Preparation of powder specimen for quantitative XRD

Reinhard Kleeberg
TU Bergakademie Freiberg
Mineralogical Institute

kleeberg@mineral.tu-freiberg.de
References

Impact of crystallite statistics on the diffraction signal depends on:

- sample volume contributing to diffraction (limited by the primary slit system, sample holder, absorption)
- section of the diffraction rings seen by the detector (limited by Soller slits, receiving slit, detector area)
- number of particles per volume unit (limited by particle size)

- only the particle size may be optimized by sample preparation
- ideal case: “infinite number of crystallites” = continuous cones of diffraction
Crystallite statistics 2

Practical consideration: How many particles do contribute to our diffraction signal?

Exemplary calculation at: http://epswww.unm.edu/xrd/xrdclass/07-Errors-Sample-Prep.pdf

Quartz in different particle diameter in a conventional Bragg-Brentano diffractometer

<table>
<thead>
<tr>
<th>Particle diameter</th>
<th>40 µm</th>
<th>10 µm</th>
<th>1 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffracting particles</td>
<td>12</td>
<td>760</td>
<td>38 000</td>
</tr>
</tbody>
</table>

To achieve a standard uncertainty of < 1%, > 52900 particles would be needed!

Quartz in different particle diameter in a conventional Bragg-Brentano diffractometer

<table>
<thead>
<tr>
<th>Particle size fraction /microns</th>
<th>15-50</th>
<th>5-50</th>
<th>5-15</th>
<th><5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation of I quartz_{101}/%</td>
<td>18.2</td>
<td>10.1</td>
<td>2.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Conclusions:

- If we want to measure single peak intensities of minerals correctly, we should try to mill any rock samples to < 5 µm.
- This is necessary to get reliable results of Rietveld structure analysis, too.
Microabsorption causes **loss of intensity** inside a particle. If this loss is different between two phases, the beam is interacting with different phase volumina! Thus, the QPA results will be falsified.

High absorption

Lower absorption
The theory of BRINDLEY (1945):

- depends on grain diameter d and linear attenuation coefficient μ

- intensity loss / correction factor can not be determined from the powder data!

- can be ignored if the product μd is equal for all phases

- intensity resp. scale factor can be corrected if $\mu d < \sim 0.5$, and if both values are known for each phase!

Approximated BRINDLEY correction in the BGMN structure file:

GOAL: forsterite = GEWICHT * exp(my*d*3/4)

GEWICHT	Rietveld scale factor, mass weighted
my	linear attenuation coefficient in 1/µm, provided by BGMN
d	estimated particle diameter in µm, to be set by the user in structure or control file
Microabsorption 3

When does microabsorption occur in practice?

Example: QPA of sulphide bearing rocks

Absorption contrast between quartz and pyrite

coarseness according to BRINDLEY (1945)

<table>
<thead>
<tr>
<th>phase</th>
<th>grain size/µm</th>
<th>µd Cu Kα</th>
<th>µd Co Kα</th>
</tr>
</thead>
<tbody>
<tr>
<td>quartz</td>
<td>10</td>
<td>0.093 medium</td>
<td>0.146 coarse</td>
</tr>
<tr>
<td>pyrite</td>
<td>10</td>
<td>1.012 very coarse</td>
<td>0.516 coarse</td>
</tr>
</tbody>
</table>

Conclusions:

- No problem for fine clay fractions and silicate minerals having similar (low) µ.
- But, if we want to quantify rock samples containing high absorbing materials, we should try to mill the samples to < 5 µm.
For example, sedimentary rocks:

- large crystals (>mm, e.g. quartz), together with fine grained material (clay)
- hard and soft phases together
- differences in density may occur (pyrite, hematite, rutile, silicates…)
- mechanically or thermally sensitive phases (e.g. clay minerals, zeolites, sulphates)

What we want to get

- mean particle size below 5 µm, optimum 1-3 µm
- narrow particle size distribution, no amorphization, no “rocks-in-the-dust”
- no additional disorder (e.g. by shifting of layers)
- no contamination (e.g. by grinding elements)
- no loss of material (e.g. by dusting or dissolution)
- no phase transformation (e.g. by dissolution-precipitation, hydration-dehydration…)
- no phase separation (e.g. by hardness, density, primary particle size, electrostatic…)
Golden rules for milling

General principles:

- If a sample is not homogenous or not representative, any further efforts (for phase quantification in general) are unnecessary.

- The maximum grinding energy has to be adapted to the most sensitive phase.

- Some overmuch large grains are better than any destroyed phase(s).

- Working in closed containers to avoid loss of material by dusting, checking for losses by sedimentation, dissolution, electrostatic adhesion...

- Quick working for minimum contact with dissolution agents and air to avoid any phase alteration.

- Samples should not be exposed any enhanced temperature.

- Note (or keep in mind) what treatments and changes your sample was exposed between sampling and XRD measurement.
Grinding methods useful for clay-bearing rocks 1

Hand grinding in agate mortar

- easy, but strenuous
- allows a stepwise sieving of < 20 µm, very mild
- resulting powder is mostly too coarse for high absorbing materials
- danger of loss by dusting

Foto: Detlev Müller
Grinding methods useful for clay-bearing rocks 2

McCrone micronising mill

- wet grinding (in water or alcohol) produces optimum grain distribution
- crushing the starting material < 0.4 mm is necessary
- danger of contamination by grinding elements (corundum, quartz, ZrO₂)
- dissolution and/or alteration by the grinding liquid (water, ethanol, hexane…)
- filtering or drying of the slurry and additional homogenisation is necessary

![Particle size distribution of McCrone milled quartz, from Hillier (2003)](image)
Homogenisation

- is necessary for admixing of any standards as well as to overcome the (unavoidable) separation processes during grinding, sieving, and sedimentation
- should be applied with minimum energy
- can also used for destroying of aggregates
- should be done immediately before filling the sample

Useful methods:
- admixing of standards by *grinding together* (to get similar grain size and intimate mixing)
- larger amounts of easily flowing powders by *overhead-shaking*
- small amounts by *manual stirring*
- homogenisation and destroying of aggregates by swirling the powder with small steel balls („Ardenne vibrating mill“ or Fritsch mini-mill “pulverisette 23“)
Making the powder mount for Bragg-Brentano XRD 1
are an old matter of debate, and sometimes treated like religion…

Possible pre-treatment of powder before filling:

- No pre-treatment (filling the milled and homogenised powder “as is”)
- Forming irregular shaped aggregates
 - by freeze-drying
 - by spray-freeze-drying
 - by admixing glass powder, plastics or organics, e.g. cork powder
- Forming spherical aggregates
 - by spray-drying with binder (cellulose-acetate, polystyrene, polyvinyl-alcohol)
 - by spray-drying without binder, application of heat
 - by mechanical aggregation in a shaking/sieving procedure (“sieving in”)

Aspects for decision: time consumption, material consumption, stability and density of the samples, loss of intensity by dilution, sample transparency, alteration of minerals, reproducibility, labour protection…
Making the powder mount for Bragg-Brentano XRD 2

Simple tricks may make the difference…

Front-loading (standard holders, very popular)

- powder pressed using a glass slide: very easy, but extreme PO
- powder roughened by emery paper: not so much PO, but badly reproducible and depending of the properties of the powder
- surface roughened by a razor blade: as above, plus high roughness
- sprinkling/sieving some powder on the surface: good randomness, but errors in sample height, high roughness, sometimes phase separation
- possible to do with any kind of aggregates, perfect randomness possible
Making the powder mount for Bragg-Brentano XRD 3

Back-loading (special Philips/Panalytical equipment)

- easy to do, but extreme PO
- no chance to use for unstable aggregates like freeze-dried clays
Making the powder mount for Bragg-Brentano XRD 4

Side-loading (with special side-opened holders, but also for standard holders)

- with normal powder: relatively easy, reproducible, acceptable PO
- with irregular aggregates: perfect randomness possible
- general problems are density, homogeneity, and stability, e.g. for rotated samples
Errors in sample preparation 1

Influence of overmuch large grains on the powder pattern

topaz bearing granite, samples ball-milled < 63 µm and hand-ground < 20 µm
Errors in sample preparation 2

Phase separation and loss of material during powder preparation

Mineral mixtures, ground by hand/dry sieving < 20 µm and McCrone milling/ethanol, filtered slurry

- **Errors in sample preparation 2**
 - Milling
 - Filling
 - Examples

Problems

- **Milling**
- **Filling**

Examples

- **Mica + quartz lost by dusting during dry sieving**

Comparison of 2 Scans

- **Mix3handco10.NJC; Scan 2**
- **Mix3McCroneco10.NJC; Scan 2**

- **Halite dissolved in ethanol**

Mineral mixtures
- ground by hand/dry sieving < 20 µm and McCrone milling/ethanol, filtered slurry
Errors in sample preparation 3

Sample contamination by abrasion from grinding elements

Kaolin Spergau reference sample, McCrone ground using corundum grinding elements and using agate grinding elements
Errors in sample preparation 4

Preferred orientation of grains/aggregates dependent on filling technique
Errors in sample preparation 5

Preferred orientation of grains/aggregates dependent on filling technique

Mixture quartz/dickite/muscovite 40:30:30, McCrone milled, different filling techniques (from Kleeberg et al., 2008)