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I recall here the theories used to infer the acoustic modes of our ZoRo experiment and
predict synthetic spectra. In this note, I also present the pipeline of matlab routines I have
written to compute and plot these spectra, and compare them with measured spectra.

Version 2 corrects several errors that were present in the literature, and adds more
references. The modifications concern:

• bulk viscosity µb: its contribution to bulk attenuation was written as 1
2µb in Moldover

et al. (1986), and in some of his later publications. The 1
2 factor is erroneous (see

Guianvarc’h et al. (2009) for example). I have thus corrected equation 27. I have
also collected and added values of bulk viscosity for all gases and liquids proposed
in my programs. Note that Hu et al. (2015) claim that γ instead of (γ− 1) should be
used in that same equation. Jordan and Keiffer (2016) demonstrate that this is not
true.

• figure for Ledoux coefficients: I replaced the l-scaling factor I was using by (l + 1)
since it was erroneously suggesting zero effect for l = 0.

• ellipticity correction: this part has turned into a big thing, which I have transferred
to a separate file entitled: Notes ellipticity pipeline. The corresponding functions
are gathered in the ellipticity library folder.

1. Theory of acoustic modes in a spherical shell of fluid enclosed between two spher-
ical elastic shells

1.1. rigid shell and no inner sphere
The starting point is the theory for acoustic modes in a sphere of a compressible fluid

with an outer rigid boundary and no inner sphere. From the fundamental law of dynamics
and thermodynamics, one gets the following wave equation governing the pressure P(r, t)
in an isentropic fluid (Triana et al., 2014):

∂2

∂t2 P(r, t) = c2∇2P(r, t), (1)

where c is the sound speed. Assuming an oscillatory time dependence, P(r, t) = f (r) e−iωt,
then f (r) obeys the Helmholtz equation:

∇2 f (r) + k2 f (r) = 0, (2)
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where k = ω/c is the wave number. The Helmholtz equation is separable in spherical
coordinates so that f (r) = R(r) Θ(θ) Φ(ϕ). The solutions for the θ and ϕ equations are
the spherical harmonics Ym

l (θ, ϕ) = Pm
l (cos θ) eimϕ, where l is the angular degree, which

corresponds to the number of nodes in the angular coordinates, while m is the azimuthal
order (the number of nodes in the azimuthal direction). The radial equation is:

∂

∂r

[
r2 ∂

∂r
R(r)

]
=

[
l(l + 1) − k2r2

]
R(r). (3)

The solution for R(r) is a sum of spherical Bessel functions, which reads, apart from a
normalizing factor,

R(r) = jl(kr) + B yl(kr), (4)

where jl(x) and yl(x) are the spherical Bessel functions of degree l of the first and second
kind, respectively.

In the absence of an inner sphere, the solution only involves the spherical Bessel
function of the first kind:

R(r) = jl(kr). (5)

The fluid displacement vector ζ(r) is related to the fluid pressure by Euler’s equation,
yielding:

ζ(r) = ζr(r)r̂ + ζh(r) =
∇P(r)
ρ f ω2 , (6)

where ρ f is the density of the fluid. Replacing P(r) by its expression, we get the radial ζr

and horizontal ζh components of the displacement as:

ζr(r) =
1

ρ f ω2 ξr(r)Pm
l (cos θ) eimϕ (7)

ζh(r) =
1

ρ f ω2 ξh(r)
[

d
dθ

Pm
l (cos θ) θ̂ + i

m
sin θ

Pm
l (cos θ) ϕ̂

]
eimϕ, (8)

with the radial functions ξr(r) and ξh(r) of the radial and horizontal displacement compo-
nents respectively given by:

ξr(r) = R′(r) (9)

ξh(r) =
R(r)

r
(10)

The presence of the spherical rigid outer boundary at r = ro quantifies the wave num-
ber. Indeed, the radial displacement should vanish there, implying R′(ro) = 0. Hence,
for each l degree, only those wave numbers nkl that satisfy d jl(nkl r)/dr = 0 at r = ro

yield acoustic modes. The index n corresponds to the number of nodes in the radial di-
rection. Following the seismological notation, we will note nS m

l an acoustic mode of
angular degree l, order m, and radial degree n. Note that length is normalized by ro in our
computations, so that the nkl wave number mentioned above is dimensionless.

One can thus get the frequencies n fl of all the needed acoustic modes by scanning all l
from 0 to some lmax value, then solving for all nkl wave numbers that satisfy the boundary
condition, thus obtaining:

n fl =
c nkl

2πro
. (11)
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Figure 1: frequencies n fl of degenerate nS l multiplets as a function of angular degree l and radial degree n
in the ZoRo2 experiment filled with air, assuming a rigid outer wall.

Figure 1 displays the frequencies of the acoustic modes computed for ZoRo2. It is
important to realize that the m order does not appear in this expression: the nS m

l acoustic
modes are degenerate in m. Several elements break this degeneracy, and in particular flow
in the fluid: this is the key of the ’modal acoustic velocimetry’ technique we are using.

1.2. rigid shell and rigid inner sphere
One can easily add a rigid inner sphere of radius ri, as described in Triana et al. (2014).

We then need to keep the B yl(kr) in equation 4 and add a new boundary condition R′(ri) =

0. For each acoustic modes, we now get its wave number nkl and the corresponding nBl

coefficient for B, which yields the amplitude of the yl term with respect to the jl term.

1.3. elastic shell and no inner sphere
The theory is adapted from the article by Rand and DiMaggio (1967), entitled ’Vibra-

tions of Fluid-Filled Spherical and Spheroidal Shells’. Here, the ’shell’ is the elastic wall
containing the fluid; there is no inner sphere in that study. Dealing with an elastic shell
implies adding a momentum equation for that shell, and an equation that states that the
fluid radial velocity equates the shell radial velocity at the surface of the fluid.

The elasticity of the shell is described in terms of its shear modulus µ and Poisson’s
ratio ν. It is h-thick and its density is ρ. We also need the fluid density ρ f and its sound
speed c. In addition to the fluid pressure P(r, t), the radial displacement U(θ, t) and tan-
gential displacement W(θ, t) of the shell are introduced, in a thin shell approximation.
Note that the treatment assumes these are axisymmetric and non-torsional.

Here, we only consider the spherical case. Since acoustic modes are degenerate in this
problem as well, results obtained for m = 0 also apply to m , 0.
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Then, calling η = cos θ, the governing equations are the equations (13-17) of Rand
and DiMaggio (1967):

− sin θ
d2U sin θ

dη2 − (1 − ν)U − (1 + ν) sin θ
dW
dη
−

1 − ν
2

ρr2
oω

2

µ
U = 0 (12)

(1 + ν)
dU sin θ

dη
+ 2(1 + ν)W −

1 − ν
2

ρr2
oω

2

µ
W =

1 − ν
2

r2
o

hµ
P(ro, cos θ) (13)

W =
1

ω2ρ f

∂P
∂r

(ro, cos θ) (14)

∂

∂η

[
sin2 θ

∂P
∂η

]
+
∂

∂r

(
r2∂P
∂r

)
+
ω2

c2 r2P = 0 (15)

U(±1) = 0. (16)

Rand and DiMaggio (1967) demonstrate that these equations can be cast into a single
equation in P only, to be satisfied at r = ro (their equation 18):

g1Pηηr + g2Pηr + g3Pr + g4Pηη + g5Pη + g6P = 0, (17)

where Pη denotes ∂P
∂η

, and so on. Since the angular part is again solved by the spherical
harmonics Ym

l (θ, ϕ), one gets an equation for the wave number nkl. The expressions for
the gi are given in equations A25-A30 of their article. Note that, the properties of the shell
and fluid only enter as ν and the dimensionless λ and κ0 combinations given by:

λ =
ρ f

ρ

ro

h
(18)

κ0 =
ρc2

2µ
. (19)

I have coded all this in the elastic spherical shell modes.m routine. The main motiva-
tion is that one can estimate the ratio between fluid pressure beneath the outer shell and
the outer shell acceleration in a consistent way from equation 14 above (equation 15 of
Rand and DiMaggio (1967)). Remember that ∂P

∂r = 0 for a rigid boundary.

1.4. elastic shell and elastic inner sphere
To be complete, I extended the theory of Rand and DiMaggio (1967) to the case of an

added elastic inner shell, combining the elements of sections 1.2 and 1.3.

1.5. matlab programs
The elastic spherical shell modes.m function provides the nkl and nBl solutions of the

general problem, in the shape of (n = 0 : nmax, l = 0 : lmax) arrays. It also returns the
corresponding n fl mode frequency array, given the sound speed c. The input parameters
indicate whether there is an inner sphere or not, and provide the required elastic parame-
ters of the elastic shells. For a rigid shell, one simply specifies an infinite shear modulus
µ, which yields a zero λ coefficient.

Most relevant routines are placed in the ’acoustic library’ folder. Note that it is im-
portant to write as functions all terms that have to be integrated, such as i nlm. Similarly
for terms that enter a function for which we seek the zeroes, such as f sphere in elas-
tic sperical shell modes.m.
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1.5.1. matlab script
• compute modes menu.m: this script proposes several spherical shell configurations

corresponding to our actual experiments, several fluids relevant for these experi-
ments, and the treatment of the walls (elastic or rigid). From these elements, it
computes the degenerate nS l acoustic modes and their properties. It proposes to
plot the resulting mode frequencies and coefficients (Acc, nγl, ndk2m

l , nCl, ngl), and
to save all these, together with the nkl, nBl and n fl arrays. The name of the mode file
is built as ’ZoRo2-air-rigid.mat’ for example.

1.5.2. matlab functions
• elastic spherical shell modes.m: computes the mode wave numbers (and frequen-

cies) and ’B’ factors of degenerate nS l modes of a spherical fluid shell between
elastic walls. The walls can also be rigid, and there can be no inner sphere.

• gas properties.m: provides the needed thermodynamic properties of various gases
as a function of pressure and temperature.

• acceleration coefficient.m: computes the acceleration to pressure ratio at the outer
wall for degenerate nS l modes.

• write acoustic modes.m: writes a ’mat’ file containing the wave numbers, frequen-
cies, ’B’ factors and resulting coefficients (Acc, nγl, nCl, ngl, n∆ fl) for degenerate
nS l modes of a given shell configuration.

• read acoustic modes.m: reads the mode ’mat’ file.

• A nlm.m: computes the nAm
l (r, θ) meridional map of acoustic pressure amplitude of

nS m
l modes in a spherical shell.

1.5.3. drawing functions
Drawing routines are gathered in the ’drawing functions’ folder.

• draw elastic modes.m: plots the frequencies n fl of the nS l modes as a function of
angular degree l for all available n.

• draw acceleration ratios.m: plots the acceleration ratios Acc of the nS l modes as a
function of angular degree l for all available n.

2. Mode splitting due to rotation

Several deviations from our original assumptions can lift the m-degeneracy of nS m
l

acoustic modes. When these deviations are not too large, they can be treated as pertur-
bations of the spherical nS m

l modes, which has the advantage to keep the well-defined
sequence of modes. This is what is most often done in seismology, where the nS m

l and
nT m

l (for the toroidal modes) of the SNREI2 Earth are taken as starting points for various
perturbations (Dahlen and Tromp, 1998).

2Spherical Non Rotating Elastic Isotropic
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We will examine here the perturbations brought by the rotation of the fluid. Perturba-
tions brought by the ellipticity of its container are treated in the separate Notes ellipticity pipeline
package.

2.1. the effect of global rotation
Concerning rotation, it is important to realize that there are two different effects. When

helioseismologists analyze acoustic modes of the Sun, they observe it from the Earth,
which means that they examine a rotating object. Acoustic waves that propagate in the
Sun in its rotation direction have a higher frequency on its side approaching the Earth,
due to the Doppler effect, while the opposite holds for waves propagating in the opposite
direction. This effect results in the ’splitting’ of the nS l degenerate ’multiplet’ into 2l + 1
’singlets’ nS m

l , whose individual frequencies are n f m
l = n fl + m fo, where fo is the rotation

frequency of the object (here the Sun).
When seismologists analyze seismic modes of the Earth, their seismometers and the

earthquake sources rotate with the Earth. Thus, the effect mentioned above does not take
place. However, the rotation of the Earth also induces a splitting, due to the Coriolis
force. This splitting is also proportional to m and to fo, but with a coefficient nCl, called
the Ledoux coefficient, which depends upon n and l, so that: n f m

l = n fl − m nCl fo. The
expression of the Ledoux coefficient is given in Aerts et al. (2010, equation (3.361)):

nCl =

∫ ro

ri

[
2 ξr ξh + ξ2

h

]
r2dr

nIl
, (20)

with the normalizing integral:

nIl =

∫ ro

ri

[
ξ2

r + l(l + 1) ξ2
h

]
r2dr, (21)

assuming here a homogeneous fluid density.
The Ledoux coefficients computed for ZoRo2 are shown in Figure 2. Note that the

correction needs to be performed to the second order for the Earth, because this second
order correction has a magnitude similar to the ellipticity correction (Dahlen, 1968). The
second order correction involves both an effect of the centrifugal acceleration and a second
order Coriolis term.

In our ZoRo experiments, the loudspeakers and microphones are attached to the solid
outer shell and rotate with it. Therefore, when both the shell and the fluid rotate uniformly
in solid body rotation, splitting will only be due to the Coriolis effect given by the Ledoux
coefficients.

2.2. the effect of differential fluid rotation
Remember that we are doing all that to try to infer fluid motions in the rotating sphere!

Indeed, axisymmetric azimuthal motions of the fluid also produce a splitting of the degen-
erate multiplets. The theory, adapted from helioseismology (Aerts et al., 2010), is recalled
in Triana et al. (2014).
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Figure 2: Ledoux coefficients nCl (times l) of degenerate nS l multiplets as a function of angular degree l
and radial degree n in the ZoRo2 experiment filled with air, assuming a rigid outer wall.

Defining the fluid angular velocity Ω(r, θ), the frequency splitting n∆
m
l = n f m

l − n fl is
again proportional to m, but with a coefficient that depends upon m and is obtained by
integration of a ’rotational kernel’ nKm

l (r, θ) such that:

n∆
m
l =

∫ ro

ri

∫ π

o
nKm

l (r, θ) Ω(r, θ) r dr dθ. (22)

defining p(θ) as the fully normalized associated Legendre polynomial of degree l and
order m:

p(θ) = Pm
l (cos θ), (23)

and its derivative:
q(θ) =

d
dθ

Pm
l (cos θ), (24)

we obtain the following expression for the rotational kernel:

nKm
l (r, θ) =

r sin θ

nIl

{
ξ2

r p2 + ξ2
h

[
q2 +

m2

sin2 θ
p2 − 2

pq
tan θ

]
− 2ξr ξh p2

}
. (25)

Note that global solid body rotation of the fluid with respect to the shell, as treated
earlier, can be seen as a special case of this more general derivation.

2.3. matlab functions
Most relevant functions are placed in the ’acoustic library’ folder.

• Ledoux coefficient.m: computes the Ledoux coefficient nCl of degenerate nS l modes
for global rotation.

• K nlm.m: computes the nKm
l rotational kernel of nS m

l modes for axisymmetric fluid
angular velocity.
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2.3.1. Drawing functions
• draw Ledoux coefficients.m: plots the Ledoux coefficients nCl of the nS l modes as

a function of angular degree l for all available n.

2.3.2. Lower level functions
• i nlm.m: integrand of the normalization integral nIl used for the rotational kernels

and ellipticity correction.

• Int nlm.m: nIl normalization integral (numerical integration between ri and ro of
the integrand function i nlm.m).

• xi r.m: radial displacement function ξr(r) of fluid for degenerate nS l mode.

• xi h.m: horizontal displacement function ξh(r) of fluid for degenerate nS l mode.

• d xi r.m: analytical radial derivative of ξr(r).

2.3.3. Common lowest level routines
• P lm.m: fully normalized Pm

l (cos(θ)) associated Legendre polynomial (= p(θ)).

• d P lm.m: analytical theta derivative q(θ) of the fully normalized Pm
l (cos(θ)) asso-

ciated Legendre polynomial.

• spherical bessel j.m: jl(x) spherical Bessel function of degree l of the first kind.

• spherical bessel y.m: yl(x) spherical Bessel function of degree l of the second kind.

• d spherical bessel j.m: analytical derivative d jl(x)/dx of the spherical Bessel func-
tion of the first kind.

• d spherical bessel y.m: analytical derivative dyl(x)/dx of the spherical Bessel func-
tion of the second kind.

• d2 spherical bessel j.m: analytical second derivative d2 jl(x)/dx2 of the spherical
Bessel function of the first kind.

• d2 spherical bessel y.m: analytical second derivative d2yl(x)/dx2 of the spherical
Bessel function of the second kind.

3. Mode attenuation and synthetic spectra

From the theory discussed so far, we get the wave numbers and resonance frequencies
of the acoustic modes, taking into account (in a linearized way) shell elasticity and ellip-
ticity, global rotation, and differential fluid rotation. In order to produce synthetic spectra
from these mode data, we need to predict the amplitude and shape of the spectrum around
each resonance. We follow here the theory developped in Moldover et al. (1986) and
Trusler (1991). The amplitude is controlled by the positions of the loudspeaker (rs, θs, ϕs)
and microphone (rr, θr, ϕr) and the shape of the mode. The spectral amplitude nA

m
l ( f ) of

a given nS m
l mode reads:
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nA
m
l = R(rr) R(rs) Pm

l (cos θr) Pm
l (cos θs) cos m(ϕr − ϕs), (26)

where R(r) is the radial function of equation 4, to be evaluated at dimensionless radius
unity if both the loudspeaker and the microphones are mounted flush at the outer bound-
ary, as in ZoRo2.

3.1. attenuation mechanisms
The book of Trusler (1991) nicely discusses the attenuation mechanisms at work in

gases. Viscous and thermal dissipation in the bulk contributes little to the attenuation
of acoustic waves. It depends upon the kinematic viscosity ν f of the fluid, its thermal
diffusivity κ f and its Gruneisen CP/CV index. The main attenuation mechanism occurs at
the contact with the solid boundaries of the fluid. For isothermal boundaries (appropriate
for metallic shells), the attenuation depends upon the same thermodynamic properties
of the gas, but acting in the thin boundary layers forming at these frontiers. Following
Moldover et al. (1986), we compute these contributions to the half-width ngl of the spectral
resonance peaks. We start from equation 42 of Moldover et al. (1986), which gives the
bulk and boundary dissipation contributions gbulk and gboundary to ngl, in the case of a rigid
boundary. The boundary dissipation also slightly shifts the resonance peak by n∆ fl =

−gboundary.
From equation 39 of Moldover et al. (1986) we get the bulk dissipation contribution

as:

gbulk =
nk2

l

4πr2
o

[
(γ − 1)κ f +

4
3
ν f + νbulk

]
, (27)

where we used n fl/c = nkl/2πro (remember that the nkl are dimensionless). The quantity
νbulk is the bulk viscosity (kinematic here). Note that Moldover et al. (1986) have an
erroneous 1/2 factor for that term, see Guianvarc’h et al. (2009) for example. The ratio
νbulk/ν f can be very different for different gases. Cramer (2012) computes this ratio for
several gases as a function of temperature. At ambient temperature and low pressure, he
finds that this ratio is of order 1 for N2 and air, but is as large as 30 for H2, 350 for SF6

and 3500 for CO2!
I have added bulk viscosity values for all fluids proposed in compute modes menu.m

or gas properties.m. Values are from Cramer (2012), or references therein, for gases;
from Holmes et al. (2011) for water; from Awasthi and Murthy (1985) for liquid sodium.

The boundary dissipation occurs in the thin thermal and viscous boundary layers at
the walls of the containers. The thickness of these boundary layers, respectively δT and
δU , are given by equations 9 and 10 of Moldover et al. (1986):

δT =

√
κ f

πn fl
(28)

δU =

√
ν f

πn fl
. (29)

Equation 42 of Moldover et al. (1986) then provides the gboundary contribution as:

gboundary =
n fl

2ro

(γ − 1) δT +
l(l+1)

nk2
l
δU

1 − l(l+1)
nk2

l

(30)
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Figure 3: Half-widths ngl of spectral resonance peaks for degenerate attenuated nS l multiplets as a function
of angular degree l and radial degree n in the ZoRo2 experiment filled with air, assuming a rigid outer wall.

In the end, the peak half-width is:

ngl = gbulk + gboundary, (31)

and the peak frequency shift is:

n∆ f l = −gboundary. (32)

Figure 3 shows the ngl half-widths of spectral peaks in ZoRo2.
Note that the acoustic impedance of the walls of the container can also contribute to

the attenuation and frequency shift. It is treated in Moldover et al. (1986).

3.2. resonance spectral shape
Including all the ingredients discussed so far, we get the expected resonance frequency

n f m
l of a given nS m

l singlet as:

n f m
l = n fl − mnCl fo + n∆

m
l + nδ

m
l + n∆ f m

l , (33)

where the right hand side terms are successively: the ideal multiplet mode frequency n fl

(equation 11), Coriolis splitting due to global rotation (equation 20), Doppler splitting n∆
m
l

due to fluid differential rotation (equation 22), ellipticity splitting nδ
m
l caused by ellipticity

(presented in package Notes ellipticity pipeline), and frequency shift n∆ f m
l produced by

attenuation at the boundaries (equation 32).
The spectrum of each individual singlet can be approximated as a Lorentzian (equation

3.1.1 of Trusler (1991)), as:

spectrum( f ) =

∣∣∣∣∣∣∣∣ i nA
m
l

ngl + i
(

f − n f m
l

)
∣∣∣∣∣∣∣∣ . (34)
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Figure 4: Zoom on an acoustic spectrum for ZoRo2 as a function of frequency, for a global rotation rate
fo = 25 Hz.

Figure 4 shows a zoom on a spectrum for ZoRo2.
The complete acoustic spectrum is obtained by summing all singlet contributions. It

should be multiplied by the spectral transfer functions Zs( f ) of the loudspeaker and Zr( f )
of the microphone, if available.

3.3. matlab programs
3.3.1. matlab scripts
• draw elliptic rotation spectra.m: in this script, one chooses a spherical mode file

(such as ’ZoRo2-air-rigid’) saved by the compute modes menu.m script. The script
reads the mode file, and asks for an ellipticity and rotation values. It computes the
mode splitting due to ellipticity and global rotation. Requesting loudspeaker and
microphone latitudes, it computes the expected spectral amplitudes and builds a
complete synthetic spectrum. Note that the spectral transfer functions and longi-
tudes of the loudspeaker and microphone are not taken into account yet. In the
same figure, it plots as a function of frequency:

– the original degenerate spherical nS l lines with their names,

– the lines of the nS m
l modes taking into account ellipticity (if any) and global

rotation (if any),

– the synthetic spectra built from these lines, taking into account mode attenua-
tion and the source-receiver geometry.

• compare ZoRo2 spectra.m: this script is based on the previous one and adds the
reading and over-plotting of an experimentally obtained ZoRo spectrum. It includes
the amplitude term connected to the difference in longitude between the loudspeaker
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and the microphone (see equation 26). Temporarily, it also contains the retrieval and
plot of an empirical transfer function Z( f ) in order to get similar amplitudes for the
data and the synthetics.

3.3.2. matlab functions
• draw attenuation coefficients.m: plots the attenuation half-widths ngl of the nS l

modes as a function of angular degree l for all available n.

• read ZoRo spectra.m: reads ZoRo ’.txt’ files as produced by Sylvie in January
2019.

• infos install ZoRo2.m: following the DTS philosophy, this function provides the
coordinates (r, latitude, longitude) of a ZoRo2 element given its name (such as
’H01’ or ’E04’), following the nomenclature established by Sylvie in January 2019
and the technical drawings of ZoRo2 by Max in 2018.

Most relevant functions are placed in the ’acoustic library’ folder.

• attenuation half width.m: computes the half-width ngl of spectral peaks, and the
corresponding resonance frequency shift n∆ fl for degenerate nS l modes.

• build Lorentzian.m: builds a Lorentzian spectrum for mode resonance at a given
frequency, with a given half-width.

4. Conclusion

We now have a fairly complete set of simple tools to treat acoustic modes in our
experiments. There are several additional developments that would be interesting:

• implementation of attenuation due to the impedance of the elastic walls.
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