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I recall here the theories used to infer the acoustic modes of our ZoRo experiment and
predict synthetic spectra. In this note, I also present the pipeline of matlab routines I have
written to compute and plot these spectra, and compare them with measured spectra.

Version 2 corrects several errors that were present in the literature, and adds more
references. The modifications concern:

e bulk viscosity u,,: its contribution to bulk attenuation was written as %,u;, in Moldover
et al. (1986), and in some of his later publications. The % factor is erroneous (see
Guianvarc’h et al. (2009) for example). I have thus corrected equation 27. 1 have
also collected and added values of bulk viscosity for all gases and liquids proposed
in my programs. Note that Hu et al. (2015) claim that y instead of (y — 1) should be
used in that same equation. Jordan and Keiffer (2016) demonstrate that this is not
true.

e figure for Ledoux coefficients: I replaced the [-scaling factor I was using by (I + 1)
since it was erroneously suggesting zero effect for / = 0.

o cllipticity correction: this part has turned into a big thing, which I have transferred
to a separate file entitled: Notes_ellipticity_pipeline. The corresponding functions
are gathered in the ellipticity_library folder.

1. Theory of acoustic modes in a spherical shell of fluid enclosed between two spher-
ical elastic shells

1.1. rigid shell and no inner sphere

The starting point is the theory for acoustic modes in a sphere of a compressible fluid
with an outer rigid boundary and no inner sphere. From the fundamental law of dynamics
and thermodynamics, one gets the following wave equation governing the pressure P(r, t)
in an isentropic fluid (Triana et al., 2014):
3 2v2
ﬁP(r, t) =cV P(r7 t)’ (1)
where ¢ is the sound speed. Assuming an oscillatory time dependence, P(r, ) = f(r)e ¢,
then f(r) obeys the Helmholtz equation:

V2 f(r) + K f(r) = 0, 2)
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where k = w/c is the wave number. The Helmholtz equation is separable in spherical
coordinates so that f(r) = R(r) ®(0) ®(¢). The solutions for the 6 and ¢ equations are
the spherical harmonics Y;"(6, ) = P/'(cos 6) e, where [ is the angular degree, which
corresponds to the number of nodes in the angular coordinates, while m is the azimuthal
order (the number of nodes in the azimuthal direction). The radial equation is:
91,0 _ 2.2
E[ a—rR(r)] = |1+ 1) - 27| R(). 3)
The solution for R(r) is a sum of spherical Bessel functions, which reads, apart from a
normalizing factor,
R(r) = jitkr) + By(kr), “)

where j;(x) and y,(x) are the spherical Bessel functions of degree [ of the first and second
kind, respectively.
In the absence of an inner sphere, the solution only involves the spherical Bessel
function of the first kind:
R(r) = ji(kr). &)
The fluid displacement vector {(r) is related to the fluid pressure by Euler’s equation,
yielding:

vP
() = 0 + 43(0) = 0. ()
prw

where p; is the density of the fluid. Replacing P(r) by its expression, we get the radial ¢,
and horizontal ;, components of the displacement as:

1 .
&(r) = —&()P)'(cos0)e™ (7
prw

Zi(r)

1 d m ) . m m ~ im
pr &n(r) %P, (cos9)0+1si—ngP1 (cosO) @| e™, (8)

with the radial functions &,(r) and &,(r) of the radial and horizontal displacement compo-
nents respectively given by:

&) = R(r) )
R
&n(r) = (Tr) (10)

The presence of the spherical rigid outer boundary at r = r, quantifies the wave num-
ber. Indeed, the radial displacement should vanish there, implying R'(r,) = 0. Hence,
for each [ degree, only those wave numbers ,k; that satisfy dj,(,k;r)/dr = O atr = r,
yield acoustic modes. The index n corresponds to the number of nodes in the radial di-
rection. Following the seismological notation, we will note ,S7" an acoustic mode of
angular degree /, order m, and radial degree n. Note that length is normalized by r, in our
computations, so that the ,k; wave number mentioned above is dimensionless.

One can thus get the frequencies , f; of all the needed acoustic modes by scanning all /
from O to some /,,,, value, then solving for all ,k; wave numbers that satisfy the boundary

condition, thus obtaining:
Cp kl

nfi

= . 11
271, (b
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S, mode frequencies for elastic or rigid spherical shell
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Figure 1: frequencies , f; of degenerate ,S; multiplets as a function of angular degree / and radial degree n
in the ZoRo2 experiment filled with air, assuming a rigid outer wall.

Figure 1 displays the frequencies of the acoustic modes computed for ZoRo2. It is
important to realize that the m order does not appear in this expression: the ,S}" acoustic
modes are degenerate in m. Several elements break this degeneracy, and in particular flow
in the fluid: this is the key of the *'modal acoustic velocimetry’ technique we are using.

1.2. rigid shell and rigid inner sphere

One can easily add a rigid inner sphere of radius r;, as described in Triana et al. (2014).
We then need to keep the B y,(kr) in equation 4 and add a new boundary condition R’(r;) =
0. For each acoustic modes, we now get its wave number ,k; and the corresponding ,B;
coeflicient for B, which yields the amplitude of the y, term with respect to the j; term.

1.3. elastic shell and no inner sphere

The theory is adapted from the article by Rand and DiMaggio (1967), entitled ’ Vibra-
tions of Fluid-Filled Spherical and Spheroidal Shells’. Here, the ’shell’ is the elastic wall
containing the fluid; there is no inner sphere in that study. Dealing with an elastic shell
implies adding a momentum equation for that shell, and an equation that states that the
fluid radial velocity equates the shell radial velocity at the surface of the fluid.

The elasticity of the shell is described in terms of its shear modulus u and Poisson’s
ratio v. It is A-thick and its density is p. We also need the fluid density p and its sound
speed c. In addition to the fluid pressure P(r, ), the radial displacement U(6, t) and tan-
gential displacement W(6,t) of the shell are introduced, in a thin shell approximation.
Note that the treatment assumes these are axisymmetric and non-torsional.

Here, we only consider the spherical case. Since acoustic modes are degenerate in this
problem as well, results obtained for m = 0 also apply to m # 0.



Then, calling n = cos 6, the governing equations are the equations (13-17) of Rand
and DiMaggio (1967):

d*U sin@ dW 1 —v prio?

U=0 (12)

—Sined—nz—(1—V)U—(1+V)Sin0d—n— 3 u
. _ 2.2 _y 2
(1050 o yw = LYy 1oV R b ose) (13)
2 hu
1 oP
W=— a—(r,,, cos 6) (14)
w*ps Or
J|., 0P d(,0P\ ?,
. [sm an +8r(r 8r)+ o (15)
Ux1)=0. (16)

Rand and DiMaggio (1967) demonstrate that these equations can be cast into a single
equation in P only, to be satisfied at r = r, (their equation 18):

gannr+g2Pnr+g3Pr+g4P7m+g5P7]+g6P:Oa (17)

where P, denotes g—’;, and so on. Since the angular part is again solved by the spherical
harmonics Y}"(6, ¢), one gets an equation for the wave number ,k;. The expressions for
the g; are given in equations A25-A30 of their article. Note that, the properties of the shell
and fluid only enter as v and the dimensionless A and «, combinations given by:

pr 7o

A = 18
> T (18)
pc’

= = 19

Ko 2u (19)

I have coded all this in the elastic_spherical shell modes.m routine. The main motiva-
tion is that one can estimate the ratio between fluid pressure beneath the outer shell and
the outer shell acceleration in a consistent way from equation 14 above (equation 15 of
Rand and DiMaggio (1967)). Remember that % = 0 for a rigid boundary.

1.4. elastic shell and elastic inner sphere
To be complete, I extended the theory of Rand and DiMaggio (1967) to the case of an
added elastic inner shell, combining the elements of sections 1.2 and 1.3.

1.5. matlab programs

The elastic_spherical _shell modes.m function provides the ,k; and ,,B; solutions of the
general problem, in the shape of (n = 0 : n,4,,[ = 0 : [,,,) arrays. It also returns the
corresponding , f; mode frequency array, given the sound speed c. The input parameters
indicate whether there is an inner sphere or not, and provide the required elastic parame-
ters of the elastic shells. For a rigid shell, one simply specifies an infinite shear modulus
u, which yields a zero A coefficient.

Most relevant routines are placed in the "acoustic_library’ folder. Note that it is im-
portant to write as functions all terms that have to be integrated, such as i_nlm. Similarly
for terms that enter a function for which we seek the zeroes, such as f_sphere in elas-

tic_sperical _shell_modes.m.
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1.5.1. matlab script

e compute_modes_menu.m: this script proposes several spherical shell configurations
corresponding to our actual experiments, several fluids relevant for these experi-
ments, and the treatment of the walls (elastic or rigid). From these elements, it
computes the degenerate ,,S; acoustic modes and their properties. It proposes to
plot the resulting mode frequencies and coefficients (Acc, .y, ,dk2}', ,Ci, ,81), and
to save all these, together with the ,k;, ,B; and ,, f; arrays. The name of the mode file
is built as *ZoRo2-air-rigid.mat’ for example.

1.5.2. matlab functions
o clastic_spherical_shell_ modes.m: computes the mode wave numbers (and frequen-
cies) and B’ factors of degenerate ,S; modes of a spherical fluid shell between
elastic walls. The walls can also be rigid, and there can be no inner sphere.

e gas_properties.m: provides the needed thermodynamic properties of various gases
as a function of pressure and temperature.

e acceleration_coefficient.m: computes the acceleration to pressure ratio at the outer
wall for degenerate ,,S; modes.

e write_acoustic_.modes.m: writes a ‘'mat’ file containing the wave numbers, frequen-
cies, 'B’ factors and resulting coefficients (Acc, ,yi, »Ci, 181 nAf;) for degenerate
»5 1 modes of a given shell configuration.

e read_acoustic_modes.m: reads the mode 'mat’ file.

e A_nlm.m: computes the ,A}"(r, §) meridional map of acoustic pressure amplitude of
»S ;" modes in a spherical shell.

1.5.3. drawing functions
Drawing routines are gathered in the drawing_functions’ folder.

e draw_elastic_ modes.m: plots the frequencies , f; of the ,S; modes as a function of
angular degree / for all available n.

e draw_acceleration_ratios.m: plots the acceleration ratios Acc of the ,S; modes as a
function of angular degree / for all available 7.

2. Mode splitting due to rotation

Several deviations from our original assumptions can lift the m-degeneracy of .S
acoustic modes. When these deviations are not too large, they can be treated as pertur-
bations of the spherical ,S}" modes, which has the advantage to keep the well-defined
sequence of modes. This is what is most often done in seismology, where the ,S" and
21" (for the toroidal modes) of the SNREI® Earth are taken as starting points for various
perturbations (Dahlen and Tromp, 1998).

2Spherical Non Rotating Elastic Isotropic



We will examine here the perturbations brought by the rotation of the fluid. Perturba-
tions brought by the ellipticity of its container are treated in the separate Notes_ellipticity _pipeline
package.

2.1. the effect of global rotation

Concerning rotation, it is important to realize that there are two different effects. When
helioseismologists analyze acoustic modes of the Sun, they observe it from the Earth,
which means that they examine a rotating object. Acoustic waves that propagate in the
Sun in its rotation direction have a higher frequency on its side approaching the Earth,
due to the Doppler effect, while the opposite holds for waves propagating in the opposite
direction. This effect results in the ’splitting’ of the ,,S; degenerate *multiplet’ into 2/ + 1
‘singlets’ .S, whose individual frequencies are ,f" =, fi + m f,, where f;, is the rotation
frequency of the object (here the Sun).

When seismologists analyze seismic modes of the Earth, their seismometers and the
earthquake sources rotate with the Earth. Thus, the effect mentioned above does not take
place. However, the rotation of the Earth also induces a splitting, due to the Coriolis
force. This splitting is also proportional to m and to f,, but with a coefficient ,C;, called
the Ledoux coeflicient, which depends upon #n and [, so that: ,f" = ,f; — m,C; f,. The
expression of the Ledoux coefficient is given in Aerts et al. (2010, equation (3.361)):

26 &+ &) rdr
nCr=— ; (20)
nll
with the normalizing integral:
= f (& + 10+ D &2] P, 21)

assuming here a homogeneous fluid density.

The Ledoux coeflicients computed for ZoRo2 are shown in Figure 2. Note that the
correction needs to be performed to the second order for the Earth, because this second
order correction has a magnitude similar to the ellipticity correction (Dahlen, 1968). The
second order correction involves both an effect of the centrifugal acceleration and a second
order Coriolis term.

In our ZoRo experiments, the loudspeakers and microphones are attached to the solid
outer shell and rotate with it. Therefore, when both the shell and the fluid rotate uniformly
in solid body rotation, splitting will only be due to the Coriolis effect given by the Ledoux
coeflicients.

2.2. the effect of differential fluid rotation

Remember that we are doing all that to try to infer fluid motions in the rotating sphere!
Indeed, axisymmetric azimuthal motions of the fluid also produce a splitting of the degen-
erate multiplets. The theory, adapted from helioseismology (Aerts et al., 2010), is recalled
in Triana et al. (2014).
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Figure 2: Ledoux coefficients ,C; (times /) of degenerate ,S; multiplets as a function of angular degree /
and radial degree n in the ZoRo2 experiment filled with air, assuming a rigid outer wall.

Defining the fluid angular velocity €Q(r, 8), the frequency splitting ,A}" = . f" — .fi 1s
again proportional to m, but with a coefficient that depends upon m and is obtained by
integration of a ’rotational kernel’ ,K}"(r, ) such that:

AV f f 2K (r,0) Q(r, 0) r dr de. (22)

defining p(6) as the fully normalized associated Legendre polynomial of degree / and
order m:

p(0) = P/'(cos 6), (23)
and its derivative: J
q0) = EP;”(COS 0), (24)
we obtain the following expression for the rotational kernel:
rsin 2 Pq
K(r,0) = 202 + &g + -2 —2&. &Py 25
10 =— {frp S|4 =3P " 2ang| 2P (25)

Note that global solid body rotation of the fluid with respect to the shell, as treated
earlier, can be seen as a special case of this more general derivation.

2.3. matlab functions
Most relevant functions are placed in the ’acoustic_library’ folder.

e Ledoux coefficient.m: computes the Ledoux coefficient ,C; of degenerate ,.S; modes
for global rotation.

e K_nlm.m: computes the ,K;" rotational kernel of ,$}" modes for axisymmetric fluid

angular velocity.
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2.3.1.

2.3.2.

Drawing functions
draw_Ledoux_coeflicients.m: plots the Ledoux coefficients ,C; of the ,S; modes as
a function of angular degree [ for all available n.

Lower level functions
i_nlm.m: integrand of the normalization integral ,/; used for the rotational kernels
and ellipticity correction.

Int_nlm.m: ,/; normalization integral (numerical integration between r; and r, of
the integrand function i_nlm.m).

xi_r.m: radial displacement function &,(r) of fluid for degenerate ,S; mode.
xi_h.m: horizontal displacement function &,(r) of fluid for degenerate ,,S; mode.

d xi_r.m: analytical radial derivative of &,(r).

. Common lowest level routines

P_Im.m: fully normalized P}'(cos(6)) associated Legendre polynomial (= p(6)).

d_P_Im.m: analytical theta derivative g(6) of the fully normalized P}"(cos(6)) asso-
ciated Legendre polynomial.

spherical _bessel_j.m: j,(x) spherical Bessel function of degree [ of the first kind.
spherical _bessel_y.m: y;(x) spherical Bessel function of degree [/ of the second kind.

d_spherical bessel_j.m: analytical derivative d j,(x)/dx of the spherical Bessel func-
tion of the first kind.

d_spherical _bessel_y.m: analytical derivative dy;(x)/dx of the spherical Bessel func-
tion of the second kind.

d2_spherical_bessel_j.m: analytical second derivative d?j;(x)/dx* of the spherical
Bessel function of the first kind.

d2_spherical_bessel_y.m: analytical second derivative d*y,(x)/dx* of the spherical
Bessel function of the second kind.

3. Mode attenuation and synthetic spectra

From the theory discussed so far, we get the wave numbers and resonance frequencies
of the acoustic modes, taking into account (in a linearized way) shell elasticity and ellip-

ticity,

global rotation, and differential fluid rotation. In order to produce synthetic spectra

from these mode data, we need to predict the amplitude and shape of the spectrum around
each resonance. We follow here the theory developped in Moldover et al. (1986) and
Trusler (1991). The amplitude is controlled by the positions of the loudspeaker (r;, 5, ¢5)
and microphone (r,, 6,, ¢,) and the shape of the mode. The spectral amplitude ,A;"(f) of
a given ,$ " mode reads:
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/' = R(r;) R(r;) P'(cos 6,) Pj'(cos ;) cos m(p, — ¢y), (26)

where R(r) is the radial function of equation 4, to be evaluated at dimensionless radius
unity if both the loudspeaker and the microphones are mounted flush at the outer bound-
ary, as in ZoRo2.

3.1. attenuation mechanisms

The book of Trusler (1991) nicely discusses the attenuation mechanisms at work in
gases. Viscous and thermal dissipation in the bulk contributes little to the attenuation
of acoustic waves. It depends upon the kinematic viscosity v, of the fluid, its thermal
diffusivity ks and its Gruneisen Cp/Cy index. The main attenuation mechanism occurs at
the contact with the solid boundaries of the fluid. For isothermal boundaries (appropriate
for metallic shells), the attenuation depends upon the same thermodynamic properties
of the gas, but acting in the thin boundary layers forming at these frontiers. Following
Moldover et al. (1986), we compute these contributions to the half-width , g; of the spectral
resonance peaks. We start from equation 42 of Moldover et al. (1986), which gives the
bulk and boundary dissipation contributions g, and gpoundary t0 ng:» in the case of a rigid
boundary. The boundary dissipation also slightly shifts the resonance peak by ,Af; =

—8boundary-
From equation 39 of Moldover et al. (1986) we get the bulk dissipation contribution
as:
nki A
8bulk = 47r_lr2 (y — Dky + gi + Viulk | » (27)

where we used ,.f;/c = ,k;/2nr, (remember that the ,k; are dimensionless). The quantity
Veur 18 the bulk viscosity (kinematic here). Note that Moldover et al. (1986) have an
erroneous 1/2 factor for that term, see Guianvarc’h et al. (2009) for example. The ratio
Veu/ vy can be very different for different gases. Cramer (2012) computes this ratio for
several gases as a function of temperature. At ambient temperature and low pressure, he
finds that this ratio is of order 1 for N, and air, but is as large as 30 for H,, 350 for SF¢
and 3500 for CO,!

I have added bulk viscosity values for all fluids proposed in compute_modes_menu.m
or gas_properties.m. Values are from Cramer (2012), or references therein, for gases;
from Holmes et al. (2011) for water; from Awasthi and Murthy (1985) for liquid sodium.

The boundary dissipation occurs in the thin thermal and viscous boundary layers at
the walls of the containers. The thickness of these boundary layers, respectively 67 and
oy, are given by equations 9 and 10 of Moldover et al. (1986):

5 = L (28)
! T fi
Vy
oy = . 29)
Y T fi
Equation 42 of Moldover et al. (1986) then provides the gjounqary cOntribution as:

~ Do+ &g
boundary —
2r _ i+
o 1 e

(30)
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Figure 3: Half-widths ,g; of spectral resonance peaks for degenerate attenuated ,,§; multiplets as a function
of angular degree / and radial degree 7 in the ZoRo2 experiment filled with air, assuming a rigid outer wall.

In the end, the peak half-width is:

n81 = 8bulk t 8boundary» (31)

and the peak frequency shift is:

nAfl = _gboundary' (32)

Figure 3 shows the ,g; half-widths of spectral peaks in ZoRo2.
Note that the acoustic impedance of the walls of the container can also contribute to
the attenuation and frequency shift. It is treated in Moldover et al. (1986).

3.2. resonance spectral shape

Including all the ingredients discussed so far, we get the expected resonance frequency
«f]" of a given ,S7" singlet as:

nﬁm = nﬁ - mnclfo + nA;n + n5?1 + nAf’[n’ (33)

where the right hand side terms are successively: the ideal multiplet mode frequency , f;
(equation 11), Coriolis splitting due to global rotation (equation 20), Doppler splitting ,A}"
due to fluid differential rotation (equation 22), ellipticity splitting ,6;" caused by ellipticity
(presented in package Notes_ellipticity_pipeline), and frequency shift ,Af}" produced by
attenuation at the boundaries (equation 32).

The spectrum of each individual singlet can be approximated as a Lorentzian (equation
3.1.1 of Trusler (1991)), as:

i AP

fgﬁi(f—nf,m) '

spectrum(f) = (34)
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Figure 4: Zoom on an acoustic spectrum for ZoRo2 as a function of frequency, for a global rotation rate
f, =25 Hz.

Figure 4 shows a zoom on a spectrum for ZoRo?2.

The complete acoustic spectrum is obtained by summing all singlet contributions. It
should be multiplied by the spectral transfer functions Z,(f) of the loudspeaker and Z,(f)
of the microphone, if available.

3.3. matlab programs

3.3.1. matlab scripts

e draw elliptic_rotation_spectra.m: in this script, one chooses a spherical mode file
(such as ZoRo2-air-rigid’) saved by the compute_modes_menu.m script. The script
reads the mode file, and asks for an ellipticity and rotation values. It computes the
mode splitting due to ellipticity and global rotation. Requesting loudspeaker and
microphone latitudes, it computes the expected spectral amplitudes and builds a
complete synthetic spectrum. Note that the spectral transfer functions and longi-
tudes of the loudspeaker and microphone are not taken into account yet. In the
same figure, it plots as a function of frequency:

— the original degenerate spherical ,$; lines with their names,

— the lines of the ,S7" modes taking into account ellipticity (if any) and global
rotation (if any),

— the synthetic spectra built from these lines, taking into account mode attenua-
tion and the source-receiver geometry.

e compare_ZoRo2 _spectra.m: this script is based on the previous one and adds the
reading and over-plotting of an experimentally obtained ZoRo spectrum. It includes
the amplitude term connected to the difference in longitude between the loudspeaker
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and the microphone (see equation 26). Temporarily, it also contains the retrieval and
plot of an empirical transfer function Z(f) in order to get similar amplitudes for the
data and the synthetics.

3.3.2. matlab functions
e draw_attenuation_coefficients.m: plots the attenuation half-widths ,g; of the .S,
modes as a function of angular degree / for all available n.

e read_ZoRo_spectra.m: reads ZoRo ’.txt’ files as produced by Sylvie in January
2019.

e infos_install ZoRo2.m: following the DTS philosophy, this function provides the
coordinates (r, latitude, longitude) of a ZoRo2 element given its name (such as
"HO1” or ’E04’), following the nomenclature established by Sylvie in January 2019
and the technical drawings of ZoRo2 by Max in 2018.

Most relevant functions are placed in the *acoustic_library’ folder.

e attenuation_half_width.m: computes the half-width ,g; of spectral peaks, and the
corresponding resonance frequency shift ,A f; for degenerate ,S; modes.

e build _Lorentzian.m: builds a Lorentzian spectrum for mode resonance at a given
frequency, with a given half-width.

4. Conclusion

We now have a fairly complete set of simple tools to treat acoustic modes in our
experiments. There are several additional developments that would be interesting:

¢ implementation of attenuation due to the impedance of the elastic walls.
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