perturbation in David’s requ-radius reference sphere from the first- and
second-order k2-fractional perturbations of Mehl’s theory.

• dk2 Mehl from David df.m: performs the inverse of the previous function.

• David from Mehl ellipticity.m: function returning David ellipticity given Mehl el-
lipticity.

• Mehl from David ellipticity.m: performs the inverse of the previous function.

• r o David from Mehl.m: returns the equivalent spherical radius ro to consider for
getting the mode frequency given Mehl’s ellipticity and the equatorial radius.

Appendix A.3. Some useful formulas...
It is easy to bug when dealing with (fully normalized) spherical harmonics and similar

stuff. One can check these decompositions on Wolfram Alpha. Here are a few formula to
help figure out the right spherical harmonic coefficients for the shape functions F .

Appendix A.3.1. oblate spheroid

1 = 2
√
πY0

0

cos2 θ =
2
3
√
πY0

0 +
4
5

√
π

5
Y0

2

cos4 θ =
2
5
√
πY0

0 +
8
7

√
π

5
Y0

2 +
16

105
√
πY0

4 .

(A.16)
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Appendix A.3.2. prolate spheroid

1 = 2
√
πY0

0

sin2 θ =
4
3
√
πY0

0 −
4
3

√
π

5
Y0

2

sin4 θ =
16
15
√
πY0

0 −
32
21

√
π

5
Y0

2 +
16

105
√
πY0

4 .

(A.17)
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